
Explicit Modelling of a
Parallel DEVS Experimentation Environment

Simon Van Mierlo † Yentl Van Tendeloo †
simon.vanmierlo@uantwerpen.be yentl.vantendeloo@uantwerpen.be

Bruno Barroca ‡ Sadaf Mustafiz ‡ Hans Vangheluwe †‡
bbarroca@cs.mcgill.ca sadaf@cs.mcgill.ca hv@cs.mcgill.ca

† University of Antwerp, Belgium
‡McGill University, Montréal, Canada

ABSTRACT
In this paper, we explicitly model an interactive debugging
and experimentation environment for the simulation of Paral-
lel DEVS models. We take inspiration from the code debug-
ging world, as well as from the simulation world (including
different notions of time) to model our environment. We sup-
port both as-fast-as-possible and (scaled) real-time execution
of the model. To achieve this, the PythonPDEVS simulator is
de/re-constructed: the modal part of the simulator, as well as
the debugging operations, are modelled using the Statecharts
formalism. These models are combined, resulting in a model
of the timed, reactive behaviour of a debugger for Parallel
DEVS, which is used to regenerate the code of the simulator.
It is then combined with a modelling and simulation environ-
ment to visually model, simulate, and debug Parallel DEVS
models.

Author Keywords
Parallel DEVS; Debugging; Statecharts

ACM Classification Keywords
I.6.7 SIMULATION AND MODELING: Simulation Support
Systems; D.2.5 SOFTWARE ENGINEERING: D.2.5 Testing
and Debugging

INTRODUCTION
The systems we analyse, design, and develop today are char-
acterized by an ever growing complexity. Modelling and Sim-
ulation (M&S) [20] become an increasingly important enabler
in the development of such systems, as they allow rapid pro-
totyping and early validation of designs. Domain experts,
such as automotive or aerospace engineers, build models of
the (software-intensive) system being developed and subse-
quently simulate them having a set of “goals” or desired prop-
erties in mind. Ideally, every aspect of the system is modelled
at the most appropriate level(s) of abstraction, using the most
appropriate formalism(s) [7]. The M&S approach can only be
successful if there is sufficient tool support, i.e., if modellers
have access to tools which effectively support each phase in
the M&S process. This is no different from traditional, code-
based software development methods: programmers have ac-
cess to various helpful tools such as version control software,

testing tools, and debuggers. Debuggers allow developers to
locate the source of a defect (which was detected by a failing
test, meaning that one of its properties was not satisfied) using
breakpoints, stepping, and tracing of runtime variables [23].

Support for simulation debugging, however, is currently lim-
ited. This is mainly due to its inherent complexity: the
interplay of formalism execution semantics, different no-
tions of simulated time such as (scaled) real-time and as-
fast-as-possible execution semantics, as well as user interac-
tion through an interface are all challenging to capture and
correctly implement using traditional software development
techniques. Debugging is not only useful for program code,
however, and is a necessary condition for lifting the M&S
approach to a true engineering discipline with widespread ac-
ceptance.

DEVS, as introduced by Zeigler [22], is a popular formal-
ism for modelling complex dynamic systems using a discrete-
event abstraction. In fact, it can serve as a simulation “assem-
bly language” to which models in other formalisms can be
mapped [19]. A popular extension (and the default in many
simulation tools) of Classic DEVS is Parallel DEVS [2],
which has better support for parallelism. A number of tools
have been constructed by academia and industry that allow
the modelling, simulation, and in some cases, (limited) de-
bugging of DEVS models.

In this paper, we describe the construction of a visual mod-
elling, simulation, and debugging environment for Paral-
lel DEVS. To achieve this, we de-/re-construct the Python-
PDEVS simulator [18] as described in [21] and add debug-
ging support to the modal part (which is explicitly mod-
elled in the Statecharts [4] formalism) of the simulator.
We combine the simulator with the visual modelling tool
AToMPM [15], allowing for the visual interactive control of
DEVS model simulations. Full details of this work can be
found in a technical report [17].

The rest of the paper is structured as follows. Section
BACKGROUND provides a short explanation of the Parallel
DEVS and Statecharts formalisms. Section DEBUGGING
DEVS MODELS presents a set of useful operations for the
debugging of Parallel DEVS models. Section METHOD dis-
cusses the method of de-/re-constructing a simulator, applied
to the PythonPDEVS simulator. Section USER INTERFACE



explains the visual user interface of the debugger. Section
RELATED WORK discusses related work and compares our
environment to existing DEVS modelling and simulation en-
vironments. Section CONCLUSION AND FUTURE WORK
concludes.

BACKGROUND
In this section, we introduce the reader to the Parallel DEVS
formalism, as it is a prerequisite to understand the debugging
operations introduced later on. We also give a short introduc-
tion to the Statecharts formalism, as it will be used to model
our debugger explicitly.

DEVS, and in particular Parallel DEVS, is used to model the
behaviour of discrete event systems. Its basic building blocks
are atomic DEVS models, which are structures

M =< X,Y, S, δint, δext, δconf , λ, ta >

where the input set X denotes the set of admissible inputs
of the model. X is a structured set X = ×m

i=1Xi where
Xi denotes the admissible inputs on port i. The output set
Y denotes the set of admissible outputs of the model. Y is
a structured set Y = ×l

i=1Yi where Yi denotes the admissi-
ble outputs on port i. The state set S is the set of sequen-
tial states. The internal transition function δint : S → S
defines the next sequential state, depending on the current
state. The output function λ : S → Y b maps the sequential
state set onto an output bag. The external transition function
δext : Q×Xb → S with Q = {(s, e)|s ∈ S, 0 ≤ e ≤ ta(s)}
gets called whenever an external input (∈ X) is received. The
time advance function ta : S → R+

0,+∞ defines the simula-
tion time the system remains in the current state before trig-
gering its internal transition function. The confluent transi-
tion function δconf : S×Xb → S is called if both an internal
and external transition collide at the same simulation time,
replacing both functions.

A network of atomic DEVS models is called a coupled
DEVS model. Output ports of one atomic DEVS model
can be connected to one or more input ports of other atomic
DEVS models using “channels”, defining a transfer func-
tion to translate output to input messages. Parallel DEVS
is closed under coupling, which means that coupled models
can be nested to arbitrary depth.

An abstract simulator for Parallel DEVS is described in [3].
Such a simulator computes the next state of the system (a
“step”) until its end condition is satisfied. Each step consists
of the following phases:

1. Compute the set of atomic DEVS models whose internal
transitions are scheduled to fire (imminent components).

2. Execute the output function for each imminent component,
causing events to be generated on the output ports.

3. Route events from output ports to input ports, translating
them in the process by executing the transfer functions.

4. Determine the type of transition to execute for the atomic
DEVS model, depending on it being imminent and/or re-
ceiving input.

S
ta

te
 V

ar
ia

b
le

 (
S

V
)

Simulated Time (ST)

2.3 30.8

(a) Change of state over simu-
lated time.

S
im

u
la

te
d

 T
im

e 
(S

T
)

Simulation Step (SSTEP)

3
2.

3
0.

8
0

"small step"

"big step"

(b) Multiple steps execute a sin-
gle simulated time.

Figure 1. Simulation time and steps.

5. Execute, in parallel, all enabled internal, external, and con-
fluent transition functions.

6. Compute, for each atomic DEVS model, the time of its
next internal transition (specified by its time advance
function).

The Statecharts formalism was introduced by David
Harel [4]. Statecharts is an extension of state machines and
state diagrams with hierarchy, orthogonality, and broadcast
communication. It is used for the specification and design of
complex discrete-event systems, and is popular for the mod-
elling of reactive systems, such as graphical user interfaces.
A Statechart generally consists of the following elements:

• states, either basic, orthogonal, or hierarchical;

• transitions between states, either event-based or time-
based;

• actions, executed when a state is entered and/or exited;

• guards on transitions, modelling conditions that need to be
satisfied in order for the transition to “fire”;

• history states, a memory element that allows the state of
the Statechart to be restored.

In the remainder of the paper we describe how the timed, re-
active, interruptible behaviour of the PythonPDEVS simula-
tor is modelled as a Statechart. This model is extended with
debugging operations to allow interactive control of the sim-
ulation.

DEBUGGING DEVS MODELS
In this section, a useful set of operations for the debugging
of Parallel DEVS models is constructed. We take inspira-
tion from traditional code debugging (state manipulation and
breakpoints) as well as simulation-specific concepts (manip-
ulation of simulated time).

Time
The notion of time plays a prominent role in model simula-
tion. Simulated time differs from the wall-clock time: it is
the internal clock of the simulator. In general, a simulator up-
dates some state variable vector, which keeps track of the cur-
rent simulation state, each time increment. This is depicted in
Figure 1a. The state is updated by some computations, or



0

1

2

3

4

5

1 2 3 4 5

S
im

u
la

te
d

ET
im

eE
(S

T
)

WallclockETimeE(WCT)

stop event

analytical time

(as fast as possible)
sE>E1

sE=E1

sE<E1

(scaled) real-time:

ST = s * WCT

PAUSE

pause event

resume event

scale factor change

Figure 2. Different notions of time.

S
im

u
la

te
d

 T
im

e 
(S

T
)

Wall-Clock Time (WCT)

1 2 3 4 5

1
2

3
4

5

"pause"

<<paused>>

<<paused>>

Figure 3. Pausing simulation: difference between as-fast-as-possible and
real-time simulation.

“steps”: a big step corresponds to the computation of the next
value of the state variable, and consists of a number of small
steps. This is shown in Figure 1b. In the context of DEVS,
each phase in computing the next state (as presented in Sec-
tion BACKGROUND) is regarded as a small step.

Executing program code is always done as fast as possi-
ble, i.e., the speed of the program is limited by the machine
executing it. Simulations, however, can be run as-fast-as-
possible, or in (scaled) real-time, which is useful for simu-
lating models of real-time systems which might be deployed
as such on a real-time device. In this case, there is a linear
relation between the wall-clock time and the simulated time.
The relation of the different notions of simulated time and the
wall-clock time is depicted in Figure 2. Note that there is no
linear relation in as-fast-as-possible simulation, meaning that
the “current simulated time” is simply a variable in the sim-
ulator. Moreover, operations can be performed on simulated
time, such as pausing, or stepping back, which are naturally
not allowed on wall-clock time.

Pausing is a useful debugging operation, as it allows to inter-
rupt a running program or simulation and inspect the current
state of the system. We already mentioned that it is a valid op-

eration on simulated time, but we do have to make a distinc-
tion between different simulation modes (as-fast-as-possible
and (scaled) real-time) to determine the semantics of a pause.
Figure 3 depicts the difference between the two modes. In as-
fast-as-possible mode (visualized by the stepwise function),
the simulated time is incremented as quickly as the execut-
ing system allows. The horizontal parts represent computa-
tion time necessary to compute the state after the next “big
step”. In as-fast-as-possible mode, these computation parts
are executed one after the other, without any waiting in be-
tween. This means that if a pause is requested (denoted by
the red vertical bar with “pause” next to it), the simulation
will only be paused after completion of that big step compu-
tation. Halting immediately might otherwise leave the system
in a (macroscopically) inconsistent state.

In real-time mode, simulated time is “synchronized” with the
wall-clock time. The time needed to compute the next state
is still there, but now the simulator will wait in between these
computation periods to synchronize the simulated time with
the wall-clock time. This is represented by the continuous
function in Figure 3, which tries to follow the ideally syn-
chronized line, represented by the grey dotted line. When
a computation is performed, the wall-clock time advances,
thus desynchronizing the simulated time from the wall-clock
time. This is represented by the horizontal parts in the func-
tion. When the computation is finished, the simulator will
synchronize both times immediately, as depicted by the verti-
cal parts. If a pause is requested during a waiting period, the
simulator immediately pauses. The result is that the system
will be in the “current” state, and not the “next”, as was the
case for as-fast-as-possible mode. The simulated time will be
in between the previous transition time and the next.

Due to this difference, an as-fast-as-possible simulation can-
not pause at times in between two different simulated times.
On the other hand, real-time simulation can pause at virtually
every point in simulated time. The notable exception being
the time at which transition functions are being computed.

State Manipulation
Debuggers allow to modify the state of the system. What
constitutes the “state” of the system is formalism-dependent.
In the case of program code, the state consists of the values of
the runtime variables and the program counter. In the case of
a Parallel DEVS system, the state consists of the state of each
of its atomic models. In PythonPDEVS, each such a state
has a number of attribute values. Modifying the state during
simulation is achieved by changing these values, known as a
god event, as some “force” outside of the simulator manually
changes the state.

During simulation, atomic DEVS models generate events on
their output ports and accept events on their input ports. This
generating, routing, and accepting of events are phases in
computing the next step and is done by the simulator in the
“computation phase”, as introduced in Figure 1. They indi-
rectly influence the state, as they trigger the external transition
function in atomic DEVS models. A related useful debug-
ging operation is to manually inject events.



PyPDEVS

SIMmod

SIM\mod

PyPDEVS
Server

XMLlHTTP
Requests

<<export>>

translate

[CRUD-Reqs]

translate

OpName

m
e
s
s
a
g
e

m
e
s
s
a
g
e

HUTN

non-valid

valid

Modelverse

DEVSM

DEVSTM

<<parse>>

M

Figure 4. Architecture.

Breakpoints
Breakpoints allow to set a specific point during simulation at
which the simulator should pause. They are useful in locating
possible sources of defects. In program debugging, a break-
point can be defined on a specific line of the program code,
and optionally define a constraint on the system state. In the
case of Parallel DEVS, we distinguish two different types of
breakpoints: global breakpoints, that break on a “global con-
dition”, such as the simulated time or model state, and “local
breakpoints”, that break when a specific state of an atomic
DEVS model is entered, and an optional constraint is satis-
fied.

METHOD
In this section our solution architecture is explained in detail.
We start by giving an overview of the architecture, then ex-
plain how the PythonPDEVS simulator was de/reconstructed
to enhance it with debugging support, and finally we explain
how models are validated by loading them into the Model-
verse, a model repository and framework [16].

Architecture
The architecture of the DEVS debugger is shown in Figure 4.
There are four main components to our solution architecture:

1. AToMPM [15] is a visual modelling tool. It is used to
model Parallel DEVS models in a visual language, and as
a front-end for the PythonPDEVS simulator and debugger.

2. The Modelverse [16] is a model repository and meta-
modelling framework. A Human-Usable Textual Notation
(HUTN) allows to quickly develop a model and store it in
the Modelverse, where it can be checked for conformance
and consistency.

3. PythonPDEVS [18] is a DEVS simulator, which has been
de/reconstructed, as described in the next subsection. The
simulator simulates the exported model, and can receive
messages to control its execution. It generates output mes-
sages that reflect the current state in the simulation.

4. Finally, the PythonPDEVS Server is an extension of the
AToMPM model transformation server and acts as the
“glue” between the visual front-end in AToMPM, the Mod-
elverse, and the PythonPDEVS simulator.

De/Reconstructing the Simulator
De/reconstructing the simulator consists of extracting the
modal behaviour of the simulator, and modelling it as a Stat-
echart. Then, this Statechart is extended with debugging-
specific operations such as pausing, breakpoints, and state
manipulation. This process is explained in detail for a debug-
ger for Causal Block Diagrams in [21] and will not be re-
peated here. The Statechart resulting from the de/reconstruc-
tion process describing the behaviour of the PythonPDEVS
simulator, extended with debugging operations, is shown in
Figure 5. It consists of a number of orthogonal states:

• breakpoint allows the management of breakpoints;

• trace allows the configuration of textual tracing;

• inject allows to inject events on ports;

• reset allows to reset the model to its initial state;

• simulation state keeps track of the execution mode the
simulation is in: (scaled) real-time, continuous (as-fast-as-
possible), big step, or pause;

• simulation flow performs the computation and consists of
two states. The check termination state checks when sim-
ulation should halt, either due to the termination condition
or a breakpoint. Simulation automatically pauses after a
big or small step has finished. When simulation is paused,
god events are accepted and processed. do simulation
implements the simulation algorithm as listed in Section
BACKGROUND. In continuous, realtime, or big step mode,
these states are just traversed. In paused mode, a small step
can manually trigger a single transition.

A user interface can send messages to this Statechart to con-
trol the simulation of a DEVS system and receives messages
from that same Statechart to display the state of the system
to the user. A command-line reference implementation was
created to demonstrate the usage of the DEVS simulator and
debugger, and in the next section, we will explain how a vi-
sual, more user-friendly modelling and debugging environ-
ment was constructed in AToMPM.

HUTN and Modelverse
A neutral action language is used to specify the internal be-
haviour (i.e., conditions and actions) of the functions in the
AToMPM DEVS models. In order to both validate and ver-
ify the designed models, we built an exporter to the Mod-
elverse that translates DEVS models into a textual notation
called DEVSLang. This notation was designed in order to be



main

simulation_flow

simulation_state

inject

injectI/Iinject_ok

trace

traceI/Itrace_config_ok

breakpoint_manage
add_breakpoint

del_breakpoint

toggle_breakpoint

reset

resetI/Iall_states

paused realtime continuousbig_step

realtime
big_step

simulate

pausepause

termination_conditionI/Iterminate
termination_conditionI/Iterminate

termination_conditionI/Iterminate,Iall_states

check_termination

do_simulation

initialize

/Iall_states

workaround

check_termination
waitafterTdelayTAA

small_step_check

small_step

init

found_internal_imminents

computed_outputfunction routed_messages

found_all_imminents

computed_transitions

small_stepI/Inew_tn

reset

inject trace

breakpoint

[terminateTAIandInotIbreakpointTA]I/Itermination_condition

[breakpointTA]I/Itermination_condition,Ibreakpoint_triggered

[terminateTAIandInotIbreakpointTA]I/Itermination_condition

[breakpointTA]I/Itermination_condition,Ibreakpoint_triggered

[notIterminateTA]

[TINTbig_stepAIorIINTcontinuousAAIandInotIterminateTA]

[INTrealtimeAIandInotIterminateTAIandIdelayTAI<=I0]

god_eventI[INTpausedA]I/Igod_event_ok

[INTrealtimeAIandInotIterminateTAIandIdelayTAI>I0]

[notIINTpausedA] small_stepI[INTpaused]I/Iimminents

[notIINTpausedA]

[notIINTpausedA]

[notIINTpausedA]

[notIINTpausedA]

small_stepI[INTpaused]I/Iinbags

small_stepI[INTpaused]I/Itransitioning

small_stepI[INTpaused]I/Ioutbags

small_stepI[INTpaused]I/Inew_states

[INTpausedA]

[INTrealtimeAIorIINSTATETbig_stepA]I/Ibig_step_done,Inew_state,Inew_tn

[INTcontinuousA]

Figure 5. The modal part of the PythonPDEVS simulator.

atomic Processor():
inports p_in
outports p_out
mode ProcessorState(’idle’, job):

any -> ProcessorState(’processing’, p_in[0])
after infinity -> any
out nothing

mode ProcessorState(’processing’, job):
after job.jobSize -> ProcessorState(’idle’)
out {p_out: [job]}

initial Processor(’idle’)

Listing 1. Processor example in HUTN.

intuitive, expressive, portable, and above all verifiable. The
reader is referred to [17] for more details on the textual con-
crete syntax. A snippet of a DEVSLang model (translated
from the model in Figure 6), is shown in Listing 1. States in
the AToMPM model are mapped to modes in DEVSLang.

The exported models are instrumented (with visualization de-
tails) to allow feedback from the HUTN checker back to the
AToMPM source model. Based on the error and warning
feedback, the user needs to make the necessary modifications
to the action code in order to continue with the simulation.
For the moment, the HUTN checker implements the follow-
ing checks:

• The action code is checked for basic syntantic errors ac-
cording to the DEVSLang grammar definition.

• Invalid references in the DEVS models are checked against
their respective definitions (errors are issued on reference
resolution failures). For example, a variable can only be
accessed if it is defined within the scope of that compo-
nent. Also, during the evaluation of the transition precon-
ditions, we do not allow write access on the components’
state variables.

Additionally, we plan on defining a conservative analysis pro-
cedure in order to automatically decide if a given DEVSLang
model is at all translatable to timed automata, so that further
behavioural analysis can be provided (e.g., reachability anal-
ysis) on model checking tools such as UPPAAL [1].

USER INTERFACE
This section explains the visual modelling and debugging
environment for Parallel DEVS models, based on the
AToMPM tool [15]. First, we look at how Parallel DEVS
models are modelled in AToMPM. Then, the debug opera-
tions are explained in more detail.

Modelling
In AToMPM, we created two formalisms: a “design formal-
ism”, which allows the visual modelling of Parallel DEVS
models, and a “runtime formalism”, which contains the run-
time information that will be updated during simulation. The
runtime model of a Parallel DEVS model is automatically
generated from its design model. A design model consists of
a single “Root” coupled model which contains references to
other (atomic or coupled) DEVS models. Each atomic model
has a number of named, sequential, states, that are connected
with each other using the external, internal, and confluent
transition functions. A state template for each atomic model
defines its state variables. Event templates, which define their
attributes, are modelled as well. Finally, the termination con-
dition is modelled as an action code string.

A separate formalism was created to represent a Parallel
DEVS model at runtime, i.e., during simulation. This is nec-
essary for a variety of reasons:

• The need to keep track of runtime information, such as:

– the current simulation time;

– the current state of each atomic DEVS model;

– the time at which each atomic DEVS model is sched-
uled.

• To make the internal structure of the ”black boxes” (refer-
ences to DEVS models) in the design model explicit, for
debugging purposes.

• To display instances of events.



Root

p_in

p_out

p_out

p_in

p_out

p_in

p_in

p_out

p_in

NGjobG=GJob}mY3z

ProcessorState

NGjobG=Gnull

ProcessorState

NGjobG=Gnull

ProcessorState
NGnr_of_jobsG=G49

CollectorState

GeneratorState

g
cp

generating

>

{]p_out]:G[Job}mY3z]}

p_out

processing

jobYjobSize

{]p_out]:G[job]}
idle

INFINITY

jobG=Gp_in[m]

processing

jobYjobSize

{]p_out]:G[job]}
idle

INFINITY

jobG=Gp_in[m]

processing

jobYjobSize

{]p_out]:G[job]}
idle

INFINITY

jobG=Gp_in[m]

c

waiting

INFINITY

nr_of_jobsG=Gnr_of_jobsGNG>

5m

returnGtimeG>=G>mm

p>

p2

p

5> 5mY3

inf

inf

inf

Figure 6. A breakpoint triggered in the visual debugging environment.

Figure 7. The debugging toolbar in AToMPM.

This boils down to expanding all references to atomic and
coupled DEVS models found in the root model by replacing
them with their definitions. This process stops until no more
references are found. This expansion is implemented using an
exogenous model transformation which transforms any valid
design of a DEVS model into a runtime model.

Debugging
To support the definition of breakpoints, a third language
was created: the debugging language. This language con-
sists of only two concepts: a global breakpoint, which allows
to specify a global condition on which the simulator should
pause (similar to the termination condition, which takes into
account the total state of the modelled system, accessible
through calls to the PythonPDEVS simulator’s interface), and
a local breakpoint, which is connected to a sequential state
and, optionally, declares an additional condition. The simu-
lator will pause when the state connected to the breakpoint
is entered and the condition holds. Figure 6 shows the state
of the model after a breakpoint has been triggered, with the
triggered breakpoint highlighted.

To support debugging, a toolbar was created in AToMPM,
shown in Figure 7. By clicking on a button in this toolbar,
a request is sent to the PyPDEVS server, representing a par-
ticular command. The server then forwards this request to
PyPDEVS. As a result, a reply is sent back to the PyPDEVS
server, where it is mapped to edit requests on the runtime
model to visualize the changes.

The toolbar supports nine operations:

1. Simulate the model as-fast-as-possible, until either the ter-
mination condition evaluates to true, one of the breakpoints

triggers, or the user manually pauses the simulation. Dur-
ing as-fast-as-possible simulation, state changes are not vi-
sualized.

2. Realtime Simulate the model. This means that the sched-
uler will try to meet all real-time deadlines, as specified
in the time advance functions of the atomic DEVS models.
Simulated time is interpreted in seconds. A scale factor can
be specified for real-time simulation. This floating point
number specifies how much faster (if the value is larger
than 1) or slower (if the value is smaller than 1) the simu-
lation will run. During realtime simulation, state changes
are visualized in the user interface.

3. Pause will result in a running (as-fast-as-possible or real-
time) simulation being paused as soon as possible. When
the simulation is paused, the current state of the model is
visualized. Resuming is done by either stepping, as-fast-
as-possible simulation, or realtime simulation.

4. Big Step computes the next state of the system, which is
visualized in the simulation environment.

5. A small step allows to visualize each phase of the next
state computation. The list below lists, for each phase,
what happens, and how it is visualized.

(a) Determine the set of all atomic DEVS models whose
internal transitions are scheduled to fire. These get
highlighted in blue.

(b) Execute output functions for each imminent compo-
nent, which results in events being generated on their
output ports. To visualize this, an event instance is
visualized on the position of the output port.

(c) Route events from output ports to input ports, while
executing the transfer functions. Visually, the event
instance is moved to the position of the input port.

(d) Decide which transition to execute for every atomic
DEVS model. This decision is made based on the
model being imminent and/or receiving input. Mod-
els are highlighted in a color depicting the transition



A
D

E
V

S
[1

0]

M
S4

M
e

[1
3]

V
L

E
[1

2]

X
-S

-Y
[5

]

Py
PD

E
V

S
[1

8]

Pause M Y N Y Y
(Scaled) Realtime M Y N Y Y
Big Step Y Y N Y Y
Small Step M N N N Y
Termination Condition Y N N N Y
Breakpoints N N N N Y
Event Injection M Y N Y Y
State Changes N N N N Y
State Visualisation M M N M Y
Event Visualisation N Y N N Y
Tracing M Y Y Y Y
Model Visualisation N Y Y N Y
Reset N Y M Y Y
Step Back N N N N N
Experiment Debugging N N N N N

Table 1. A comparison of the different tools.

function that will be executed: internal transitions are
visualized in blue, external transitions in red, and con-
fluent transitions in purple.

(e) Execute, in parallel, all enabled transition functions.
The new state is shown in green, and the new values
of its instance variables are displayed.

(f) Compute, for each atomic DEVS model, the time at
which it gets scheduled (specified by its time advance
function). This time is displayed next to a clock icon
on top of each atomic DEVS model.

6. Reset the model and the simulation to their initial state.

7. Show the Trace (textual) of the simulation.

8. Insert God Event to manually change a state variable.
This can only be done while the simulation is paused.

9. Inject Event on a specific port. This can only be done
while the simulation is paused.

RELATED WORK
In Table 1, the functionality of five DEVS simulators is com-
pared to our extended version of PythonPDEVS. For each
function, we list whether the tool implements it (Y for yes,
or N for no), or the user has to implement it manually (M).

Debuggers for some other formalisms already exist. In [9],
Mustafiz and Vangheluwe construct a debugging environment
with a technique similar to ours: they embed the model in the
debugger, instead of the modal part of the simulator, however.
In [6], Mannadiar and Vangheluwe address the need for de-
bugging models in domain-specific languages and propose a
mapping of code debugging concepts to model-based design.
A debugger for Modelica was developed in [11].

CONCLUSION AND FUTURE WORK
In this paper, we show how to create an advanced debugging
and experimentation environment for Parallel DEVS mod-
els. The environment provides the user with a level of control
unmatched by any of the state-of-the art tools and similar to
that of traditional code debugging tools. The simulation can
be paused, resumed, and stepped through. Breakpoints are
modelled in the simulated model as an expression. The en-
vironment allows users to switch between execution modes,
to alter the speed of the simulation, inject events, and modify
the state of the system.

To tackle the complexity of building this debugger, we have
explicitly modelled its modal part as a Statechart, as this
seems to be the most natural choice of formalism to model
a real-time, autonomous and reactive system. We combined
the debugger with a visual environment which allows one to
visually design and debug Parallel DEVS models: a toolbar
is provided to control the simulation process by sending ap-
propriate messages to the debugger. The runtime model is
visually updated during simulation. An architecture was pre-
sented supporting our approach. This architecture is expected
to be general enough to support debugging of models in mul-
tiple formalisms (and combinations thereof).

In the future, we want to extend this approach to other for-
malisms, such as Petrinets [8] and rule-based model trans-
formations [14], which both introduce non-determinism. We
will also continue enhancing the Parallel DEVS debugger
with support for stepping back in time (omniscient debug-
ging), logging (explicitly modelled in the visual modelling
environment as blocks), and the debugging of (explicitly
modelled) DEVS experiments, where a model is simulated
a number of times with varying inputs and parameters.

Acknowledgement. This work was partly funded by the Au-
tomotive Partnership Canada (APC) in the NECSIS project
and with PhD fellowship grants from the Agency for Innova-
tion by Science and Technology in Flanders (IWT) and the
Research Foundation - Flanders (FWO).

REFERENCES
1. Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., and

Yi, W. UPPAAL - a tool suite for automatic verification
of real-time systems. In Hybrid Systems III, R. Alur,
T. Henzinger, and E. Sontag, Eds., vol. 1066 of Lecture
Notes in Computer Science. Springer Berlin Heidelberg,
1996, 232–243.

2. Chow, A. C. H., and Zeigler, B. P. Parallel DEVS: a
parallel, hierarchical, modular, modeling formalism. In
Proceedings of the 26th conference on Winter simulation
(1994), 716–722.

3. Chow, A. C. H., Zeigler, B. P., and Kim, D. H. Abstract
simulator for the parallel DEVS formalism. In AI,
Simulation, and Planning in High Autonomy Systems
(1994), 157–163.

4. Harel, D. Statecharts: a visual formalism for complex
systems. Science of Computer Programming 8, 3 (June
1987), 231–274.



5. Hwang, M. H. X-S-Y.
https://code.google.com/p/x-s-y/, 2014.

6. Mannadiar, R., and Vangheluwe, H. Debugging in
domain-specific modelling. In Software Language
Engineering, B. Malloy, S. Staab, and M. Brand, Eds.,
vol. 6563 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2011, 276–285.

7. Mosterman, P. J., and Vangheluwe, H. Computer
automated multi-paradigm modeling: An introduction.
Simulation 80, 9 (Sept. 2004), 433–450.

8. Murata, T. Petri nets: Properties, analysis and
applications. Proceedings of the IEEE 77, 4 (1989),
541–580.

9. Mustafiz, S., and Vangheluwe, H. Explicit modelling of
Statechart simulation environments. In Summer
Simulation Multiconference, Society for Computer
Simulation International (SCS) (July 2013), 445 – 452.
Toronto, Canada.

10. Nutaro, J. J. adevs.
http://www.ornl.gov/˜1qn/adevs/, 2014.

11. Pop, A., Sjölund, M., Asghar, A., Fritzson, P., and
Francesco, C. Static and Dynamic Debugging of
Modelica Models. In Proceedings of the 9th
International Modelica Conference (Nov. 2012),
443–454.

12. Quesnel, G., Duboz, R., Ramat, E., and Traoré, M. K.
VLE: a multimodeling and simulation environment. In
Proceedings of the 2007 summer computer simulation
conference (2007), 367–374.

13. Seo, C., Zeigler, B. P., Coop, R., and Kim, D. DEVS
modeling and simulation methodology with ms4me
software. In Symposium on Theory of Modeling and
Simulation - DEVS (TMS/DEVS) (2013).

14. Syriani, E., and Vangheluwe, H. A modular timed graph
transformation language for simulation-based design.
Software and Systems Modeling (SoSyM) 12, 2 (2013),
387–414.

15. Syriani, E., Vangheluwe, H., Mannadiar, R., Hansen, C.,
Van Mierlo, S., and Ergin, H. AToMPM: A web-based
modeling environment. In MODELS’13 Demonstrations
(2013).

16. Van Mierlo, S., Barroca, B., Vangeluwe, H., Syriani, E.,
and Kühne, T. Multi-level modelling in the Modelverse.
In Multi-Level Modelling Workshop (MULTI 2014)
Proceedings (2014).

17. Van Mierlo, S., Van Tendeloo, Y., Mustafiz, S., Barroca,
B., and Vangheluwe, H. Debugging Parallel DEVS.
Tech. rep., University of Antwerp and McGill
University, 2014. http://msdl.cs.mcgill.ca/
people/simonvm/devsdebuggerreport.pdf.

18. Van Tendeloo, Y., and Vangheluwe, H. The modular
architecture of the Python(P)DEVS simulation kernel. In
Proceedings of the 2014 Symposium on Theory of
Modeling and Simulation - DEVS (2014), 387–392.

19. Vangheluwe, H. DEVS as a common denominator for
multi-formalism hybrid systems modelling. CACSD.
Conference Proceedings. IEEE International
Symposium on Computer-Aided Control System Design
(2000), 129–134.

20. Vangheluwe, H. Foundations of modelling and
simulation of complex systems. ECEASST 10 (2008).

21. Vangheluwe, H., Riegelhaupt, D., Mustafiz, S., Denil, J.,
and Van Mierlo, S. Explicit modelling of a CBD
experimentation environment. In Proceedings of the
2014 Symposium on Theory of Modeling and Simulation
- DEVS, TMS/DEVS ’14, part of the Spring Simulation
Multi-Conference, Society for Computer Simulation
International (2014), 379 – 386.

22. Zeigler, B. P., Praehofer, H., and Kim, T. G. Theory of
Modeling and Simulation, second ed. Academic Press,
2000.

23. Zeller, A. Why Programs Fail: A Guide to Systematic
Debugging. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2005.


