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Abstract. We introduce an activity-enhanced version of PythonPDEVS, a Parallel DEVS
simulator. PythonPDEVS supports both sequential and distributed simulation. Both se-
quential and distributed variants of PythonPDEVS exploit information about computa-
tional activity to reduce simulation time. DEVS models can be augmented by the user
with domain-specific information about computational load. This information is used by
the simulator to improve performance.

1 Introduction

PythonPDEVS is a Parallel DEVS[1] simulator1 written in the interpreted, high-level, object-oriented
programming language Python. The simulator supports both sequential and distributed simulation,
the latter using Time Warp[3] for optimistic synchronization. Both variants of PythonPDEVS are
aware of the notion of computational activity[4]. Due to the many differences between sequential and
distributed simulation –and mainly due to the way they can exploit activity– they will be discussed
separately. The rationale behind and quantitative speedup results of our approach will be given for
both variants. Our main contribution lies in the distributed simulation, which allows the user to specify
when a model is active.

The remainder of this paper is organized as follows. Section 2 presents two different views on
activity as well as the rationale for why we chose one over the other. Section 3 presents our use of
activity in sequential simulation. Section 4 presents the additional opportunities for speedup offered by
PythonPDEVS, using activity in distributed simulation. Section 5 explores related work and Section 6
concludes the paper.

2 Multiple activity definitions

Our goal is to provide a modeller with the means to encode knowledge about predicted activity [5].
This prediction will be exploited by the simulation/execution engine. Activity can be interpreted in
many ways, depending on the particular resource use one wishes to focus on. Energy, time, and
memory are all resources that can be at the basis of activity definitions. We will focus on the time
resource. From the communication load perspective, a model has a high activity if it generates many
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events in a fixed time window (i.e., has a high event rate). From the computational load perspective,
a model has high activity if its transition functions take a long time to process.

Figure 1. Small model illustrating both definitions

Figure 1 illustrates the orthogonality of
these two definitions: with the first definition,
models 2 and 4 are highly active, whereas
models 3 and 4 are highly active with the sec-
ond definition. The distinction arises as mod-
els may send many output messages without
incurring a heavy computational load. Our
work will focus on the second definition for
several reasons.

The main reason is that the event rate is
less interesting in a distributed simulation due to the use of Time Warp. Using the communication
load activity perspective in Time Warp distributed simulation would incur a significant simulation
overhead. Since activity is being used to increase performance, such an overhead is unacceptable.

Apart from these two general methods, the modeller may also specify a custom concept of activity,
based on for example the state of the model, or the changes thereof. To allow for user-provided
definitions, possibly inspired by domain-specific knowledge, the computational load perspective can
be generalized to use such definitions if they are available. Note that, if desired, the computational load
perspective may encode event rate as an approximation of computational load. Such an approximation
is appropriate in the case of high event rates and low computation in transition functions.

We chose the computational load perspective for the following reasons:

1. Load tracking is faster, as it does not depend on the number of events, but only on the number
of transitions.

2. Event tracking is complex in a distributed simulation, due to events being rolled back. If such
rolled back events were incorporated in the results, this would skew the results significantly
depending on the amount of rollbacks. If they are not incorporated, one gets artificial results as
the events did actually occur.

3. Distributed simulation is best split up based on load, certainly in a Time Warp implementation,
where significant problems can occur if the load is not evenly spread over the nodes. These
problems include long rollbacks, running out of memory and excessive inter-node communica-
tion.

4. It can simply be extended to allow user-defined, domain-specific definitions of activity.

3 Activity in Sequential simulation

Sequential simulation will be discussed first, as it presents some of the same opportunities for activity-
based optimization as distributed simulation. Both sequential and distributed activity-based ap-
proaches are the same, though the latter adds substantial implementation complexity. Distributed
simulation offers some additional opportunities for optimization, as will be discussed in Section 4.
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3.1 Rationale

Figure 2. An example of the use of ac-
tivity in a fire spread model.

In sequential simulation, activity may be used to ignore mod-
els that are inactive. Such inactive models could for example
be those whose timeNext is equal to +∞. The use of quanti-
zation of continuous models [2] is pertinent in this context as
it prevents excessive communication (and thus invocations
of the external transition functions), at the cost of reduced
accuracy. An example of this is a fire spread model, where
cells that do not have any changes in their temperature are
computationally inactive. The simulator may hence ignore
these inactive models, in the limit reducing the complexity of
the simulation by reducing it to computation of active mod-
els only. An example can be seen in Figure 2, where a grid
of n × n cells is used. A traditional simulator has to evaluate
O(n2) models. With activity, this can be reduced to O(r), with
r the radius of the fire front, as due to the nature of the forest
fire domain, only the fire front requires computation.

3.2 Implementation

Ignoring models with a timeNext equal to +∞ is already implemented in several DEVS simulators,
such as vle[6] and adevs[7]. A dedicated activity-based simulator implementation for this type of
(in-)activity is thus not necessary. An appropriate scheduler suffices to filter out inactive models. The
scheduler is at the heart of any discrete-event simulator’s main simulation loop and determines the
next (sub-)model(s) of which the internal transitions should be processed.

Since PyPDEVS offers a modular scheduler, it is possible for domain-specific information to be
incorporated in such a scheduler. In the fire spread example, we know that if a cell was completely
burned down, it will never become active again. Such an inactive cell can thus be completely removed
from the simulation, for example by removing it from the scheduler. The modular scheduler can also
collect all required (activity) information from the model, right before scheduling, and use it to reduce
its own complexity. This allows the scheduler to use its own (possibly domain-specific) concept of
activity, which may deviate from our standard interpretation of activity, if needed.

3.3 Performance

To investigate scheduler-based performance optimizations, the fire spread model is simulated using
different schedulers:

1. Minimal list: simply iterate over all models and select the one with the minimal time. This
scheduler will always run with O(n) complexity.

2. Normal heap: put all models and their timeNext in a heap and use invalidation. This scheduler
will have a complexity O(log(n)) in the best case, when nearly no invalidations occur. Such
usage of heaps is often done in schedulers, as schedulers only require access to the first (sorted)
element.

3. Activity heap: the same as the normal heap, but only insert models with a timeNext different
from +∞. This explicitly uses a notion of activity, as it has a filtering step. Due to the check for
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Figure 3. Performance comparison for different schedulers, some of which use activity.

inactive models, this scheduler will have a complexity of O(log(a)) in the best case, with a ≤ n
the number of active models.

4. Heapset: build a heap containing only the timeNext and a hash map to map the timeNext to
the models. This implicitly uses a notion of activity as all inactive models will be mapped to
the same timeNext entry. The complexity of the scheduler itself is thus not increased as the
number of entries at the same timeNext increases. The complexity is equal to O(log(k)) on
average, with k ≤ a the number of distinct timeNext values which are scheduled.

Note that these complexities are for scheduling and retrieving a single model. If multiple models
are (re-)scheduled simultaneously, some of the above schedulers might be capable of more drastic
optimizations.

Performance results are shown in Figure 3. It is clear that the use of activity may yield significant
speedups for coupled models with a high number of inactive atomic models. Additionally, the heapset
scheduler is the fastest by a slight margin as the fire spread model has all of its transitions at the same
time. This entirely removes the need for heap operations. The simulation’s complexity is however not
O(1), since the number of transitions is still O(r).

The simulation runs that used activity stopped using additional computational resources as soon
as no more active cells were added. At about 2000 models, all new models stayed inactive and were
therefore not taken into account at all in the simulation. In other words, n kept increasing linearly,
whereas a stayed constant due to these additional models being inactive. This shows how the use of
an appropriate problem/domain-specific scheduler removes all accidental computational complexity.
Only the essential computational complexity remains: the computation of those cells (in the fire front)
that are actually active. This is an example of the appropriate use of date structures to encode the
activity region (the set of active models)[5].

The difference in complexity between the normal heap and activity heap is not that visible, as both
still have logarithmic complexity, though for another term. It is clear however, that the activity heap
always performs faster for this model.

Note that the above results are from the simulation only and do not include model construction.
Quantization was also used to prevent communication from spreading too fast and thus activating
all models (almost) at once. Quantization makes sure that only significantly different messages are
passed. Since the surrounding temperature only has a slight influence on the cell temperature, sur-
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rounding cells will have a smaller increase (or decrease) in temperature as they get further from the
source.

Without quantization, cells will always receive (even minuscule) temperature changes, update
their own state and subsequently create new output messages to its neighbors. In other words, every
simulation step will activate all models that are neighbors of the currently active models. A model
with n2 models will thus be completely active after n simulation steps. With quantization, a model
will not pass too small temperature changes and thus fewer models will become active. The actual
influence of quantization is dependent on the used threshold and the speed at which cells change their
temperature.

4 Activity in Distributed simulation

The optimizations to the simulation algorithm described above remain in effect for distributed simula-
tion. Distributed simulation offers some additional opportunities for performance optimization when
combined with activity information.

Since we use Time Warp, there is always the possibility for rollbacks (of transitions and events
sent) due to Time Warp’s optimistic synchronization. To solve this problem, the activity of a transition
is saved together with the state. In the most basic (and default) case, this activity is simply a float
that contains the time the transition function took (in seconds). Custom activity can save arbitrary
types, though simple types are recommended. State saving is already part of Time Warp to support
rollback, so the simulator architecture does not require any changes. We do not take into account
the lost computation due to roll backs, mainly because relocations could alter these rollbacks in an
unknown way. If the computational load is evenly distributed, the models should also advance their
current simulation time at approximately the same rate. When the deviation between the simulation
times on the distributed computation nodes is low, a rollback will be rather small and neglecting lost
computation is acceptable. When the computational load is not evenly distributed, neglecting the
lost computation might not be acceptable. In such a case, Time Warp-based distribution is either not
suitable or initial allocation as well as load balancing need to be modified.

4.1 Rationale

The main optimization that is now possible is to perform migrations, of models to different com-
putational nodes, based on the activity currently exhibited by the model (and ideally, based on the
predicted future activity of models). While it may be possible for the modeller to determine the best
allocation at the start of the simulation, the behavior of the model, and hence its computational load,
can change drastically during the the course of a simulation. Such changes could turn an initially
good (or even optimal) allocation into a bad allocation. One solution to this problem is the use of
static migration rules. These require detailed insight into the behavior that the model will exhibit and
tedious re-work, often based on trial and error, each time the model is altered.
Additionally, a model’s computational load may be highly sensitive to (i.e., vary drastically with) the
initial configuration values. Activity may provide hints to a migration component of the simulator,
which can then attempt to equalize the amount of computational activity on the individual simulation
nodes. This gives us load balancing based on the current computational load of models. The mod-
eller may provide his own definition of activity, possibly different from computational load, which
can provide a prediction of future activity.

As a synthetic example, take the model in Figure 4 which contains atomic models arranged in
a ring. Each of these models will pass on its input value to the next model, after a certain delay.
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Figure 4. An example of a model with varying activity, with relocation applied.

The internal transition function does however contain some significant computation, depending on
the value of the event that was received. As a result, a small section of the ring requires significant
computation, while the rest of the ring requires nearly no computation. Simply deciding on a good
enough initial allocation is clearly insufficient as the load migrates through the ring as the simulation
progresses.

A migration component of the simulator that uses information about the activity can simply track
which models are highly active and relocate them to dedicated computation nodes. The other models,
which have nearly no computations, can then be put on a single node. As simulation progresses, this
region of low-activity models will also migrate, leading to an ideal distribution of computation, most
of the time. This relocation is illustrated in Figure 4.

4.2 Activity tracking

Activity tracking is the simplest way of gathering activity information. The duration of the transition
functions is added up and used as the actual activity within a specified time window (the horizon). We
used the difference in wall clock time before and after the transition functions, since obtaining other
timing metrics incurs a significantly higher overhead. Such a penalty is unacceptable as our intention
is to increase simulation performance.

The advantage of this method is that it works in every situation and is thus very general, as it
only uses the modules provided by Python itself, is platform-independent and the spent wall clock
time is independent of the internal structure of the model. Sadly, it is relatively inaccurate due to
possible thread switching: if either Python or the operating system perform a thread switch during the
computation, the results will be artificially high.

Furthermore, due to the dependency on unpredictable load conditions of the system and the in-
ability of the activity tracking to counter this, the measured times are not the same across different
experiment runs, making then not repeatable. This may pose problems when debugging the perfor-
mance enhancements. It is also possible that this information comes too late as the load might still
significantly fluctuate after the activity information was gathered. This technique is also susceptible
to intermittent load fluctuations. A situation might arise in which activity is found to be badly dis-
tributed, though the user knows that the current allocation is a sufficiently good one. As performing
relocations takes time, it might be counterproductive to do the relocation for a slightly better alloca-
tion, only to undo that relocation in the next step because the detected load was only temporary. User
information could thus be used to hint to the migration module that no migration is necessary at this
point in time, even though the current allocation might seem suboptimal. Increasing the size of the
time window might address these weaknesses to some extent. However, a larger window means that
the reaction to activity changes will be detected later. As a result, a lot of time could be spent in an
allocation that is no longer optimal, and some migrations might have been performed sooner.
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preValue = model.preActivityCalculation()
model.inputValues = deepcopy(model.inputValues)
model.state = model.transition()
activity = model.postActivityCalculation(preValue)

Listing 1. Pseudo-code in Python indicating the place of both activity calls

4.3 Activity prediction

Activity prediction addresses the problems caused by the generality of activity tracking, This is solved
by fetching the activity that should be used from the model itself. This is therefore an activity-based
augmentation of the DEVS formalism, allowing models to provide hints to the simulator about their
(current and anticipated) activity and on how they should be distributed. This breaks down the clean
boundary between model and simulator, but enables higher performance.

To reduce the amount of modification necessary to our simulator, we use activity prediction which
defaults to activity tracking if the user does not provide activity information. This is done by having
a pre-transition call and a post-transition call to the augmented model. The augmentation consists
of the preActivityCalculation and postActivityCalculation methods that get added to the
model. Pseudo-code for the relevant part of the simulation algorithm is shown in listing 1.

With these two calls, it is possible for the modeller to access all information that might be neces-
sary. Activity tracking requires these two calls, as it has to subtract the time before the transition from
the time after the transition. Custom activity definitions might also use this, for example to determine
the difference between the state before and after the transition. Communication between both calls is
required to pass this intermediate result. Therefore, the returned value from the pre-transition call is
passed as an argument to the post-transition call. The post-transition call then returns the final activity
information that can be used by the simulator.

4.4 Information processing

The actual processing of the activity information is important, as otherwise the activity would be of
no use to the simulation 2. As was previously mentioned, our main purpose for this information is
load balancing.

Even though some general relocation strategies exist, a domain-specific algorithm should give far
better results. General algorithms often have a good idea of which nodes are overloaded, though they
don’t know how to solve this. Some strategies do exist, such as migrating models on the boundary3

of the node until an even distribution is achieved. There are however cases where these strategies
perform badly. Our border migration algorithm for example will behave badly if the ’optimal’ allo-
cation significantly extends the border (thus having more models with a neighbor on a different node,
increasing the amount of inter-node messages). It is intuitively clear that a huge border between two
nodes is unlikely to be efficient due to the increased amount of inter-node communication. Our migra-
tion strategy only considers computational load. Certainly, extensions to this strategy could be made
in order to also take the size of the boundary (and hence, inter-node communication) into account.

2The activity information could still be used by the modeller as a basis for manual initial allocation. This is not dynamic
and most of the time the modeller will already have insight in how the initial load is distributed.

3An atomic DEVS model is defined to be on the boundary, if at least one of its neighbors (either input or output) is not
hosted at the same node.
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Domain-specific algorithms provide further insight into which models are easy to migrate and
which will not cause problems later on. Also, the modeller might know that some problem is better
off not being solved due to for example additional rollbacks that would result.

4.5 Flowchart

Figure 5. Flowchart of the extension for activity-
aware migrations

Activity related operations, with the notable excep-
tion of load monitoring, only happen infrequently.
Time warp simulation already implies such an in-
frequent process: the fossil collection phase, in
which all unused states and messages will be re-
moved. Performing relocations right after this fos-
sil collection is ideal, as the amount of data to be
transferred is minimal at this point in time. This
fossil collection phase is extended, as shown in the
flowchart in Figure 5. All activity-related compo-
nents are user-configurable, offering a maximum of
flexibility. At the end, the relocations are passed to
a pre-defined migration interface, which will effec-
tively migrate the selected models.

4.6 Domain-specific activity

It is also possible to combine the domain-specific activity information and the domain-specific activity
relocator. By doing so, the modeller can perform migrations that are completely different from the
more general methods.

While this is not directly related to activity as it no longer directly represents the activity concept
in its more general form, the modeller will generally use these features in an attempt to increase
performance. Increasing performance with hints from the model is the reason why we use activity in
the first place. Domain-specific hints and migration components can thus be seen as an alternative to
our default use of activity.

4.7 Performance
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Figure 6. Performance comparison of using
activity information in a distributed simulation

We are currently still evaluating the impact of our
activity-based migration strategies. Some synthetic
examples, such as the ring model mentioned in Sec-
tion 4.1 indicate that such migrations have a huge po-
tential in models where the computational activity is
not evenly distributed.

In our performance comparison, we used the previ-
ously mentioned ring model. The default activity track-
ing method was used, which uses the time required
for the transition function. The migration component
uses the activity information to exchange models on
the boundary of the current node. Nodes detect that
their total activity is higher than the average and try to
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push away the models on their boundary. These steps are repeated until every node approximately
reaches the average activity. Figure 6 shows the difference in simulation time between using activity-
based migration and no migration at all. Obviously, the speedup that is achievable with distribution
depends on the actual computational load in these high activity models. Activity-based migration can
be seen to have a considerable impact on simulation performance, in particular when an unacceptable
initial allocation is used.

5 Related work

The filtering of inactive models was also done in simulators such as vle[6] and adevs[7]. They do
not allow the user to define a custom (possibly domain-specific) scheduler and consequently make it
impossible to support custom activity definitions or domain-specific knowledge.

DEVSimPy[8], which uses PythonDEVS as its simulator, offers an activity tracking plug-in. The
results of this tracking are currently only used to inform the modeller and not for any kind of direct
performance improvement.

The PythonPDEVS simulator is based on the original PythonDEVS[9] prototype, but was ex-
tended to support, among others: a modular scheduler, distributed simulation, custom activity, and
activity tracking/prediction. All of these are concerned with performance optimization and with of-
fering the modeller the possibility to add domain-specific information to the model.

6 Conclusions and Future Work

In this paper, we elaborated on the use of activity in the PythonPDEVS simulator. A comparison
between several notions of activity was introduced together with a motivation for our choices.

The interpretation and implementation of activity in sequential simulations was subsequently pre-
sented. We noted that all activity information could simply be processed by the scheduler without
the need for a specific activity component, thanks to our modular and user-configurable scheduler. In
addition to simple activity-based scheduling, offering a modular scheduler also made further domain-
specific optimizations to the scheduling possible. A performance comparison between several differ-
ent schedulers was presented. This clearly showed the potential of activity-based scheduling.

Distributed simulation was described next, where activity could also be used as a performance
metric to aid in load-balancing between the different simulation nodes. Opportunities for both activity
tracking and domain-specific activity information were presented, together with a user-defined migra-
tion module that could use the information previously gathered. Again, simulation results were shown
in a synthetic model.

PythonPDEVS with our activity additions, presented examples, and extensive documentation can
be found at http://msdl.cs.mcgill.ca/people/yentl/50_master.

Our future work focuses on using this approach in less artificial situations, such as fire spread
and city traffic, and evaluating performance improvements. This will require further optimizations
to the PythonDEVS migration algorithms, but will also require us to insert more domain-specific
information into both the activity tracking and migration components.

Other uses of activity will also be considered in the near future, for example to support activity-
based initial allocations of the model. Some more (general) applications of activity for the scheduler
are also being considered.

http://msdl.cs.mcgill.ca/people/yentl/50_master
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