
Teaching the Fundamentals of the
Modelling of Cyber-Physical Systems

Yentl Van Tendeloo
University of Antwerp, Belgium

Yentl.VanTendeloo@uantwerpen.be

Hans Vangheluwe
University of Antwerp, Belgium

McGill University, Canada
Hans.Vangheluwe@uantwerpen.be

ABSTRACT
Current Cyber-Physical Systems are becoming too complex
to model and simulate using the usual approaches. This com-
plexity is not only due to a large number of components, but
also by the increasing diversity of components and problem
aspects. In this paper, we report on over a decade of expe-
rience in teaching the modelling and simulation of complex
Cyber-Physical Systems, at both McGill University, and the
University of Antwerp. We tackle complexity through the use
of multiple formalisms, each specialized for a specific domain
and problem. Modelling and simulation is used throughout
the complete development process. Students are introduced
to all fundamental problems encountered when modelling and
simulating Cyber-Physical Systems. Students will be able to
both create a meaningful model in the formalism, as well as
create a minimal simulation kernel for it. Our approach re-
sults in a deep understanding of the formalism, particularly
the advantages and disadvantages, without focussing on tool-
specific issues. In the end, students are capable of choosing
the most appropriate formalism for a problem, and making
an informed decision on which tool to use. Due to the vari-
ety of formalisms, students can successfully apply the gained
knowledge in a wide spectrum of domains.

Author Keywords
Simulation; Modelling; Cyber-Physical Systems; Teaching

ACM Classification Keywords
I.6.0 SIMULATION AND MODELING: General; K.3.2
COMPUTERS AND EDUCATION: Computer and Informa-
tion Science Education

1. INTRODUCTION
Current Cyber-Physical Systems are becoming too complex
to model and simulate using the usual approaches. This com-
plexity is not only due to a large number of components (often
tackled by hierarchical decomposition), but is also caused by
the increasing diversity of components and problem aspects.
In order to minimize the accidental complexity exposed to
the user, each component is best expressed in the most ap-
propriate formalism for that individual component, instead of
having “a single formalism to rule them all”. Additionally,

SpringSim-TMS/DEVS 2016 April 3-6, Pasadena, CA, USA
c©2016 Society for Modeling & Simulation International (SCS)

different forms of analysis are possible on a single model, re-
sulting again in the use of different formalisms.

When teaching students about this domain, we wish to ex-
pose them to a wide variety of formalisms in a single semester
course. Existing textbooks on this matter, however, are either
too superficial (i.e., cover a wide range of formalisms, but not
in-depth), or too specific (i.e., cover only a single formalism,
but all aspects of it). Neither do they offer a broad view on
different simulation paradigms, or on simulation semantics.
For example, Law and Kelton [9] focus on the construction,
configuration, and evaluation of experiments, but only lightly
mention the wide variety of simulation formalisms in exis-
tence. Zeigler [20] focuses on the theoretical foundations of
modelling, and in particular on Classic DEVS, making it dif-
ficult to understand from a practical point of view. Cellier [1]
presents a nice overview of modelling and simulation, though
is limited to continuous-time models, and mainly applied to
physics. Fishwick [5] offers a multi-formalism view on the
domain, but doesn’t go in-depth about specific formalisms.
Lee and Seshia [10] primarily focus on the modelling and
simulation of Cyber-Physical Systems, but is mainly targeted
at engineers through the high correlation with embedded plat-
forms. Nutaro [12] goes into depth on the implementation
of simulation semantics, but does not go to sufficient depth
about theory and applications. To give students a complete
overview of the domain, we prefer a course that touches upon
a select number of formalisms, explained to sufficient depth,
which can act as representatives for their domain. Depend-
ing on the interests of the student, supplemental courses can
afterwards be taken for a more in-depth view on any of these
formalisms.

In this paper, we report on over a decade of experience
in teaching the modelling and simulation of Cyber-Physical
Systems1, both at McGill University and the University of
Antwerp. We use modelling and simulation throughout the
complete process, and for all different components, thus stu-
dents will encounter all problems of Cyber-Physical Systems.
Modelling and simulation is used for each individual compo-
nent, and throughout the complete development process. Stu-
dents are therefore introduced to all fundamental problems
seen in the modelling and simulation of Cyber-Physical Sys-
tems. Information is gathered from different textbooks and

1The term “Cyber-Physical Systems was rarely used over a decade
ago. Our course title and content also evolves over the years to keep
up with advancements in this domain, though the core of the course
has remained unaltered.

scientific papers, such as those mentioned above, to provide a
consistent story about how all different formalisms relate. In
the assignments, a single problem domain is explored with
the use of all taught formalisms. All course material can
be found online at http://msdl.cs.mcgill.ca/people/hv/
teaching/MoSIS/.

Due to the broad application domain of our course, it became
a mandatory course at the University of Antwerp for all com-
puter science students. Its relevance for software engineers is
obvious, but the course also serves as a fundamental introduc-
tion to modelling and simulation for students in data sciences,
computational sciences, and computer networks. Follow-up
courses are available for students, which relay the gained
knowledge to the specific domain of the student.

2. COURSE DESIGN
Modelling and simulation is an integral part of the computer
science curriculum at the University of Antwerp. Students
will thus have already gained familiarity with some mod-
elling languages, such as UML formalisms, Entity-Relation
diagrams, Petri Nets, Finite State Automata, . . . which serve
as a basis to our course.

Additional formalisms are taught, with simulation as the pri-
mary goal.

2.1 Prerequisites
To enroll in the course, students are expected to have some
knowledge about the following concepts:

• Object-oriented programming. While the course fo-
cuses on modelling everything explicitly, basic program-
ming knowledge is required for the students to understand
the prototype simulation kernels, most of them developed
in Python.

• Patterns and anti-patterns. Patterns simplify modelling
by providing a kind of template to implement some fre-
quently needed concept. A basic understanding of patterns
and anti-patterns, as used in programming languages, is re-
quired to make a link to the modelling world.

• Unified Modelling Language (UML). Basic knowledge
of the UML is necessary as a foundation for modelling, as
well as for understanding the prototype tools. As the course
focuses on simulation formalisms and the actual simula-
tion, we expect students to already know about the basics
of modelling as used in programming.

2.2 Objectives
Students should become familiar with different executable
formalisms and their semantics (through simulation). We
make a distinction between three kinds of formalisms, as
shown in Figure 1, depending on how in-depth we go:

• Simulation algorithm given with modelling assignment.
These formalisms are introduced to the full extent, and
have additional information about how it is actually sim-
ulated using pseudo-code. While students are not asked
to write their own simulator for these formalisms from

discrete event

formalisms

CBDs
time-less CBD

discrete-time CBD

continuous-time CBD

continuous time

population dynamics

Finite State Automata

Petri Nets

Statecharts

DEVS

event scheduling

activity scanning

GPSS

hybrids

Forrester system dynamics

Figure 1. Formalisms taught in the course. White indicates for-
malisms which are only pointed to or mentioned, medium grey are
formalisms with modelling assignments, and dark grey formalisms
have a modelling assignment, as well as in-depth discussion about
the simulation algorithm.

scratch, they gain knowledge about the details of the for-
malism this way. Students gain insight into how differ-
ent simulation paradigms can be simulated. For these for-
malisms, there are also assignments which require detailed
knowledge of the semantics of the formalism.

• Modelling assignment. These are the remaining for-
malisms that are handled in detail, though their simulation
algorithm is not presented extensively. We do not present
these algorithms, as the mapping to code would be too
time-consuming without any obvious advantage.

• Briefly mentioned. The final set of formalisms are only
hinted at, or briefly mentioned throughout the theoretical
classes. No assignments are prepared for them, as students
are expected to be proficient with them through their pre-
vious experience with other formalisms.

For each formalism, students should understand advantages,
disadvantages, simulation semantics, as well as some basic
modelling patterns for this formalism. We wish to present
many formalisms within the allotted time, so lightweight pro-
totype tools are used. These tools generally have a small
learning curve, in contrast to the tools used in industry.
Gained knowledge can be easily transposed to more advanced
tools, as the knowledge will primarily be about the used for-
malisms, instead of the tool. They should be able to make an
informed decision on which formalism, and which tool, to use
for the modelling, analysis, simulation, and code synthesis of
components of a cyber-physical system. Pointers are given
to more formalisms (e.g., activity scanning, Forrester system
dynamics), extensions of taught formalisms (e.g., coloured
petri nets, parallel DEVS) and their combination (i.e., hybrid
formalisms).

2.3 Structure
The course has a weight of six European Credits (ECTS [3]),
which are spread out over six core formalisms. One ECTS

http://msdl.cs.mcgill.ca/people/hv/teaching/MoSIS/
http://msdl.cs.mcgill.ca/people/hv/teaching/MoSIS/

credit amounts to between 25 to 30 hours of workload for
the students. In total, this means that students will spend up
to 180 hours for this course, divided over theory lectures (36
hours), studying theory individually (54 hours), and making
assignments in groups of two (90 hours each). Each formal-
ism gets about the same amount of time: four to six hours
of theory lectures, followed by an assignment in which the
students learn how to use the formalism effectively.

The first few lectures serve as an introduction, where we
explain why we need modelling and simulation for Cyber-
Physical Systems, and what the specific problems are. The
main focus lies on the increase of complexity in the develop-
ment of Cyber-Physical systems. Students are introduced to
the main causes of complexity: the size of the problem, in-
teraction between different components, heterogeneity, emer-
gent behaviour, and uncertainty. Modelling and simulation is
offered as the solution to these problems.

After this general introduction to modelling and simulation,
students are introduced to the different formalisms discussed
before. For each formalism, a few theory sessions introduce
the students to a brief history of the formalism, the problems
it tried to tackle, and how it actually works. Formalisms are
presented from two different views: the modelling point of
view, and the simulation point of view. On the one hand, stu-
dents need to be familiar with how the formalism is used in
practice, as well as some common design patterns. This as-
pect is highlighted in the assignments, where students have
to model a minimal system that still contains all essentials
of the formalism. On the other hand, students should know
how the model is simulated, making its semantics very clear.
Apart from clearly defining the semantics, the complete sim-
ulation algorithm is presented for some formalisms. Students
can then reason about the different corner cases and simula-
tion performance. Students discover the weaknesses of the
formalism, and are able to make their own basic simulation
kernel.

In a final lecture, we take a step back and look at how different
formalisms can be combined.

2.4 Evaluation structure
Course evaluation mainly consists of permanent evaluation of
the assignments. Assignments are submitted through our uni-
versity’s electronic learning platform [16]. Late submissions
are allowed, though points are subtracted. It is mandatory
that students submit all assignments, even after the deadline
has passed, to ensure that students have knowledge of each
and every formalism.

Each assignment is made in groups of two, where students
are expected to model a minimal system that touches upon
the main aspects of the formalism. Grades are given based
upon their knowledge of the formalism, and whether they use
the most appropriate constructs and patterns. Afterwards, stu-
dents individually defend their model and simulation results,
where they are asked about some of their design decisions, as
well as some possible alternatives to their solution.

The theoretical aspects are evaluated through a written theo-
retical exam at the end of the semester. Students are expected

to present their knowledge on the theoretical definitions of the
formalisms discussed (e.g., formally write down the formal-
ism), as well as the smaller semantic details of the formalism
(e.g., what happens in some corner case).

3. FORMALISMS
In this course, students are introduced to a wide spectrum of
modelling formalisms. For several modelling paradigms, we
picked out a select number of representative formalisms. Fig-
ure 1 presents these formalisms and the level of detail they
are handled with.

The domain of the assignments change from year to year,
while the core problems to be solved remain the same. To
present a consistent story throughout the paper, we use this
year’s domain: railway simulation [14]. Each formalism
tackles a different problem in this domain, showing that even
in a single problem domain, multiple formalisms are benefi-
cial. Figure 2 shows how they relate together. The remainder
of this section discusses each assignment in detail: we briefly
describe the problem statement, what kind of solution we ex-
pect, and the expected learning outcomes.

3.1 Introduction to multiple formalisms and modelling
In the first assignment, students start from a UML Class di-
agram [13], a set of requirements, and a long textual trace
of the execution of the program. The program that generates
the trace, however, contains a bug that the students should
find through progressively moving from the Class Diagram
and requirements, towards a testing framework. To do this,
students map the UML Class Diagram to a UML Sequence
Diagram, which represents the expected order of invocations.
From this, a regular expression is generated that matches the
behaviour indicated in the sequence diagram, by trying to
match it with the textual trace. Finally, this regular expression
is mapped to a Finite State Automata, for which we provide
a very basic simulator. Through the simulation of this Finite
State Automata, the bug becomes obvious as the Finite State
Automata accepts the trace if it complies to the requirements,
and rejects it otherwise. Figure 3 shows an overview of how
all different formalisms are combined, to eventually arrive at
a single yes or no answer.

The goal of this assignment is to show students that they are
already familiar with several modelling and simulation for-
malisms, as none of these formalisms should be new to them.
By going through all of these formalisms, students will also
notice that there is no “best” formalism to tackle the problem:
a combination of all formalisms should be used to arrive at the
final solution. For students unfamiliar to Python, it provides
a first example of how it will be used in the remainder of the
course.

3.2 Discrete-time Causal Block Diagrams
In the second assignment, students expand upon a prototype
Causal Block Diagram (CBD) [1] simulator by implementing
some of the required simulation algorithms. This is a nec-
essary prerequisite to implement the next assignment, where
the formalism will actually be used. No modelling is done in

Statecharts

Causal Block Diagrams

Petri Nets

Req. Eng. DEVS
Station

Figure 2. All formalisms used in the assignment are focussed around a single problem domain: railway simulation.

Figure 3. Overview of the first introductory assignment.

this phase of the assignment, though students analyze and ex-
tend an existing prototype simulator. The algorithms they im-
plement are general graph algorithms, such as finding strong
components in a graph. This allows students to easily grasp
the algorithm being used, as they are already familiar with it.

The goal of this assignment is to teach how to analyze an
existing simulation kernel, and complete its implementation.
As the simulation kernel is minimal, students also find con-
cepts that are common to many simulation kernels, such as
an initialization phase, a while loop, tracing, and basic statis-
tics gathering. Students can see how small a working (albeit
naive) simulation kernel can be, making the task of creating
your own simulation kernel seem less daunting. It also lets
them combine time-less and discrete-time Causal Block Dia-
grams in their simulation kernel.

3.3 Continuous-time Causal Block Diagrams
Continuing on the previous assignment, students bridge from
continuous-time Causal Block Diagrams to discrete-time
Causal Block Diagrams. This is achieved by mapping the
two new blocks — integrator and derivator — over to the
discrete-time domain through discretization. Additionally,
they model a small Causal Block Diagram for implementing
the controller of an autonomous train. The controller causes
the train to accelerate and decelerate, trying to match the ideal
velocity defined for the specified segment. The displacement
of the passengers should be plotted over time, to show how it
evolves in the case of different ideal velocities and different
strategies in the controller. All formulas are given, and need
to be mapped over to Causal Block Diagrams. Simulation re-
sults of a specific scenario are given in Figure 4, showing how
the displacement evolves in function of the time.

The goal of this assignment is to show how different for-
malisms are related, and that continuous systems can also be
modelled through discretization. By manually applying the
discretization, students become aware of what happens inter-
nally in the simulation tool, as well as understanding the risks
of discretization, both in their own tool, as well as in other
tools. Thanks to the implementation of the small model, they
gain valuable knowledge on the modelling of continuous sys-
tems, as opposed to discrete event systems in the remainder

0

10

20

0 100 200 300
Time (s)

Ve
lo

ci
ty

 (m
/s

)

Velocity

Ideal

Train

−0.4

−0.2

0.0

0.2

0.4

0 100 200 300
Time (s)

D
is

pl
ac

em
en

t (
m

)

Displacement

People

Figure 4. CBD simulation results.

of the course. As students have to present their simulation
results, they also learn the basics of tracing a simulation run.

3.4 Petri Nets
For the Petri Nets assignment, students model a basic safety-
critical system in Petri Nets [11], using the PIPE [2] tool.
Students have to guarantee the safety of a simplified railway
junction in the presence of two trains. To allow for all inter-
leavings, students should manually guarantee fairness of the
system, while keeping some non-determinism around. Ba-
sic analysis on the model needs to be done, such as show-
ing liveness, safety, find invariants, generate the coverability
graph, . . . These results should be related back to the problem
domain. For example, if the Petri Net deadlocks, then what
are the implications on the system under study?

The goal of this assignment is to show the power of Petri Nets
for analyzing non-deterministic systems. By manually guar-
anteeing fairness, and using weighted transitions, anti-places,
and inhibitor arcs, students show that they are able to apply
basic patterns in Petri Nets. Students notice that the formal-
ism is rather verbose: even for the minimal model they need
to implement, the size causes it to become unreadable very
fast. Analyzing the Petri Net provides insight in the capabil-
ities of Petri Nets, but also its limitations. By going to the
coverability graph, they notice that Petri Nets are even able to
handle unbounded states. The problem of state space explo-
sion is also briefly exposed to the students. Furthermore, it
highlights the difference between simulation and verification,
as the used Petri Net tool supports both. Students are there-
fore asked to do both simulation and analysis of the Petri Net.

Figure 5. Example User Interface that is controlled by a statechart,
which the students have to write.

Q_send
Q_rack

train_out

Generator

Q_send
Q_rack

train_out

RailwaySegment

Q_recv
Q_sack

train_in

Q_send
Q_rack

train_out

RailwaySegment

Q_recv
Q_sack

train_in train_in

Collector

Q_recv
Q_sack

Figure 6. The DEVS assignment as a queueing problem.

3.5 Statecharts
In the Statecharts assignment, students will model the
timed, reactive behaviour of a simple user interface, using
AToMPM [15], backed by a Statecharts [6] compiler [4]. The
user interface, shown in Figure 5, is a simplified train control
panel, which controls the acceleration, the doors, and a dead
man’s switch that needs to be pressed every so often. Beyond
that, there is also a pause and continue button, which controls
the simulation itself. While the user interface is conceptu-
ally simple, as it consists of only five buttons and a slider,
implementing its behaviour in code is non-trivial due to the
interplay of concurrent and timed behaviour. Low-level op-
erations, such as computing the new velocity, are provided to
the students. Finally, the statechart is used to synthesize code
out of the model, which can be executed stand-alone.

In the theory lectures, students are introduced to the seman-
tic variation points between tools like STATEMATE [8] and
Rhapsody [7]. This knowledge needs to be related back to the
assignment.

The goal of this assignment is to bring the use of modelling
and simulation closer to the domain the students are familiar
with: writing code. Students notice that their models are not
only useful for obtaining information about the system under
study, but that it can also be used to automatically generate
code that implements the modelled behaviour. This bridges
the final gap between modelling and simulation, and execu-
tion. The Statechart model contains all special constructs that
students should be familiar with: composite states, orthogo-
nal states, history states, and basic event passing.

3.6 DEVS
In the final assignment, students model and simulate a Classic
DEVS [20] model, using the PythonPDEVS [19] tool. Stu-
dents model performance of different railway configurations:
all of them are just straight tracks, but there are a variable
number of traffic lights in between segments, influencing the
length of a single segment, and thus the size of the “critical
section”. With some abstractions, this model can be reduced
to the one shown in Figure 6, which resembles a queueing
model. Using this performance model, students can deter-
mine the average transit time for different configurations. As
a traffic light locks the complete segment after it, more traffic

 4000

 4500

 5000

 5500

 6000

 6500

 7000

 7500

 8000

 8500

 9000

 0 500 1000 1500 2000

C
o
s
t

Segment length (m)

Figure 7. Example results for the DEVS assignment.

lights allow for more trains on the same straight track, while
still remaining safe. However, traffic lights require mainte-
nance and an initial investment. Students are given a cost
function which defines the trade-off between average transit
time, and maintenance costs. Using the cost function, stu-
dents plot the cost of all different configurations and need to
say which choice is optimal. Students write their own experi-
ment, which performs statistics gathering and tries to find an
optimal solution. Example simulation results for a specific
configuration of train characteristics is shown in Figure 7,
where the ideal distance (i.e., with the lowest total cost) be-
tween two traffic lights is around 700 meters.

The goal of this assignment is to make students familiar with
performance modelling, and subsequent optimization of the
model. Students understand that the proposed problem would
be too complex to solve through other means, and too expen-
sive to do trial-and-error experiments. Students become fa-
miliar with the use of cost functions, and the possibility to
do optimizations using them. The DEVS model contains the
following special constructs that students should be familiar
with: the different kinds of transitions (internal vs. external),
different models (atomic vs. coupled), accessing global simu-
lation time, basic event passing, and use of the select function.
Some experience is gained in writing experiments, introduc-
ing them to the world of design space exploration.

4. LESSONS LEARNED
Throughout more than a decade of teaching this course, we
learned many lessons on how to efficiently teach this topic.
We summarize our findings in the form of best practices.
Throughout the years, the contents of the course have slightly
moved to better adapt to the current needs of industry, as well
as to stay up to date with current academic advancements in

modelling and simulation. We also present some future im-
provements that we would like to change, or at least inspect,
in the future. Finally, the industrial relevance of our course is
assessed.

4.1 Best Practices
We agree to, and apply, the best practices identified by [17,
18]. Some of them, however, have been altered due to the
large amount of formalisms that students are exposed to:

• Expert supervision. Due to the many distinct formalisms,
it is best to have several teaching assistants, each special-
ized in the formalism being used. In our case, the teaching
assistant for each topic has contributed to the tools being
used, or has used it to a greater degree than required by
the students. It is this teaching assistant that creates the
assignment and assesses feasibility too, due to the knowl-
edge of common pitfalls in the formalism, as well as how
the formalism is used in practice. The introduction to the
tool is given by this teaching assistant, due to the intricate
knowledge of the features used during the assignment.

However, there are only very short practice sessions. In
these sessions, the tool is briefly introduced and an exam-
ple is shown. After this, students are free to experiment
with the tools themselves. This approach is possible be-
cause the tools are stable and known to work well. The
features of the tool are rather restricted, making controls
obvious. Another advantage is that this motivates students
to actively look at the source code of the simulation kernel,
and understand what is going on. Of course, the teaching
assistant is still available for questions and problems.

• Start small. We agree that it is best to start with a small ex-
ample, which students would be able to finish in the course
of a single practice session, followed by a bigger assign-
ment students should work on afterwards. However, this is
not feasible due to the large amount of formalisms students
are exposed to. Instead, students are only expected to make
a simple assignment, which is in itself small. While stu-
dents are not exposed to the problems caused by large-scale
models, it still offers them sufficient background to under-
stand the formalism, and be able to tackle bigger problems
if need be. They do become familiar with the main prob-
lems of modelling in the formalism though. So in contrast
to [18], we limit ourself to small assignments, in order to
cover more formalisms. In the context of our course, we
favor a minimal assignments best practice (discussed be-
low) over this one.

We identified some new best practices too, motivated by our
experiences:

• Provide further reading. While the theory lectures pro-
vide an introduction to the formalism and its goals, stu-
dents are offered a set of papers that introduce the formal-
ism. Apart from these mandatory papers, some optional
papers are presented as well, which go deeper about de-
tails, applications, or possible extensions of the formalism.
These optional papers contain valuable additional informa-
tion about the formalism, which helps students to enhance

their knowledge about the formalism in question. To re-
duce the workload of students, however, these papers are
not part of the theoretical exam, and we only expect stu-
dents to use them as background material.

• Minimal assignments. Again due to the high number of
formalisms covered, the assignments should be as minimal
as possible. Minimal, however, does not mean superficial:
the assignment should still contain problems that require an
intricate knowledge of the formalism to solve. The knowl-
edge gained from solving the minimal assignment should
also be transferable to bigger projects. While the mod-
elling of realistic systems provides benefits too, such as
being closer to real applications of the formalism, as well
as finding out how well the formalism scales, this is not an
option for our purposes due to the limited time available
for each formalism.

• Tool agnostic. The assignments should focus on the for-
malism, and not on tool-specific features. This allows stu-
dents to appreciate the subtleties of the formalism, instead
of the tool’s implementation details. As our teaching style
is tool agnostic, students are able to model systems inde-
pendent of the tool used. Knowledge from the prototype
tools is portable to all similar tools, as it only focuses on
the formalism itself, which is similar in all tools.

• Provide simulation algorithm. By providing the simula-
tion algorithm, students gain intricate knowledge about the
semantics of the formalism. Since they know the details
of the algorithm, they understand corner cases, and what
the fundamental limitations of the formalism are. Fur-
thermore, they understand how simulation kernels are im-
plemented, giving them an advantage should they need to
write their own simulation kernel in the future.

• Minimal open-source tools. By using minimal tools, stu-
dents are not distracted by the plethora of features offered
by tools used in industry. While these features are useful
in big projects, they only act as a distraction for our small
assignment, increasing accidental complexity. As tools are
open-source, students can inspect the source code to find
the simulation algorithm, that was presented in class. To
extend the understanding of the formalism, we have stu-
dents implement parts of the simulation algorithm.

• Follow-up Master’s thesis topics. As we touch upon so
many formalisms and application areas, students are sure
to find a topic relevant to their domain of interest. Offering
a wide range of Master’s thesis topics in all of these direc-
tions attracts these students to increase their knowledge of
the domain. Thanks to these topics, some of our minimal
prototype tools have grown to full-blown tools that have
contributed to the scientific community.

• Follow-up courses. Since modelling and simulation is
an integral part of the curriculum at the University of
Antwerp, several follow-up courses are offered. One such
course is about Model Driven Engineering, following the
format of [17, 18]. In this follow-up course, the level of ab-
straction is raised even further by going to domain-specific
formalisms. The formalisms taught in our course are then

used as the semantic domain of these domain-specific mod-
elling languages.

4.2 Future Improvements
Even though this course has been given for more than a
decade, it still continuously changes to adapt to the needs in
industry and academia. We summarize some of the improve-
ments we plan to make to the current form of the course:

• Couple all assignments together. Currently all assign-
ments focus around the problem domain of railway simu-
lation. Each assignment, however, models a different part
of the domain. So while it is conceptually clear that a sin-
gle domain needs all these different formalisms, it would
be beneficial to couple all assignments together into a sin-
gle application. Apart from showing the students that all
methods are orthogonal, instead of alternatives, it also in-
troduces them further to the problem of composition of
modelling formalisms.

• Prepare for follow-up courses. At the end of the course, it
might be advisable to explain how the concept is continued
throughout the remainder of the curriculum. In particular,
the different follow-up courses could briefly be introduced,
with an explanation as to how they relate to our course.
Students would have clearer knowledge of how this course
fits in the curriculum. Also, motivated students can choose
to take follow-up courses that they deem interesting with
their gained knowledge about modelling and simulation.

• Relate to tools used in industry. It could be beneficial
for students to have a brief industry lecture, where their
current knowledge is related to industry tools. This could
show students that their knowledge is easily transferred to
industrial tools, as well as show them the additional fea-
tures that these tools offer. While a single lecture might
not be sufficient to go in-depth in all tools, it will motivate
students to get to know these tools better.

4.3 Industrial Relevance
From an industrial point of view, our approach allows stu-
dents to clearly understand the core of modelling and simula-
tion. As there is no focus on any tool in particular, students
will be able to quickly grasp the basics of most similar tools
used in industry. Students also have a deeper understanding
of the particularities of specific tools, and are therefore in a
better position to give companies technical advice in which
formalisms and tools to use.

As they gained experience in writing parts of a simulator
themselves, students will be capable to extend existing in-
dustrial simulation tools. This skill is particularly useful for
simulation tool builders. Consequently, many of our students
end up at such companies.

5. CONCLUSION
We presented our current way of teaching a course on the
modelling and simulation of Cyber-Physical Systems, guided
by over a decade of experience. Our course combines the
theoretical foundation of modelling with a wide spectrum of
modelling and simulation formalisms. We touch upon UML,

as well as the Causal Block Diagrams, Petri Nets, State-
charts, and DEVS formalisms. The theoretical underpinning
is given such that students become familiar with a family of
formalisms instead of a single one. Sufficient details are given
about the formalism, such that students will be able to im-
plement their own simulator, but also are able to effectively
use it for modelling. In the assignments, students employ
this knowledge to model a simple component, which touches
upon common problems in that formalism. Where applicable,
parts of the simulation tool are left open for students to fill in
the gaps. This teaches students to think from both points of
view: as a modeller, as well as a simulation tool builder.

ACKNOWLEDGMENTS
This work was partly funded by a PhD fellowship from the
Research Foundation - Flanders (FWO). Partial support by
the Flanders Make strategic research centre for the manufac-
turing industry is also gratefully acknowledged. We would
like to thank the other teaching assistants of this course: Bart
Meyers, Cláudio Gomes, and Joachim Denil.

REFERENCES
1. Cellier, F. E. Continuous System Modeling, first ed.

Springer-Verlag, 1991.

2. Dingle, N. J., Knottenbelt, W. J., and Suto, T. PIPE2: A
tool for the performance evaluation of generalised
stochastic petri nets. SIGMETRICS Performance
Evaluation Review 36, 4 (Mar. 2009), 34–39.

3. European Commission. ECTS – European Credit
Transfer and Accumulation System.
http://ec.europa.eu/education/ects/ects_en.htm,
2015.

4. Exelmans, J. Statecharts and class diagrams.
http://msdl.cs.mcgill.ca/people/joeri, 2015.

5. Fishwick, P. A. Simulation Model Design and
Execution: Building Digital Worlds, first ed. Prentice
Hall PTR, 1995.

6. Harel, D. On visual formalisms. Communications of the
ACM 31, 5 (May 1988), 514–530.

7. Harel, D., and Kugler, H. The rhapsody semantics of
statecharts (or, on the executable core of the uml). In
Integration of Software Specification Techniques for
Applications in Engineering, vol. 3147 of Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2004,
325–354.

8. Harel, D., and Naamad, A. The STATEMATE semantics
of statecharts. ACM Transactions on Software
Engineering Methodology 5, 4 (Oct. 1996), 293–333.

9. Law, A. M., and Kelton, D. M. Simulation Modeling and
Analysis, third ed. McGraw-Hill Higher Education,
1999.

10. Lee, E. A., and Seshia, S. A. Introduction to Embedded
Systems, A Cyber-Physical Systems Approach,
second ed. 2015. http://leeseshia.org.

11. Murata, T. Petri nets: Properties, analysis and
applications. Proceedings of the IEEE 77, 4 (1989),
541–580.

12. Nutaro, J. J. Building software for simulation: theory
and algorithms, with applications in C++. John Wiley
& Sons, 2011.

13. Object Management Group. Unified Modelling
Language (UML).
http://www.omg.org/spec/UML/2.5/, 2015.

14. Pachl, J. Railway operation and control, third ed. VTD
Rail Publishing, 2014.

15. Syriani, E., Vangheluwe, H., Mannadiar, R., Hansen, C.,
Van Mierlo, S., and Ergin, H. AToMPM: A web-based
modeling environment. In Proceedings of MODELS’13
Demonstration Session (2013), 21–25.

16. University of Antwerp. Blackboard academic suite.
https://blackboard.uantwerpen.be/, 2015.

17. Van Gorp, P., Schippers, H., Demeyer, S., and Janssens,
D. Students can get excited about formal methods: a
model-driven course on petri-nets, metamodels and
graph grammars. In MoDELS Educators’ Symposium
(2007), 1–10.

18. Van Gorp, P., Schippers, H., Demeyer, S., and Janssens,
D. Transformation techniques can make students excited
about formal methods. Information & Software
Technology 50, 12 (2008), 1295–1304.

19. Van Tendeloo, Y., and Vangheluwe, H. The modular
architecture of the Python(P)DEVS simulation kernel. In
Proceedings of the 2014 Symposium on Theory of
Modeling and Simulation - DEVS (2014), 387–392.

20. Zeigler, B. P., Praehofer, H., and Kim, T. G. Theory of
Modeling and Simulation, second ed. Academic Press,
2000.

http://ec.europa.eu/education/ects/ects_en.htm
http://msdl.cs.mcgill.ca/people/joeri
http://leeseshia.org
http://www.omg.org/spec/UML/2.5/
https://blackboard.uantwerpen.be/

	Introduction
	Course Design
	Prerequisites
	Objectives
	Structure
	Evaluation structure

	Formalisms
	Introduction to multiple formalisms and modelling
	Discrete-time Causal Block Diagrams
	Continuous-time Causal Block Diagrams
	Petri Nets
	Statecharts
	DEVS

	Lessons Learned
	Best Practices
	Future Improvements
	Industrial Relevance

	Conclusion

