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Abstract
We introduce two sequential simulation languages and sup-
porting simulation tools: PythonDEVS for Classic DEVS,
and PythonPDEVS for Parallel DEVS. Complex simulation
initialization and termination conditions are supported. The
main contribution is a modular architecture which allows the
user to choose the scheduler, the realtime time management
platform, the tracer(s), termination conditions, . . . Both as-
fast-as possible and real-time simulation are supported. For
real-time simulation (and deployment), three different plat-
forms for time management are supported: thread-based, in-
tegration with UI event processing, and integration with the
game loop of modern game environments. The simulation
kernel is highly optimized and as its modularity allows for
user-provided custom schedulers, model-specific knowledge
can be taken into account, leading to high performance.

1. INTRODUCTION
PythonDEVS (a.k.a. PyDEVS) is a Classic DEVS[12]

language grafted on the Python language, with a matching
simulator. Python is a strongly typed, interpreted, object-
oriented programming language. Recent changes to the orig-
inal PyDEVS[1] enhance its simulation performance drasti-
cally. A variant, called PythonPDEVS (a.k.a. PyPDEVS), im-
plements Parallel DEVS[4], allowing several additional per-
formance improvements. Hence, most of our work is focused
on improving PyPDEVS. Most of our discussion is relevant
to both of them, in which case it is referenced as Py(P)DEVS.
The basic generator and queue model in Listing 1 serves as a
simple example of Py(P)DEVS concrete textual syntax. More
elaborate examples and how to use several options can be
found in the documentation included in the package.

# A simple event Generator with IAT parameter
class Generator(AtomicDEVS):

def __init__(self, IAT=1.0):
AtomicDEVS.__init__(self, "Generator")
self.IAT = IAT # Inter Arrival Time
self.state = True
self.outport = self.addOutPort("outport")

def timeAdvance(self):
if self.state:

return self.IAT
else:

return INFINITY

def outputFnc(self):
# example output event content: [5,"a"]
return {self.outport: [5,"a"]}

def intTransition(self):
self.state = False
return self.state

# A simple Queue with processing_time parameter
class Queue(AtomicDEVS):

def __init__(self, processing_time=1.0):
AtomicDEVS.__init__(self, "Queue")
self.state = None
self.processing_time = processing_time
self.inport = self.addInPort("input")
self.outport = self.addOutPort("output")

def timeAdvance(self):
if self.state is None:

return INFINITY
else:

return self.processing_time

def outputFnc(self):
return {self.outport: [self.state]}

def intTransition(self):
self.state = None
return self.state

def extTransition(self, inputs):
# Only take the first element from the bag
self.state = inputs[self.inport][0]
return self.state

# A coupled model: Queue taking input from a Generator
class CQueue(CoupledDEVS):

def __init__(self):
CoupledDEVS.__init__(self, "CQueue")
self.generator = self.addSubModel(Generator())
self.queue = self.addSubModel(Queue())
# connecting sub-models’ output to input
self.connectPorts(self.generator.outport,

self.queue.inport)

model = CQueue() # create a model instance

sim = Simulator(model) # create a simulator

# can be configured with simulation end-time
sim.simulate() # run model simulation

Listing 1. PyPDEVS example



We will elaborate on the major features of Py(P)DEVS:
a modular architecture (section 2.) and performance (sec-
tion 3.). Related work is explored in section 4. Conclusions
are given in section 5.

2. ARCHITECTURE
The design of the Py(P)DEVS simulator is modular, with

as a prime example, the modular support for scaled-realtime
simulation. Other examples include modular tracers (for
model validation), a user-selectable modular scheduler (for
performance), and the support for termination condition(s)
(for versatility). A simplified version of the simulation algo-
rithm is shown in Algorithm 1. The realtime version differs

Algorithm 1 Basic simulation algorithm
clock← scheduler.readFirst()
while not terminationCheck() do

for all scheduler.getImminent(clock) do
Mark model with intTransition
Generate and route output
Mark destinations with extTransition

end for
for all marked models do

Perform marked transition
Send info about the performed transition
to subscribed tracer(s)

end for
scheduler.massReschedule(transitioning)
Clean model transition marks
clock← scheduler.readFirst()

end while

in that it only executes a single step and then waits for the
required wall-clock time.

2.1. Modular realtime simulation
Apart from as-fast-as-possible simulation, Py(P)DEVS

also supports scaled realtime simulation. The latter uses the
same algorithm as as-fast-as-possible simulation, as only the
main simulation loop differs due to possible asynchronous
user-provided input and the requirement to wait after every
transition phase until the appropriate wall-clock time. Real-
time simulation therefore has exactly the same set of features
as as-fast-as-possible simulation. The only difference is the
termination function, which is only evaluated at the time of
processing a transition (for performance reasons). As a con-
sequence, the realtime simulator may overshoot a termination
condition which depends on the value of simulated time.
Three different platforms are supported:

1. Raw threads are the straightforward way to implement
realtime simulation. Waiting for the correct wall-clock
time is done by means of a Python Event as provided by

the standard library. A wait on this event will occur.
This implementation is simple and relies on the Python
implementation for decent accuracy. Events can be un-
scheduled by manually setting the Event object, thus
terminating the thread. This is necessary when an exter-
nal input is received. The use of raw threads is appropri-
ate when implementing for example network protocols.

2. UI events are useful when interaction between the sim-
ulator and a user interface (such as one based on the Tk
library) is required. The raw threads solution fails, as the
UI’s event management facilities must be used to inter-
leave UI and simulation events. The major difficulty is
that callbacks should be used to the simulator, meaning
that we should hand over all control to another program.
The actual scheduling logic is provided by Tk itself, and
only a wrapper around it needed to be written.

3. The Game loop mechanism allows the realtime sim-
ulation to be incorporated within a game loop. This
loop, typically with a fixed frame rate, both updates the
game state and renders the representation of that state.
Within each frame, a single call is made to the simu-
lator. The simulator does hence not have control over
the advancement of time. It can only observe the time
to which the game loop has advanced, and process all
events (over)due by that time. In this approach, the ac-
curacy is limited to the frame period.

The used platform is completely transparant to the modeler.
Adding additional platforms is simple and only requires the
user to write a small interface. The main function wait, takes
the function to run and its delay as arguments. Adding the
game loop mechanism only took 40 lines of platform-specific
code, demonstrating the elegance of the modular design.
In addition to the threading platform, the external event
senders are also written as modularly as possible. Two input
methods are supported:

1. With user input during the simulation, the simulator
can be interrupted using the interrupt function. The
time of the event will be determined by the wall-clock
time at the moment the message is injected (taking into
account the scale factor). The interrupt will be processed
immediately, except in the game loop platform, where it
will only be processed when the step function is called.

2. With file input from a file containing time-ordered event
notices (time-event pairs). Entries from this file are
parsed “on demand”, as the simulation advances. Read-
ing in the whole file at the start of the simulation and pre-
scheduling all event notices is more efficient for small
files, but does not scale for large input event traces.

A combination of both methods is supported, making it
possible to use a file as a generator, while the user still pro-
vides manual input. Input is always provided in the form
inputPort inputValue, where the inputPort is a



__ Current Time: 1.00 _____________________

EXTERNAL TRANSITION in model <Processor>
Input Port Configuration:

port <inport>:
Event = 1

New State: 0.66
Next scheduled internal transition at time 1.66

INTERNAL TRANSITION in model <Generator>
New State: 1.0
Output Port Configuration:

port <outport>:
Event = 1

Next scheduled internal transition at time 2.00

Listing 2. Example verbose output

string that is mapped to a Port object. This mapping, for
all ports in the model, is constructed at the start of the simu-
lation. Only strings, and not arbitrary Python objects can be
interactively injected during the simulation. Supporting arbi-
trary Python object would complicate the parsing of input.
Events can be put on every possible input port of the model,
even on those of models deeply nested in the model hierar-
chy. This partially breaks modularity. The much more intru-
sive alternative is however to change the model under study
and create a series of ports and connections, from the topmost
coupled model down to the desired nested model. When Par-
allel DEVS is used, the message has to be put in a bag before
insertion into the simulation, which is done transparantly by
the simulator.
Simulations can be run in scaled realtime where the ra-
tio R between simulated and wall clock time specifies real-
time (R < 1), slower-than-realtime (R < 1), and faster-than-
realtime (R > 1).

2.2. Modular tracing
Py(P)DEVS supports the use of several different tracers,

which can be useful for debugging. Some of the supported
tracers are:

1. Verbose tracing outputs all available information about
the simulation. It displays the type of transition that oc-
curs, on which model it occurs and the effect on the
model. Additionally, the incoming and outgoing mes-
sages are shown for each port. This happens in a human
readable form to allow simple debugging. A sample ver-
bose trace is shown in Listing 2. The output of this tracer
is difficult to process automatically. To address this issue
three other tracers are provided.

2. XML tracing outputs the information to XML with the
structure defined by Song [11]. Song also provides a
tool to visualize these traces. The main advantage of this
trace is that it is very versatile and is simple to parse.

Such traces can become very large however, due to the
verbosity of XML and the granularity of logging.

Adding a new tracer is very simple and only requires the
addition of functions to be called when an internal, external or
confluent transition happen. These functions take the model
on which the transition happened as a parameter.
Since tracing incurs a large simulation overhead, it is possible
to disable tracing completely. Final output of aggregate per-
formance measures such as average queue lengths can still
occur however. All tracers are completely independent. It is
thus possible to run multiple tracers simultaneously.

2.3. Modular scheduler
One of the most time-critical (and complexity-defining)

parts of discrete-event (and DEVS in particular) simulation is
the scheduler used. The scheduler keeps track of event/model
notices (i.e., time-value pairs). Nearly every DEVS simulator
uses a different data structure as the basis of the scheduler.
The simplest scheduler is an eventlist, as is used in the ab-
stract simulator[12, 3]. More complex schedulers are based
on a heap. Even in seemingly identical schedulers, slight vari-
ations are found. For example, vle[10] and adevs[8] both
use a heap for their scheduler, though they use it differently.
vle uses a general-purpose heap and uses invalidation to
cope with reschedules. On the other hand, adevs reimple-
ments a heap and makes reschedules a native operation.

In several situations, some user knowledge might be en-
coded to enhance the scheduler. It is for this reason that
Py(P)DEVS supports a user-defined scheduler. This offers the
user the possibility to define a custom scheduler, as long as
the same interface is used. Such a scheduler does not even
need to be DEVS-compliant, as long as it is compliant with
the actual model being simulated. This allows for example for
the efficient simulation of discrete-time models.
Of course, most users will not wish to write their own sched-
uler, though it offers an extra opportunity for when every bit
of performance is required. Py(P)DEVS already includes a
variety of schedulers.
The supported schedulers are:

1. A sorted list is an event list which is continuously kept
sorted on the time attribute. It is clearly the least effi-
cient, at least complexity wise. It performs decently in
several situations, though it has very inefficient schedul-
ing if there are many inactive models or if very few mod-
els change in a simulation step.

2. The minimal list is an event list too, but is unsorted. It
iterates over the complete list for every operation.

3. An activity heap is a scheduler that maintains a heap
with all scheduled elements. It is updated by pushing
and popping new elements using the heapq library
in Python (a priority queue implementation). Resched-
ules are handled by invalidation, followed by a periodic



Average case Worst case
Sorted list O(n · log(n)) O(n · log(n))
Minimal list O(n) O(n)
Activity heap O(k · log(n)) O(n · log(n))
Heapset O(k · log(n)) O(n · log(n))
No Age O(k · log(n)) O(n · log(n))
Dirty heap O(k · log(n)) O(∞)

Table 1. Complexity of the different schedulers. k is the
number of reschedules and n is the total number of models
in the simulation.

cleanup. Performance can be problematic in cases where
many invalidations occur. This, as the size of the heap
can actually become much larger than the number of
models. If a cleanup is triggered, it will take some time
to completely reconstruct the whole heap. This sched-
uler partially takes activity into account: models that are
scheduled at time +∞ are simply not taken into account
and do therefore not influence the complexity.

4. The dirty heap is identical to the activity heap, but does
not perform periodic cleanup. In the worst case, it is pos-
sible for the heap to grow larger at every timestep, mak-
ing the time and space complexity unbounded.

5. The heapset scheduler still contains a heap, though it
does not contain the elements themselves, but only the
time at which they transition. This time can then be used
to look up the actual models in a hashmap. The size
of the heap is minimized by only including times, thus
(time-)colliding models do not increase its size. Note
that this scheduler takes advantage of the efficient dic-
tionary (a kind of hashmap) implementation in CPython.

6. The no age scheduler is similar to the heapset scheduler,
but without an age field, thus making it non-general.
This allows slightly simpler comparisons internally.

Each of these schedulers has specific cases where it excells.
For example the Minimal list when lots of reschedules occur,
or the Heapset when only a small number of reschedules oc-
cur at each iteration.

In Figure 1, three different situations are tested and all (ap-
plicable) schedulers are compared. It becomes clear that not-
icable speedups can be achieved by choosing an appropriate
scheduler. There are also variations in memory usage, though
these are not shown here.

The idea of using a specific data structure for specific sit-
uations was also used in for example Meijin++[9], where the
data structure could even be changed at runtime if it was de-
tected that a speedup could be gained in that way. PyPDEVS
currently offers basic support for such a polymorphic sched-
uler, which chooses at run time between either the heapset or
minimal list scheduler, based on the patterns seen in the last
simulation steps. The additional cost of statistics gathering
and swapping the scheduler is worthwhile if the model has

either variable behaviour, or if the user simply has no idea
which scheduler to use.

2.4. Modular termination condition
Another specific feature of Py(P)DEVS is the possibility

to use a complex termination condition instead of a a simple
termination time. Most other simulators only allow the simu-
lation to halt at a specific simulation time, whereas we allow
the modeller to define a condition that should be checked at
every simulation step. Such a condition could check for an un-
acceptable situation and immediately halt simulation if such a
situation is detected. Actual simulation speed is not improved,
but it offers the possibility of halting the simulation earlier.
The main disadvantage of this approach is that it incurs a
slight performance overhead in situations where only a termi-
nation time is desired, as function calls have a high overhead
in Python.

3. PERFORMANCE
Even though Py(P)DEVS is written in the interpreted lan-

guage Python, one of its new focal points is performance. The
first version of PyDEVS was among the slowest DEVS sim-
ulators available, mainly due to the simple simulation proco-
tols and the naieve implementation of the abstract simulator,
without optimizations.
The complete simulation algorithm was revised and the com-
plexity was drastically reduced. The most invasive optimisa-
tions are the use of different schedulers for different types of
models and the use of direct connection[2]. Several other op-
timisations were adopted from [7].
Additional speedup can be observed when using the PyPy
Python interpreter instead of the default CPython interpreter.
Using another interpreter does not lower the complexity,
though it can alter the complexity by a constant factor.
To put the choice of implementation language in perspec-
tive, we use the DEVStone[5] benchmark with many col-
lisions. We compare our performance to adevs[8], which
is currently one of the fastest available DEVS simulators
and is written in C++. Since adevs implements the Parallel
DEVS[4]1 formalism, we compared it to our parallel version
of PyPDEVS.
The DEVStone model is rather artificial, though it shows the
complexity in the number of models in situations with many
collisions. The results shown in Figure 2 were obtained using
an Intel i5-2500, 3.30GHz with 4GB main memory.
Considering that adevs uses a compiled programming lan-

guage, PyPDEVS compares very favourably when the PyPy
interpreter, which has JIT capabilities, is used.
The normal adevs benchmark was performed without any

1Technically, it is the DynDEVS formalism, though the difference does
not matter here
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compilation flags, thus disabling any compiler-induced op-
timisations. When adevs was compiled with optimisations
(gcc -O2), adevs was again fastest. However, the PyPy
JIT is still work in progress, so it has the potential for even
higher performance in the future, without any further opti-
misations to PyPDEVS itself. Furthermore, this simulation
time included the JIT code generation (which happens at run-
time), and several parts of code were never translated, re-
sulting in normal interpreted execution which is slower than
CPython interpration.
In PyPDEVS, we choose to use the minimal list scheduler,
as the DEVStone benchmark causes a number of collisions
that is dependent on the number of models. In such situa-
tions, the minimal list scheduler is the ideal scheduler due to
its low time complexity that is independent of the number of

collisions. Adevs always uses the same scheduler, with the re-
sult that it performs relatively bad in this situation. Of course,
models that are a better fit for the adevs scheduler will again
run faster on adevs, even if no optimization is performed.
Note that there is some slight jitter in the PyPy timings, even
though the results are averaged over five simulation runs. This
is caused by the JIT that compiles the Python code at run time
only after it is executed a few times. Furthermore, the JIT
causes some slight deviations in short simulations due to the
warmup time. Notably, after 450 models, the PyPy garbage
collector starts interrupting our simulation, causing massive
slowdowns.
PyPDEVS has several features which adevs does not have,
such as the possibility for scaled realtime simulation and sev-
eral tracers. Additionaly, PyPDEVS models are written in
Python, offering all the advantages of Python to the modeller.
This allows for example to change the model and rerun it
without recompilation. In contrast, the adevs simulator and
the model are compiled together into a single executable. An-
other advantage is dynamic typing: in PyPDEVS it does not
matter what kind of messages are passed, whereas in adevs,
all messages have to be of the same type (though inheritance
can be used).

4. RELATED WORK
The idea of modular design is also present in JAMES II[6].

Unlike JAMES II, our work is focused solely on DEVS.
Nearly every different simulator uses its own kind of

scheduler, which can be highly efficient in the problem do-
main for which the simulator was designed. Such exam-
ples include a sorted list (original PyDEVS[1]), minimal list
(CD++) and a dirty heap (vle). The type of scheduler used



is nearly never documented, forcing the user to delve into the
source code (if available at all).
X-S-Y is another DEVS simulator written in Python that

supports realtime simulation, though it only supports threads.

5. CONCLUSION AND FUTURE WORK
We presented a new version of PyDEVS, a DEVS simula-

tor written in Python, compliant with the Classic DEVS spec-
ification, and PyPDEVS, a Parallel DEVS simulator. It sup-
ports both as-fast-as-possible and realtime simulation using
different threading platforms. It offers many of its features in
a modular way, without compromising simulation efficiency
and, in combination with PyPy, is even one of the fastest
DEVS simulators in several situations. Python(P)DEVS uses
Python as its implementation language, allowing for highly
readable and maintainable code in both the simulator and the
models.

Future work will further develop PyPDEVS, by providing a
distributed version of the current PyPDEVS implementation.
The same kind of tracers and termination conditions will be
supported. Realtime simulation will still be supported, though
only when no distribution is used. The main difference is
the possibility to use multiple computation nodes using Time
Warp optimistic synchronization. This implementation will
again focus on performance whilst maintaining compliance
with the specification.

Additional functionality is also planned for the
Py(P)DEVS simulator, such as reinitialisation, support
for dynamic structures and nesting of multiple simulations.
Due to the importance of the scheduler in defining the
complexity of the simulation, the polymorphic scheduler will
be benchmarked and tweaked further.
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