
SCCD: SCXML Extended with Class Diagrams
Simon Van Mierlo,
Yentl Van Tendeloo,

Bart Meyers
University of Antwerp

Middelheimlaan 1, 2020
Antwerp, Belgium

firstname.lastname@uantwerpen.be

Joeri Exelmans
University of Antwerp

Middelheimlaan 1, 2020
Antwerp, Belgium

joeri.exelmans@student.uantwerpen.be

Hans Vangheluwe
University of Antwerp

Middelheimlaan 1, 2020
Antwerp, Belgium
McGill University

3480 University Street
Montréal, Québec, Canada

H3A 0E9
hv@cs.mcgill.ca

ABSTRACT
We introduce the SCCD formalism, which is a hybrid of
Statecharts and Class Diagrams, and its SCCDXML rep-
resentation, which is an extension of SCXML. SCCD facili-
tates the specification of complex timed, reactive, interactive
discrete-event, dynamic-structure systems (e.g., complex user
interfaces, control systems), as we demonstrate using a repre-
sentative example. We present an SCCD compiler that sup-
ports (a) semantic variation points for different Statecharts
variants (e.g., Rhapsody and Statemate), (b) code generation
for different platforms (e.g., Tkinter and HTML/Javascript),
and (c) code generation for different families of runtimes
(e.g., event-based platforms and game loops). Furthermore,
we discuss the history and future work of SCCD to reveal
our research agenda.

INTRODUCTION
The Statecharts [3] formalism was developed to aid the
specification of complex, timed, interactive discrete-event
systems. Nevertheless, the exclusive use of Statecharts
does not scale to the complex (and often dynamic-structure)
behaviour of the software systems we want to model to-
day. From a programming point of view, object-oriented
modelling methodologies address software complexity, but
are not specifically designed for modelling timed, interactive
discrete-event systems [4].

We propose SCCD, a Statecharts and Class Diagrams hy-
brid, which combines the structural object-oriented expres-
siveness of Class Diagrams with the behavioural discrete-
event characteristics of Statecharts. The aim is to create a
minimal (but sufficiently expressive) language, providing the
necessary abstractions for modelling complex, timed, inter-
active discrete-event systems that exhibit dynamic-structure
behaviour. We first present the SCCD language and its SC-
CDXML representation, based on SCXML. We then explain
our SCCD compiler. We review the limitations of the lan-

Figure 1. A screenshot of the running example. Black balls are moving,
yellow balls are selected, and red balls have been moved by the user.

guage and compiler, outlining future work. Finally, we ex-
plore related work and conclude the paper.

RUNNING EXAMPLE
To demonstrate our language, we model a timed, reactive,
autonomous, dynamic-structure system, which is not easily
expressed using Statecharts (and, by extension, SCXML).
The system is a “bouncing balls” application, which has the
following requirements:

• The application consists of a number of windows. It starts
with exactly one window.

• Each window has a number of bouncing balls, and a button
that spawns a new window.

• A window can be closed. If no more windows remain, the
application exits.

• The user can spawn a new black ball by right-clicking in a
window. The ball starts moving in a random direction.

• The user can select a ball by left-clicking on it. The ball
then changes its colour to yellow, and stops moving.

• The user can move a selected ball by dragging it.
• When releasing a dragged ball, its colour changes to red,

and its velocity is changed proportionally to how fast the
user was moving the mouse.

• When the user presses the “delete” key, all selected balls in
the current window are deleted.

A screenshot of the running application is shown in Fig-
ure 1. The original Statecharts formalism has no facilities
for specifying multi-agent systems whose structure changes
over time. Each ball’s behaviour is ideally controlled by a
separate Statecharts model, with each instance able to com-
municate with others. The constraints on the structure of the

1



application should additionally be specified by the application
designer and checked at runtime.

THE SCCD FORMALISM
The SCCD formalism extends Statecharts with the concept
of a class, which models structure, and associates with each
class a definition of its behaviour (in the form of a Stat-
echarts model). We extend SCXML for the modelling of
SCCD models, thus creating the SCCDXML language. We
first present the new features of our language, and then we
discuss the management of objects at runtime.

Language Features
This section introduces the new features of the SCCD lan-
guage and demonstrates them with our running example in
the SCCDXML concrete syntax. We assume the reader is fa-
miliar with standard SCXML notation and do not repeat its
definition, only highlighting our extensions.

Top-level Elements
The top-level element is a diagram. It has an input/output in-
terface to communicate with its environment, it can optionally
import library classes, and it holds a number of class defini-
tions. One of these classes is the default, and is instantiated
when the application is launched.

Listing 1. The top-level ‘diagram’ element.
<diagram>
<top>

from ui widget import UIWidget
</top>
<inport name=‘input’ />
<class name=‘MainApp’ default=‘true’>...</class>
<class name=‘Window’>...</class>
<class name=‘Button’>...</class>
<class name=‘Ball’>...</class>

</diagram>

Listing 1 shows the top-level diagram of the example appli-
cation. It imports a library class that is used to draw the
graphical elements on the screen, one input port called “in-
put” which receives events when the user interacts with the
UI (for example, pressing a key), and four classes, explained
in the following subsections. To comply with good OO de-
sign, each class can also be defined in its own file, with other
files importing their definition.

Classes
Classes are the main addition of the SCCD language. They
model both structure and behaviour. Structure is modelled
in the form of attributes and relations with other classes, ef-
fectively encapsulating the runtime data of the application.
Behaviour is modelled in the form of methods, which access
and change the values of attributes of the class by executing
statements modelled in an action language, and an SCXML
model, which constitutes the “modal” part (i.e., the control
flow) of the class. At runtime, an object can be created and
deleted, followed by the invocation of, respectively, the con-
structor and the destructor. The relationships modelled be-
tween classes are instantiated at runtime in the form of links.
They serve as communication channels, over which objects
can send and receive events.

Listing 2. The ‘Ball’ class.
<class name=‘Ball’>
<relationships>...</relationships>
<inport name=‘ball input’/>
<constructor>
<parameter name=‘canvas’ />
<parameter name=‘x’ />
<parameter name=‘y’ />
<super class=‘UIWidget’ />
<body>...</body>

</constructor>
<destructor>
<body>self.canvas.delete(self)</body>

</destructor>
<method name=‘move’>
<parameter name=‘position’ />
<body>...</body>

</method>
<scxml initial=‘bouncing’>
<state id=‘bouncing’>...</state>
<state id=‘dragging’>...</state>
<state id=‘selected’>...</state>
<state id=‘deleted’ />

</scxml>
</class>

Listing 2 shows the definition of the ‘Ball’ class. It defines
a number of relations (discussed in the next subsection), a
constructor and destructor, a method that moves the ball to
a new position, and an SCXML model that consists of four
states. It can optionally also define private input ports and
output ports. In this case, the ball defines a private input port,
that allows the environment to send events that are only meant
for a particular ball.

Relationships
Classes can have relationships with other classes. An asso-
ciation relation is defined between a source class and a tar-
get class, and has a name. An association has a multiplicity,
defined as a minimal cardinality cmin ∈ N and a maximal
cardinality cmax ∈ N>0 ∪ {∞}. By default, cmin = 0 and
cmax = ∞. They control, at runtime, how many instances
of the target class have to be minimally associated to each
instance of the source class, and how many instances of the
target class can be maximally associated to each instance of
the source class, respectively. Each time an association is
instantiated, it results in a uniquely identified link between
the source and target object which can be used, for example,
to send events. An inheritance relation results in the source
of the relation to inherit all attributes and methods from the
target of the relation. Specialisation of the superclass’s be-
haviour is currently not supported.

Listing 3. Relationships of the ‘Ball’ class.
<class name=‘Window’>
<relationships>
<association name=‘parent’ class=‘MainApp’ min=‘1’ max

=‘1’/>
<association name=‘buttons’ class=‘Button’ />
<association name=‘balls’ class=‘Ball’ />
<inheritance class=‘UIWidget’ />
</relationships>
...

</class>

2



Listing 3 shows the relationships of the ‘Window’ class. It
has an association to its parent, the main application. Exactly
one instance of that link has to exist between each ‘Window’
instance and the main application. It is additionally associ-
ated to a number of buttons and balls, and inherits from the
library class ‘UIWidget’, allowing it to be drawn on screen.

Events
Events in SCCD are strings. They are accompanied by a
number of parameter values: the sender is obliged to send
the correct number of values, and the receiver declares the
parameters when catching the event. Each parameter has a
name, that can be used as a local variable in the action and
constraint associated with the transition that catches the event.

With the addition of a public input/output interface using
ports, as well as classes and associations, comes the need
for event scoping. In traditional SCXML models, an event
is sensed by the Statecharts model that generated it. SCCD
adds the ability to transmit events to class instances and to
output ports. In particular, the raise tag was extended with a
scope attribute, that can take on the following values:

• local: The event is only visible for the sending instance
(the default behaviour of SCXML).

• broad: The event is broadcast to all instances.
• output: The event is sent to an output port and is only

valid in combination with the port attribute, which speci-
fies the name of the output port.

• narrow: The event is narrow-cast to specific instances
only, and is only valid in combination with the target
attribute, which specifies the instance to send the event
to. For example, an instance of the ‘Window’ class can
narrow-cast an event by sending the event to a specific in-
stance of the ‘Ball’ class, identified by a unique link iden-
tifier.

• cd: The event is processed by the object manager. See the
next section for more details.

Listing 4. An example transition that narrow-casts an event.
<transition event=‘left−click’ port=‘button input’ target=‘.’>
<raise event=‘button press’ scope=‘narrow’ target=‘‘parent’’>
<param expr=‘self.event name’ />

</raise>
</transition>

Listing 4 presents a transition modelled on the ‘Button’ class.
It reacts to the user left-clicking the button (represented by
an event sent on the button input port). The button reacts by
notifying its parent that it was clicked.

The Object Manager
At runtime, a central entity called the object manager is re-
sponsible for creating, deleting, and starting class instances,
as well as managing links (instances of associations) between
class instances. It also checks whether no minimal or max-
imal cardinalities are violated when the user deletes or in-
stantiates an association, respectively. As mentioned previ-
ously, instances can send events to the object manager using
the “cd” scope. The object manager can thus be seen as an
ever-present, globally accessible object instance, although it

is implicitly defined in the runtime, instead of as an SCCD
class.

When the application is started, the object manager creates
an instance of the default class and starts its associated Stat-
echarts model. From then on, instances can send several
events to the object manager to control the set of currently
executing objects. The object manager accepts four events.
We list them below, including the parameters that have to be
sent as part of the event:

• create instance(association name, class name, . . . ): Cre-
ates a new instance, if it is allowed (i.e., no constraints
would be violated). The newly created instance is always
associated to its creator (the instance that sent the event).
The first parameter is the name of the association that
should be instantiated to create a link between the parent
and its newly created child. The second parameter is the
name of the class that needs to be instantiated. This should
be the class that is defined as the target of the association,
or one of its subclasses. Any subsequent parameters are
interpreted as arguments to the constructor of the new in-
stance. If creation succeeds, a reply event is sent to the
requester containing the unique identifier of the link cre-
ated between the creator and the new object. If creation
failed, an error event is sent instead.

• delete instance(link ref ): Deletes the instances specified
by the link reference. The link reference is evaluated in the
context of the instance that sent the event and should result
in a set of link identifiers. The target objects of these links
are deleted, as well as any links for which these objects are
the source or target, as long as no multiplicity constraints
are violated. The object manager sends an event to the re-
quester when deletion was successful. If deletion failed, an
error event is sent instead.

• start instance(link ref ): Starts the execution of the Stat-
echarts model of the instances specified by the link refer-
ence.

• associate instance(source ref, association name, tar-
get ref ): This event makes it possible to create associ-
ations between two existing instances. The source and
target references are evaluated to two sets of instances,
and each instance in the first set is connected using the
specified association with the instances in the second set.

The object manager, in combination with input/output ports
of the diagram, replaces the invoke and send tags of the cur-
rent SCXML standard. We believe this solution to be more
general and more modular. The invoke tag, for example, does
not allow for instances (effectively, agents) to run concur-
rently for the whole duration of the program, does not offer
a comprehensive interface for object management, and does
not offer any checks on the structure of the system at runtime.
Moreover, using ports instead of direct sends to a predefined
location is more modular, since the Statecharts model does
not need to know the actual service that it communicates with
(it just needs to know its interface), which means it can be
reused in different contexts.

Listing 5 shows how the ‘Window’ class creates an instance
of the ‘Ball’ class as a result of the user right-clicking in-

3



Listing 5. Creating an instance of the ‘Ball’ class.
<state id=‘running’>
<transition event=‘right−click’ port=‘window input’ target=‘../

creating ball’>
<raise scope=‘cd’ event=‘create instance’>
<parameter expr=‘‘balls’’ />
<parameter expr=‘‘Ball’’ />
<parameter expr=‘self.canvas’ />
<parameter expr=‘self.clicked x’ />
<parameter expr=‘self.clicked y’ />

</raise>
</transition>

</state>
<state id=‘creating ball’>
<transition event=‘instance created’ target=‘../running’>
<parameter name=‘link name’ type=‘string’/>
<raise event=‘start instance’ scope=‘cd’>
<parameter expr=‘link name’ />

</raise>
</transition>

</state>

side of that window. The instance raises the create instance
event, using the cd scope. It specifies that a ‘balls’ link has to
be created to refer to the new instance, and passes the appro-
priate constructor parameters to the ‘Ball’ class. It then waits
for the event signalling that the instance was successfully cre-
ated.

Listing 6. Deleting an instance of the ‘Ball’ class.
<state id=‘running’>
<transition event=‘delete ball’ target=‘.’>
<parameter name=‘link name’ type=‘string’ />
<raise event=‘delete instance’ scope=‘cd’>
<parameter expr=‘link name’ />

</raise>
</transition>

</state>

Listing 6 shows how an instance of the ‘Window’ class re-
acts to a ball requesting to be deleted (see Listing 4). The
ball sends the correct link reference, and the window then in-
structs the object manager to delete that ball. Currently, there
is no support for objects deleting themselves.

THE SCCD COMPILER
The semantics of an SCCD model are loosely based on the
agent model, where each instance of a class can be seen as an
agent whose autonomous behaviour is controlled by its Stat-
echarts model and communicates asynchronously with other
agents through its input/output interface. Our compiler gen-
erates appropriate code that continuously executes the system
by allowing each agent to execute a step, which optionally
generates output that can be sensed by the other agents.

The compiler supports multiple programming languages, run-
time platforms, and options for the Statecharts semantics.
These are visually represented in the feature diagram in Fig-
ure 2, and are explained in the following subsections.

Programming Languages
The compiler can currently generate code for three program-
ming languages: Javascript, Python, and C#. Supporting mul-

Big Step 
Maximality

Language

Platform

Python

Javascript

C#

Threads

Gameloop

Eventloop

Take One

Take Many

Internal Event
Lifeline

Input Event
Lifeline

Compiler Options

Source-Parent

Source-Child

First Small Step

First Combo Step

Whole

Next Small Step

Next Combo Step

Queue

Semantics

Priority

Figure 2. Feature diagram of the compiler options.

tiple languages is a major advantage, as developers can create
applications in SCCD and generate code for multiple lan-
guages from the same model. The generated code then ex-
hibits identical behaviour for each implementation language,
such as a web-based application (e.g., in HTML/Javascript)
and a desktop application (e.g., in Python).

Runtime Platforms
The precisely defined semantics of SCCD are executed on a
runtime platform, which provides essential functions used by
the runtime kernel, such as the scheduling of (timed) events.
Three runtime platforms are supported, each applicable in a
different situation. The kernel attempts to run the SCCD
model in real-time, meaning that the delay on timed transi-
tions is interpreted as an amount of seconds. The raising of
events and untimed transitions are executed as fast as possi-
ble. Figure 3 presents an overview of the three platforms, and
how they handle events.

The most basic platform, available in most programming lan-
guages, is based on threads. Currently, the platform runs
one thread, which manipulates a global event queue, made
thread-safe by locks. Input from the environment is handled
by obtaining this lock, which the kernel releases after every
step of the execution algorithm. This allows external input to
be interleaved with internally raised events. Running an ap-
plication on this platform, however, can interfere with other
scheduling mechanisms (e.g., a UI module), or with code that
is not thread-safe.

To overcome this interference problem, the event loop plat-
form reuses the event queue managed by an existing UI plat-
form, such as Tkinter. The UI platform provides functions for
managing time-outs (for timed events), as well as pushing and

4



Figure 3. The three runtime platforms.

popping items from the queue. This results in a seamless in-
tegration of both Statecharts events and external UI events,
such as user clicks: the UI platform is now responsible for the
correct interleaving.

The game loop platform facilitates integration with game en-
gines (such as the open-source Unity1 engine), where objects
are updated only at predefined points in time, decided upon
by the game engine. In the “update” function, the kernel is
responsible for checking the current time (as some time has
passed since the last call to the “update” function), and pro-
cess all generated events. This means that events generated in
between two of these points are not processed immediately,
but queued and their processing delayed until the next pro-
cessing time.

Semantics
The Statecharts language has been around for a long time.
In that time, its basic structures have almost not changed. In
its original definition [3], Harel left many of the semantic
choices undefined. Since then, many semantics have been de-
fined, such as the one used in Statemate [6] or Rhapsody [5].
More recently, Esmaeilsabzali et al. [1] have performed a
study of big-step modelling languages, such as Statecharts,
and defined a set of semantic variation points, with which the
different Statecharts execution semantics can be classified.
Central to their discussion is the notion of a “big step”. The
execution of a Statecharts model is a sequence of big steps.
A big step is a unit of interaction between a model and its
environment, and corresponds to a “macrostep” in SCXML.
A big step takes input from the environment (at the beginning
of the big step), and produces output to the environment (af-
ter the big step has taken place). Input cannot change during
the big step. A big step consists of 0 or more small steps. A
small step is an unordered set of 1 or more transition execu-
tions, but in our case, a small step always consists of exactly
one transition execution. Small steps are grouped in so-called
combo steps. A combo step is a maximal sequence of small

1https://unity3d.com/

steps, such that it only contains transitions that are orthogonal
to each other, and corresponds to a “microstep” in SCXML.

The SCCD compiler allows to choose which semantics to use
based on a number of semantic variation points. This gives
modellers more control to fine-tune the application to their
needs. The semantic variation points are listed below.

• Big Step Maximality specifies when a big step ends: ei-
ther after one combo step executed (Take One), or when no
more combo steps can be executed (Take Many).

• Internal Event Lifeline specifies when an internally raised
event becomes available: either immediately in the next
small step (Next Small Step), in the next combo step (Next
Combo Step), or in the next big step, which means the event
is queued and treated as an external event (Queue).

• Input Event Lifeline specifies when an input event is
available during a big step: either throughout the first small
step (First Small Step), the first combo step (First Combo
Step), or throughout the whole big step (Whole).

• Priority specifies what to do when two transitions are en-
abled at the same time, where the source state of one of the
transitions is the ancestor of the source state of the other
transition. Either the transition of the ancestor gets prior-
ity (Source-Parent), or the transition of the (indirect) child
gets priority (Source-Child).

LIMITATIONS AND FUTURE WORK
In its current state, an SCCD with several hundreds of ob-
jects runs smoothly on all platforms. Nevertheless, no ex-
tensive optimisation is incorporated in compiling an SCCD.
It remains to be investigated whether the performance is ad-
equate for an SCCD modelling a complete graphical user
interface for graphical modelling involving possibly tens of
thousands of objects, over multiple hierarchical levels. In the
extreme case, thousands of objects might broadcast events to
all objects at the same time. Ultimately, such broadcast scope
might have to be restricted. In this sense, we intend to refine
our notion of scope, by further refining the crucial role of the
object manager.

The SCCD formalism supports specialisation for Class Di-
agrams (i.e., inheritance of attributes, methods and associa-
tions). However, no specialization of the behaviour modelled
in the Statecharts component of a class is implement as of
today, which ideally includes specialization of Statecharts
transitions and inheritance of events.

Because SCCD aims to model large, complex systems, we
intend to add support for exceptions and exception handling
to SCCD. Currently, when an object wants to signal an error,
it has to send an error event. In the future, exceptions can
be modelled as a special kind of event, and exception han-
dling can be modelled as a dedicated SCCD. It remains to be
investigated what the possibilities are when handling excep-
tions: can the exception handler (re)set a Statecharts’s cur-
rent state, or destroy objects and their Statecharts instances,
and what are possible repercussions?

We also aim to introduce more object-oriented techniques to
SCCD. Currently, events are strings, but modelling them as

5

https://unity3d.com/


separate entities (such as classes) is useful, especially if a spe-
cialisation mechanism is implemented as mentioned above.
This allows catching of events based on a supertype or on
specific subtypes. This would also allow for classes to de-
clare an interface, stating which types of events they accept on
their input ports, and which types of events they will send on
their output ports. This encourages re-usability, and is more
general than the current prefix matching of event names in
SCXML.

One major advantage of modelling using SCCD is its checks
on the structure of the object diagram, to ensure that it con-
forms to the class diagram. Currently, however, minimal car-
dinality constraints are not always enforced, as they are nec-
essarily violated in some period of time (the “initialisation
phase”) when an object is created. We plan to add a mech-
anism for classes to signal to the object manager when they
finished their initialisation, after which it is safe to check min-
imal cardinality constraints.

SCCD currently supports low-level modelling of State-
charts interaction. In this context, we observe specific pat-
terns in the design of complex user interfaces, for which dedi-
cated support might decrease the complexity of SCCD mod-
els. One example of such a pattern is the modelling of hi-
erarchical user interfaces, where resizing one window may
trigger a ripple effect throughout all containers. Currently,
such behaviour has to be implemented using scattered transi-
tions, which decreases maintainability. We intend to identify
typical patterns and address them individually, without overly
complicating the SCCD formalism.

We aim to create a graphical representation and modelling
tool for SCCD based on the graphical notations of Class
Diagrams and Statecharts, to further increase usability of
the formalisms and readability of models. In this respect,
SCCDXML would serve not only as input for the compiler,
but also as the interchange format for the graphically created
models. Interestingly, creating such a modelling tool is very
much the intended use of SCCD, and ultimately this mod-
elling tool will be bootstrapped using an SCCD model.

RELATED WORK
Harel and Gery [4] propose OO Statecharts, similar to
SCCD, to enable precise modelling of behaviour over time,
which allows full executability and automatic code synthesis.
In contrast to OO Statecharts, we focus on UI modelling,
and SCCD is based on SCXML. In OO Statecharts, class
methods can be called by synchronous function calls, whereas
in SCCD no direct function calls are made. Object creation
and destruction is always handled through synchronous func-
tion calls in OO Statecharts, whereas this is done through
events to an explicit mediator (the object manager) in SCCD.

Forbrig et al. [2] support dynamic creation of parallel sub-
components in SCXML. Their example is an email client
that can handle multiple emails at once. The problem the
authors address is similar to ours, but we explicitly use
Class Diagrams and objects as instances, which can be
seen as agents that run concurrently and communicate asyn-
chronously (which results in an entirely different semantics).

In the context of embedded real-time software systems, Selic
and Rumbaugh employ the UML, which later became known
as UML-RT [7]. Similar to our approach, UML-RT addresses
complex, event-driven, and, potentially, distributed systems.
The notation is entirely UML-compliant, as a UML profile is
used. So-called capsules roughly correspond to actors, simi-
lar to objects, to which a UML State Machine is associated.
Similar to our approach, ports and connectors are used for
communication between actors. The State Machines, how-
ever, cannot be compositional. Rudimentary support for in-
heritance of State Machines is supported in the sense that
the State Machine is inherited, but no further constraints are
defined according to the Liskov substitution principle. The
UML-RT approach comes without compiler, and strictly fol-
lows UML semantics only.

CONCLUSION
This paper presents SCCD, a combination of Statecharts
and Class Diagrams, for modelling the structure as well as
the behaviour of complex, timed, interactive discrete-event
systems. We presented the formalism, its representation in
SCCDXML (an extension of SCXML), and a versatile com-
piler that supports multiple semantic variation points, plat-
forms, and runtimes. In its current form, SCCD is suitable
for the modelling of, amongst others, a graphical modelling
tool’s GUI. We discussed the limitations of the approach, set-
ting the stage for future work.

ACKNOWLEDGEMENTS
This work was partly funded by Flanders Make vzw, as well
as with PhD fellowship grants from the Agency for Innova-
tion by Science and Technology in Flanders (IWT) and the
Research Foundation - Flanders (FWO).

REFERENCES
1. Esmaeilsabzali, S., Day, N. A., Atlee, J. M., and Niu, J.

Deconstructing the semantics of big-step modelling
languages. Requirements Engineering 15, 2 (2010),
235–265.

2. Forbrig, P., Dittmar, A., and Khn, M. Extending SCXML
by a feature for creating dynamic state instances. In 2nd
Workshop on Engineering Interactive Systems with
SCXML (2015).

3. Harel, D. Statecharts: A visual formalism for complex
systems. Sci. Comput. Program. 8, 3 (1987), 231–274.

4. Harel, D., and Gery, E. Executable object modeling with
statecharts. IEEE Computer 30, 7 (1997), 31–42.

5. Harel, D., and Kugler, H. The rhapsody semantics of
statecharts (or, on the executable core of the uml). In
Integration of Software Specification Techniques for
Applications in Engineering, vol. 3147 of Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2004,
325–354.

6. Harel, D., and Naamad, A. The STATEMATE semantics
of Statecharts. ACM Trans. Softw. Eng. Methodol. 5, 4
(Oct. 1996), 293–333.

7. Selic, B., and Rumbaugh, J. Using UML for modeling
complex real-time systems. Technical report, 1998.

6


	Introduction
	Running Example
	The SCCD Formalism
	Language Features
	Top-level Elements
	Classes
	Relationships
	Events

	The Object Manager

	The SCCD Compiler
	Programming Languages
	Runtime Platforms
	Semantics

	Limitations and Future Work
	Related Work
	Conclusion
	Acknowledgements
	REFERENCES 

