Hellaynnea Consulting

hellaynnea@gmail.com

NetMultiPlayer

Multi-Threaded Video
Rendering

(Ref.: NMP_MTVIDEO YL)

April 10™, 2006

Copyright © 2006 — Yohan LAUNAY

NetMultiPlayer Multi-Threaded Video Rendering

P.2/33

Table of Content

INTRODUCTION 3
REFERENCES 3
MULTI-THREADED PROGRAMMING GUIDE 4
ACTORS DEFINITION 4
MY MULTI-THREADED PROGRAMMING HISTORY 9
MULTI-THREADED PROGRAMMING RULES 10
VIDEO CHANNELS DESIGN 12
PRESENTATION & ALGORITHM 12
OPTIMIZATIONS 12
GRAPHICAL ENGINE 16
PRESENTATION & ARCHITECTURE 16
OPTIMIZATIONS 26
ALGORITHM & FUTURE PLANS 30

Copyright © 2006 — Yohan LAUNAY

NetMultiPlayer Multi-Threaded Video Rendering P. 3/33

Introduction

The purpose of this document is to present the state of my work in terms of graphical engine
adapted for multi video channels rendering. I have been faced the last three years to different
problems and constraints that led to the choices I had taken today. The literature in this field is
very spare as most of the articles I could find where related to single video rendering (DivX
player, DVD player, etc.). No article was focusing on how to render multiple video channels on

an optimized manner, introducing multi-threaded programming at the same time.

In this document, I will first give a guide to safe multi-threaded programming. Then I will
describe the architecture of a graphical engine supporting multi video channels rendering. I don’t
want this document to be exclusive on the technology to be used, however, I have been working
with a lot of different technologies and the one presented here seemed the most suited for this

kind of work.

References

B The software development plan (SDP) of the Net Multiplayer software system. This

document gives a detailed schedule of the project workload.
B The software architecture document (SAD) of the NetMultiPlayer software system.

This document describes the full architecture of the project and interactions between the

different pieces of software involved.

Copyright © 2006 — Yohan LAUNAY

NetMultiPlayer Multi-Threaded Video Rendering P. 4/33

Multi-threaded Programming Guide

Actors Definition

(Ref.: www.wikipedia.com)

B Thread

A thread is short for a thread of execution. Threads are a way for a program to split itself into
two or more simultaneously running tasks. Multiple threads can be executed in parallel on
many computer systems. This multithreading generally occurs by time slicing (where a single
processor switches between different threads) or by multiprocessing (where threads are

executed on separate processors). Threads are similar to processes, but differ in the way that

they share resources.

B Mutual Exclusion (Mutex)
Mutex algorithms are used in concurrent programming to avoid the concurrent use of un-
shareable resources by pieces of computer code called critical sections. Basically, a mutex is

used as a lock to prevent other threads to access the protected portion of code (a critical section of
the code). In OOP, a mutex is usually embedded in a class providing two basic functions: lock
and unlock. The lock function allows a thread to ask for an access to the critical section. This
access is granted only if the lock is available, otherwise, the thread is paused until it freed. The

unlock function is called by a thread to indicate that it is no more in the critical section.

B Synchronize Class

The synchronize class is a super class of Mutex I had to create. The Mutex class provides only an
exclusive access to the resources regarding to the way a thread may want to access to them. This

means that only a single thread can access the resources at a time. But, in reality, threads have
two ways of accessing a resource: a read access (no modification) and a write access (with
modification). To model this behavior I have created the Synchronize class. This class is using

a simple algorithm:

Copyright © 2006 — Yohan LAUNAY

NetMultiPlayer Multi-Threaded Video Rendering P.5/33

Copyright © 2006 — Yohan LAUNAY

NetMultiPlayer Multi-Threaded Video Rendering P. 6/33

/// unlock class access
inline void _ unlock(bool bXLock)const
{
if (bXLock)
__x unlock() ;
else
{
data mutex .lock();
if(lock count > 0)
--lock count ;
data mutex .unlock();

}

private
/// Xclusive lock
inline void x lock()const
{
mutex .lock();
while(lock count > 0)
_sleep (1);

data mutex .lock();
X lock = true;
data mutex .unlock();

}

/// Xclusive unlock
inline void _ x unlock()const

{

data mutex .lock();

bool unlock mutex X lock ;
if(X lock)
X lock = false;

data mutex .unlock();

if (unlock mutex)
mutex .unlock();

Read Access

The read access is done by locking the critical section mutex, incrementing a counter and
unlocking the mutex right after. This means that the mutex will not be held during the entire
access to the critical section but only at the beginning to signify that the thread is requesting a
read access. Once the thread is done with the resources, it calls the unlocking function which
decrements the counter. With this simple mechanism, several threads can access to the same

resources at the same time as soon as they only intend to read the resource’s content.

Copyright © 2006 — Yohan LAUNAY

NetMultiPlayer Multi-Threaded Video Rendering P.7/33

Write Access

The write access is done by locking the mutex and waiting for the read access threads to stop
their activity (counter is null). The fact that we wait before returning makes sure that the thread
won’t be able to perform any writing activity unless all the reading threads are done with the
resource. Moreover, keeping the mutex locked prevent any other threads to request a read or
write access for the same resources. When the writing thread is done it calls the unlock function

which unlocks the resource’s mutex.

A programmer can derive any class from Synchronize to have access to these mechanisms

easily.

Remark:

Note that the counter is protected by a data mutex. The data mutex is intended to protect the
content of the class in a multi-threaded environment. Indeed, on a multi-core system, two cores
can, at the exact same time, decrease the counter (unlock function); so that instead of decreasing
the value per two, it is only decreased per one. This will result in an invalid state of the counter
variable, locking the next write-access request in a sleep state as the counter will never be
decremented to zero. And, all the next lock requests will join this sleep state, the program will

ultimately freeze.

B Auto Mutex Class

The auto-mutex class has been developed for the purpose of this program. This class is a super
class of Synchronize. It exploits the scope of a variable to lock and unlock a mutex easily. I have
created a class with two constructors: one handling a mutex and one handling a Synchronize
class. The algorithm of the auto-mutex class is very simple. The creation of an auto-mutex
variable requires a link to an actual mutex or Synchronize class. When the constructor is called, it
locks the mutex or the synchronized class. When the destructor of the variable is called, it

unlocks the mutex or the synchronized class.

Copyright © 2006 — Yohan LAUNAY

NetMultiPlayer Multi-Threaded Video Rendering P. 8/33

/// a mutex selft-managed

class AutoMutex

{
Mutex * mutex ; // our mutex pointer
const Synchronized * synchronized ; // synchronized pointer
bool Xlock ;

public
// lock access when initialized
AutoMutex (Mutex * m)
:mutex (m),synchronized (0),Xlock (false)
{ 1f(mutex)mutex ->lock(); }

// lock access when initialized using synchro class
AutoMutex (const Synchronized * s, bool Xlock)
:mutex (0), synchronized (s), Xlock (Xlock)
{ synchronized -> lock(Xlock); }

// unlock access when out of scope
virtual ~AutoMutex ()
{
if (synchronized)
{ synchronized -> wunlock(Xlock); }
else
{ if(mutex) mutex ->unlock(); }

I 8

Using such a class simplifies a lot of things. Indeed, a programmer just has to create an
AutoMutex variable at the top of a function using a shared-resource. The constructor will then
be called locking the mutex. Whenever the function will return, the destructor will be called

unlocking the mutex automatically. No need for the programmer to check that all the return

functions have an associated call to the mutex.unlock() function.

Mutex my mutex;
Synchronize my synchro;

void fool ()
{

AutoMutex auto mutex (&my mutex) ;

[ACCESS SHARED RESOUREC]

if (conditionl)
return;

[ACCESS SHARED RESOUREC]

Copyright © 2006 — Yohan LAUNAY

NetMultiPlayer Multi-Threaded Video Rendering P. 9/33

void foo2 ()
{

AutoMutex auto mutex (&my synchro, true);

[ACCESS SHARED RESOUREC]

if (conditionl)
return;

[ACCESS SHARED RESOUREC]

B Deadlock

A deadlock refers to a specific condition when two or more processes are each waiting for
another to release a resource, or more than two processes are waiting for resources in a circular

chain.

My Multi-threaded Programming History

Four years of multi-threaded programming experience really changed my vision of programming
in general. More specifically, it changed the way I conceived my architecture. At the beginning, I
was thinking that a super class, called Brain, managing and synchronizing everything was a good
solution. I slowly moved towards a more modular system where all the parallel algorithms would
be performed by a different module (or core) of the system. This architecture forced each thread
to be wrapped in a specific core and a core could not execute more than one thread (with some
exceptions). Each core would then protect its own data, and access the other core’s data by some
exchange/communication protocol as if the other core was on another machine (which can be the

case with distributed algorithms).

This refactoring of my thinking process forced me to come up with new programming rules for
the core themselves. It became clear that it would not be possible to manage the mutex and their
associated resources properly if threads could access other threads resources directly taking care

of the locking mechanism externally of the resource’s owner.
Example:

We have two threads T1 and T2 sharing a resource R. R does not really belong to any of the two

threads but both threads need to use it. R is given a mutex M to protect its access.

Copyright © 2006 — Yohan LAUNAY

NetMultiPlayer Multi-Threaded Video Rendering P. 10/33

A typical algorithm I was coding years ago was:

<T1 or T2>

[...]

M.lock()
R.readSomething()
R.writeSomething()
M.unlock()

[...]
</T1 or T2>

This seems fairly simple and it is. But more problems arise when the threads have more than one
mutex to manage. Indeed, deadlocks can then occur and both threads would be blocked forever.
Instead of having to adapt the code regarding to the number of mutex there is, it was better to

come up with general rules, more OOP-compliant.

Multi-threaded Programming Rules

This section intends to give general rules to guarantee a 100% safe multi-threaded program.

B Rule 1: One thread = 1 Synchronize Class
One thread must be handled in one class (or core) and a class can only handle one thread. This

class must be derived from the Synchronize class.

B Rule 2: One Resource = 1 Mutex only

Instead of having to manage different mutex per resource, a resource should only be associated
with a single mutex. The resource should be wrapped in a class whose public functions (to

interact with the resource) are protected (see Rule 3).
B Rule 3: Public functions must be protected

Given that public functions are intended to be used by external components, other threads

included, all the public functions must use the class mutex.

Copyright © 2006 — Yohan LAUNAY

NetMultiPlayer Multi-Threaded Video Rendering P.11/33

I Rule 4: Public functions cannot call other public functions

Given that public functions are protected, a public function cannot call another public function of
the same class otherwise it would stay locked! Only one exception is accepted, is when the public
function is not using the class resource but only used for sorting/testing purpose (switch and if).
In that case, the function is only calling public functions regarding to the parameters passed to it.
This means that this particular function must not be protected. It is possible to avoid such

behavior by coding the sorting sequence in private functions.

B Rule 5.1: Private functions cannot call public functions

Private functions are assumed to be called under protection by public functions or other private
functions themselves called by protected public functions. This means that inside a private
function, the critical section is protected. This also means that a private function cannot call a

public function.

B Rule 5.2: Private functions cannot use the class mutex

According to rule 5.1, the private function is already protected so it must not use the class mutex.

B Rule 6.1: Exclusive lock — Write Access : No const keyword

All threads requesting a write operation on a given resource must use the exclusive lock of the

synchronize class. Thus, the functions performing such operations cannot be declared as const.

B Rule 6.2: Simple lock — Read Access : Use of const keyword

All threads requesting a read operation on a given resource must use the simple lock of the
synchronize class to allow other threads to read the resource as well. Thus, the functions
performing such operations must be declared as const. If the const keyword cannot be added, this
means that the function or sub-functions are at some point performing a write operation. The

code must then be refactored.

If a programmer follows these rules, the resulting code should be guaranteed thread-safe.

Copyright © 2006 — Yohan LAUNAY

NetMultiPlayer Multi-Threaded Video Rendering P.12/33

Video Channels Design

Presentation & Algorithm

It is not needed to describe in details the way the video channel works. Indeed, one just needs to
know that it is a loop fetching pictures and asking the graphical engine to display it. The
important point, however, is that 25 of these channels are working in parallel, and that each one is
using an MPEG4 decompression algorithm which consume processing power. This power
consumption is inevitable so one need to optimize everything possible between the call to display

and the picture actually displayed on screen.

procedure channel thread:
init ()
while brain.stop = 0 do
if connected = 0 then
reconnect () // return only when a connection is made
connected := 1
end if
error = 0
while picture in buffer() = 0 and error = 0 do
wait ()
end do
if error = 1 then
connected := 0
else
lock picture ()
picture := read picture()
unlock picture ()
brain.display = 1
end if
end do
cleanUp ()
end proc

Optimizations

The purpose of optimizing the channel thread is to try to leave as much power as possible for the
graphical engine. Indeed, displaying frames requires a lot of processing power, especially when
the pictures must be stretched. The optimizations I will present below helped in achieving this
purpose so that the channels processing needs are stuck to the processing power needed to

decompress the MPEG4 frames.

Copyright © 2006 — Yohan LAUNAY

NetMultiPlayer Multi-Threaded Video Rendering P. 13/33

E Memory Pool

The channel has a specific feature which is to keep track of the last 10 seconds of video in
memory so that the user can go backward and pause the stream at any time. The frames are stored
in a FIFO buffer. When the stream is in pause, the new frames are dropped and the buffer is
frozen so that the user can walk through it. There are several ways to program such features
nevertheless I decided to implement a memory pool. A common way would be to create a new
buffer every time a new frame is fetched from the network and queue it in the FIFO. This method
is not recommended as each frame is around a 1Mo large and allocating (and freeing) megabytes
of memory 25 times per second multiplied by the number of active channels is not really feasible.
Concerning the memory issue, such feature can only be activated when only a few channels are

running on screen (less than four).

To overcome the memory allocation time overhead, I have implemented a memory pool. A
memory pool is a large chunk of memory (several megabytes), allocated at the creation of the
channel, once and for all (until destruction), and distributing pointers to specific slots in the pool.
Basically it is a sort of array with variable cells’ addresses. I added another feature to it which is
that it is handling the FIFO directly in it by moving the pointers around instead of moving
megabytes of data (memcopy). So the memory management and frame management are done at

the same time.

This optimization decreased the amount of resources needed by a channel to process its data

leaving more power to the graphical engine to perform channel’s display.

Copyright © 2006 — Yohan LAUNAY

NetMultiPlayer Multi-Threaded Video Rendering P. 14/33

/// memory pool class
class MemoryPool

{

unsigned char * pool ; /// pool pointer
unsigned int block size ; /// data block size
unsigned int block count ; /// number of blocks
public

/// pool constructor
MemoryPool (unsigned int pblock count=1, unsigned int pblock size=1l)
:pool (0),block size (pblock size),block count (pblock count)
{
if(block size > 0 && block count > 0)
pool = new unsigned char[block size *block count];

}

/// pool destructor
~MemoryPool ()
{
if(pool)
delete [] pool ;
}

/// block size getter
unsigned int block size(void)const
{

return block size ;

}

/// block count getter
unsigned int block count (void)const
{

return block count ;

}

/// get specific block
unsigned char * getBlock (unsigned int block position)
{
return (block position >= block count ? 0
(pool +block position*block size));

}

/// get specific block
unsigned char * getBlock (unsigned int block position)const
{
return (block position >= block count ? 0
(pool +block position*block size));

Copyright © 2006 — Yohan LAUNAY

NetMultiPlayer Multi-Threaded Video Rendering P. 15/33

B Display Flags

There are different ways of designing the system’s core to display a channel’s picture. The first
way | was taking was that, every time the channel was ready to display, it was creating a copy of
its picture buffer and sent it to the core. This design was not really resources consuming so I had
to review it (see Memory Pool). Instead, when a channel is ready to display a picture it simply
sends a message to the core. The core, when ready to display, the channel will requires an access

to the channel’s current picture buffer (mutex) and display it.

The message sent is simply the ID of the channel and the type of picture the channel want to be
displayed (connection, error or normal picture). The core collects the messages in a queue that it

cleans every time all the requesting channels have been displayed.

Such method shaved the copying time and the core was sure that it was always obtaining the last
picture in the channel. Another advantage is that the core can “force” a channel’s display at
anytime, requesting the current picture buffer. This method is also interesting when considering
the backward/pause/forward features. Indeed, the channel’s just has to provide a different buffer
(changing the pointer address) to the core. By doing so, I am suppressing most of the buffers in

the display chain.

Copyright © 2006 — Yohan LAUNAY

NetMultiPlayer Multi-Threaded Video Rendering P.16/33

Graphical Engine

Presentation & Architecture

OpenGLUT

OpenGL itself is just the API to interact with the graphic card. To add more features to it, the
OpenGL programmers have created GLUT. GLUT provides an API for window programming as
well as OpenGL shortcuts. Nevertheless, the features of GLUT were not sufficient for me.
Indeed, they are game-oriented. I have found a super-library called OpenGLUT which adds more
features to GLUT and OpenGL. (N.B.: there also exists an OpenGLEAN library superseding the
OpenGLUT capabilities. But OpenGLUT was sufficient for me).

Chain of Command

The widgets are organized in both horizontal and vertical architecture. This means that they have
parents and children but are also gathered in containers. When a user event occurs (mouse
motion, click, key pressed, etc.), the event is passed to the first widget of the list which either
process it or pass it to its children. In the case of horizontal architecture, the event is passed to the
widgets in its area (coordinates of the mouse). If no coordinates are specified, the event is passed

to all the widgets stored horizontally.

Message Pump

The graphical engine functions in a thread. As such, it must follow the rules of the Multi-threaded
programming guide described above. Furthermore, we have to consider that OpenGL requires
specific programming design to function properly in multi-threaded environment. Each command
issued to OpenGL is stored in the graphical card. Once we are ready to perform the rendering, we
can “flush” the command queue to have our commands executed. OpenGL works with rendering
contexts which are not thread safe. Each thread must render in different contexts or the
programmer must design a specific architecture to allow multiple threads to interact with another
thread’s context. I chose to create a message pump, exactly like the GUI. In fact, the OpenGL

thread owns the rendering context and all other threads (and associated cores) can only queue

Copyright © 2006 — Yohan LAUNAY

NetMultiPlayer Multi-Threaded Video Rendering P.17/33

messages which will be processed by the main thread’s message pump. We have commands for

screen clearing, channel display, channel creation/destruction, etc.

GTK Interaction

I had to make OpenGL and GTK interact so that I don’t have to program a whole GUI system in
OpenGL. To do so, I went into the code of GTK to find out how the message pump was working
so that I could simulate it in the OpenGL thread. Basically, at each loop (30 times per second),
OpenGL is calling, before rendering, the GTK message pump for a limited time to allow the
windows to be displayed and refreshed. The limited time is mandatory as while a user is pressing
a mouse button, the button-pressed event is sent to the message pump, giving no rest for the other

threads. Limiting the time allows the pump to quit so that we can render pictures.

Singletons
The singletons are classes that must be created only once during the entire life of the program.
All theses classes are gathered in a Singletons class which returns a reference to it through

getters.

Facade

The fagade is the external interface of a module for the other modules. It is a pure abstract class.

The facade must contain all the useful functions that external modules can need.

Controller

The controller is derived from the fagade class. It is the core of the module. Each controller

should be associated with a thread (cf. Multi-Threaded Programming Rules).
Widget Architecture

In this section we will describe the architecture of widgets I have developed to perform the

graphical rendering of the video channel’s pictures.

Copyright © 2006 — Yohan LAUNAY

NetMultiPlayer Multi-Threaded Video Rendering P. 18/33

B Widget

The widget is the basic element of the graphical engine. It is an abstract class that other graphical
elements must derive from to be considered in the rendering process.

Each widget is identified with an id provided in the constructor, as well as graphical utilities like
size, coordinates, color. The widget also has a link with its parent widget (if any). This allows the
programmer to create hierarchies of widgets and can be used for a chain of command, passing
commands that you don’t process to your parents. The widget provides a function isVisible to
determine whether it should be displayed or not. This isVisible function only concern the current
widget not the parents or children. The size parameter allows the graphical engine to resize the

widget when needed.

typedef std::list<unsigned int> widgetIdList t;

/// widget selection type

enum eSelectionType

{
eselection left,
eselection right,

}i

/// graphical widget
class Widget({

protected:
/// viewport
static const Rectangle * viewport ;

unsigned int id ;
Size size ;
Coordinates coords ;
Color color ;

Widget * parent ;

public:

/// link with the viewport
static void link (const Rectangle * viewport);

/// ctor

Widget (unsigned int id=1,
const Coordinatesé& coords=Coordinates(),
const Size& size=Size(),
const Coloré& color=Color());

/// dtor
virtual ~Widget () ;

/// id getter
unsigned int getId(void)const{ return id ; }

Copyright © 2006 — Yohan LAUNAY

NetMultiPlayer Multi-Threaded Video Rendering P.19/33

/// get complete id (including parents')
void getFullld(widgetIdList té& id)const;

/// size setter/getter
virtual void setSize(const Sizeé& size){ size = size; }
const Size& getSize(void)const{ return size ; }

/// coords setter/getter
virtual void setCoordinates (const Coordinatesé& coords)
{ coords = coords; }

const Coordinates& getCoordinates (void)const{ return coords ; }

/// get full coordinates
void getFullCoordinates (Coordinates& coords)const;

/// color setter/getter
void setColor (const Color& color){ color = color; }
const Color& getColor (void)const{ return color ; }

/// set widget's parent
void setParent (Widget* parent){ parent = parent; }

/// draw
virtual void draw (bool selectionRendering) ;

/// is widget visible
virtual bool isVisible (void)const;

/// this widget has been selected

virtual void selected(widgetIdList t& selection,
eSelectionType selection type);

/// get widget selection rectangle
virtual Rectangle getRectangle (void)const = 0;

protected:

/// draw
virtual void draw(bool selectionRendering)=0;

/// update widget
virtual void _ update (void);

/// this widget has been selected
virtual void selected(eSelectionType selection type);

/// begin drawing
virtual void beginDraw (bool selectionRendering) ;

/// end drawing
virtual void endDraw (bool selectionRendering);

/// translate if needed
virtual void _ translate(void);

Copyright © 2006 — Yohan LAUNAY

NetMultiPlayer Multi-Threaded Video Rendering P. 20/33

/// draw ourself if needed
virtual void _ selfDraw(bool selectionRendering);

private:
/// forbidden operator
Widget & operator=(const Widgeté& widget) ;

I 8

B Widget Container
A widget container, as the name suggests it, contains other widgets. It allows multiple widgets to

be grouped together in a horizontal architecture.

typedef std::list<Widget*> widgetList t;
class WidgetContainer: public Widget{
protected:
widgetList t widgets ;
public:
/// ctor
WidgetContainer (unsigned int id=1,

const Coordinatesé& coords=Coordinates|(),
const Size& size=Size());

/// dtor
virtual ~WidgetContainer () ;

/// draw
virtual void draw (bool selectionRendering) ;

/// get selection rectangle
virtual Rectangle getRectangle (void)const;

/// is widget visible
virtual bool isVisible (void)const;

/// this widget has been selected
virtual void selected(widgetIdList t& selection,
eSelectionType selection type);

/// add a child widget
virtual void addWidget (Widget * widget) ;
protected:

/// draw
virtual void _ draw(bool selectionRendering);

/// draw contained widgets
virtual void drawWidgets (bool selectionRendering);

Copyright © 2006 — Yohan LAUNAY

NetMultiPlayer Multi-Threaded Video Rendering P.21/33

private:
/// forbidden operator
WidgetContainer & operator=(const WidgetContainer& container);

}i

B Extended Widget Container

The extended widget container is an array of widgets adapting the size of the widgets to fit the

array cell’s size.

/// overlay of widgets
class WidgetContainerEx: public WidgetContainer

{

protected:
Rectangle rect ;
unsigned int cell countX ;
unsigned int cell countY ;
Size cell size ;
float marginX , marginY ;
Rectangle widget rect ;
float content deviation ;
bool translating ;
public:
/// ctor

WidgetContainerEx (unsigned int id=1,
const Rectangle& rect=Rectangle(),
unsigned int displayX = 1,
unsigned int displayY = 1,
float marginX = 0.0f,
float marginY = 0.0f,
const Color& color=Color()):;

/// dtor

virtual ~WidgetContainerEx () ;

/// get selection rectangle
virtual Rectangle getRectangle (void)const;

/// add a child widget
virtual void addWidget (Widget * widget) ;

/// draw
virtual void draw (bool selectionRendering) ;

protected:

/// draw
virtual void _ draw(bool selectionRendering);

/// draw contained widgets
virtual void _ drawWidgets (bool selectionRendering);

Copyright © 2006 — Yohan LAUNAY

NetMultiPlayer Multi-Threaded Video Rendering P.22/33

/// update
virtual void update(void);
/// this widget has been selected
virtual void selected(eSelectionType selection type);
private:
/// forbidden operator
WidgetContainerEx & operator=(const WidgetContainerEx& container) ;
};
B Texture

Data structure to represent the textures.

/// Texture class

struct Texture

{
int width, height;
unsigned char * rgb data;
std::string label;

Texture (int w=0, int h=0,
unsigned char * data=0,
const std::string& label="")
:width (w),height (h), rgb data(data),label(label) {}

~Texture ()
{ if(rgb data) delete [] rgb data; }

bool isValid(void)const
{ return width>0 && height>0 && rgb data!=0; }

private:
//—*** forbidden operators ***-//
Texture& operator=(const Textureé&) ;
Texture (const Textureé&) ;

9

B Texture Register
The texture register is a class collecting all the textures used by the program. It is in charge of
loading them from files and managing their ids. For a complete description of the Texture

Register see Optimization. Texture Register.

typedef unsigned int texturelId t;

/// texture in register
class RegisteredTexture

{

private:
unsigned int users_count ;
textureld t texture id ;

Copyright © 2006 — Yohan LAUNAY

NetMultiPlayer Multi-Threaded Video Rendering

P. 23/33

}i

public:

/// generate a texture
static RegisteredTexture * generate (void);

/// dtor
~RegisteredTexture () ;

/// texture id getter
textureld t getTextureld(void)const
{ return texture id ; }

/// users count getter
unsigned int getUsersCount (void)const
{ return users count ; }

/// register a new user for this texture
void registerUser (void)
{ users count ++; }

/// unregister a user for this texture [true=no more users]

void unregisterUser (void)
{ if(users count) users count --; }

private:
//-*** forbidden operators ***-//
RegisteredTexture () ;

RegisteredTexture& operator=(const RegisteredTexture&) ;

RegisteredTexture (const RegisteredTexture&) ;

/// Textures handler
class TextureRegister/{

common: :utils::ControllerDB<std::string,RegisteredTexture> textures ;

public:

/// ctor
TextureRegister () ;

/// dtor
virtual ~TextureRegister () ;

/// is texture registered
bool isRegistered(const std::stringé& name)const;

/// unregister a texture
void unregisterTexture (const std::string& name);

/// register a new texture
bool registerTexture (const std::stringé& name,
const Size& pic size);

/// update texture data
void updateTexture (const std::string& name,

Copyright © 2006 — Yohan LAUNAY

NetMultiPlayer Multi-Threaded Video Rendering P. 24/33

const Texture& texture);

/// get texture id
textureld t getTexture (const std::string& name);

/// convert picture size to texture size
static Size toTextureSize (const Size& pic_size);

private:

/// generate a new texture
static textureld t generateTexture (void);

/// release a texture
static void _ releaseTexture (textureld t id);

/// get texture max size
static int getMaxTextureSize (void);

/// get Texture Size
static int getTextureSize (int size);

B Textured Widget
The textured widget represents the widget able to display a texture. It is linked to a texture

register to be able to manipulate ids instead of strings or data pointers.

typedef unsigned int displayListId t;

/// Widget handling textures
class WidgetTexture: public Widget
{

bool init ;
protected:
/// texture register
static TextureRegister * register ;

std::string name ;

Size picture size ;
Size channel size ;

displaylListId t display list id ;
public:

/// link with a texture register
static void link (TextureRegister* regq);

Copyright © 2006 — Yohan LAUNAY

NetMultiPlayer Multi-Threaded Video Rendering P. 25/33

}i

/// ctor
WidgetTexture (const std::stringé& name,
bool is file,
const Size& channel size,
unsigned int id=1,
const Coordinatesé& coords=Coordinates(),
float alpha = 1.0f);

/// ctor 2
WidgetTexture (const std::string& name,
const Sizeé& picture size,
const Size& channel size,
unsigned int id=1,
const Coordinatesé& coords=Coordinates(),
float alpha = 1.0f);

/// overload size setter
virtual void setSize (const Sizeé& size);

/// dtor
virtual ~WidgetTexture () ;

/// get widget selection rectangle
virtual Rectangle getRectangle (void)const;

/// update texture data
virtual void updateTexture (const Texture& texture);

protected:

/// draw
virtual void _ draw(bool selectionRendering);

/// this widget has been selected
virtual void selected(eSelectionType selection type);

private:

/// init texture and display lists
void init (void);

/// (re)init the display list
void initDisplayList (void);

/// (re)create the display list
void createDisplayList (void) ;

Copyright © 2006 — Yohan LAUNAY

NetMultiPlayer Multi-Threaded Video Rendering P. 26/33

Optimizations

B Texture Register

To save space and increase rendering speed, I have created a texture register. The texture register
manages all the textures used by the program and allows the widgets to share the same textures.
The register is in charge of allocating/freeing the memory and loading pictures if needed. The
widgets just need to use a texture id instead of having to manage the texture data directly. Most of

the textures are also charged in the graphic card memory.

B Texture Mapping and Sub-Textural rendering

In the video-game industry, the textures are loaded once and for all in the graphic card. In the
case of our program, the textures are refreshed 25 times per second. This means that, 25 times per
second, we need to transfer the new texture data to the graphic card. There are different ways of
doing so but the OpenGL programming guide suggest that we use a function replacing the picture
by parts instead of replacing the whole picture at once. It seems to have decreased the data

transfer overhead.

B Display Lists

OpenGL has a feature called Display Lists which allows the pre-compilation of graphical
instructions. These instructions are optimized, compiled and placed in the graphical card. Instead
of having to call these instructions every time with the same parameters, one just calls the list.
The fact that these lists are compiled, optimized and stored in the graphical card significantly
increases the speed of execution. In this program, I have used display lists for texture rendering

purpose. The textures addresses and size do not change once the channel has been created.
B On Demand Display

The channels are only displayed whenever they as for it. The graphical engine thread doesn’t

redraw all the channels unless it is absolutely necessary.

Copyright © 2006 — Yohan LAUNAY

Bujns : sweuy

{Janoaxay
Buws © ()BuLISol+
[00G : {JpIEASH

AVNNVT UuBYox — 9007 © IysriLdo)

{LPUELILIDOC) | PUBLLILLIDTD SRIUSE) B]MIaxEs
{spuswicssanand +

[AUELALCTE) | pLID sanua)puewonysnd 4
{Medsiguur -

[lonp+

{ o]

JAES . JanEIal o

S - L SpUBLILIOD-
<PUBLULIDT=]S]| | SPUBLULUDDS
fuo) peubisun ; “awely 1se)-

ABUD paubisun @ T sEd joysusBDE-
[[aTuTw I =TT =TT N T

Ju : TyEiay-

T

IR I Y

Bus | 7B Ao

Ja||[oauody

Y wenm

b

fau s BEy Spaos) P sjuos jez g s og e+

{Buns | eweu 8l SUos N0YSUSaES

(k]

[e

apeaey

9.1MJINIYIIY [eIoUd)

€E/LT°d

SuLISpUY 03PIA POPEITYL-BINIA

I2ARTITAITNNISON

{Jelepdn g

{1009 © |BA BEUUS BIEI0)
1004 : (JBunEIeys)+
{jooq : oA sanus)ysnd.
1004 : {)paysngsi+|

Wi pauissun T peeds Buneoug|
Je0)) : Ta|fueg

az|g T snpesg|

|oog : “BunEolg

_loog : "paysndg

sor0g) T peseep oo

Jojen | paysnd ooy

AVNNVT UuBYox — 9007 © IysriLdo)

02T AIENCO (|
i “IEE.SH__.B&
afueney : 10am

1E0|) ; _AUEIELLY
ol Tyubieugd
azg ez (R

<jabpy=1s) : TSH0IEI008p,

——

[i=Bpyp : 196pm sanaeBonppe:]

<ebpin=1sy SRk

{asrpasiBauny]
(Lesrpasibay]

) pi aunpxa)|
U1 - TIUNOD” SkEEN-

*

L

{aunyxa) * sanyxa) aaujus 'Buins | awed sanualainge | slepdnsg

eog ; (815 ; szjs oid apaus ‘Hus | aweu spnualanxe eS|

i (Bus @ aweu sgaus)alnyxe | ahs)

(Buwys : awey ssaujus jainixa | 1aysiBaiun
[2oq : (Buws ; sweu aanus)pasEsiBays!+

Buns ;T ewELgg

sasbeyaina) | sesiba 4

.

* B215 : podwen #
186 - ualedg)

10/07) © JopPag
3 82)3 : BzISH|

<aunis | paseisiBay jUl-ge|e Lo | T sanxa)

{munxa] : @inpxe) eauue ek | s1epdn+
TEshayeInYe] | Jesioe) seajaE] J0) ¥
|75 1T azs PUUBYDY |
azig 1 "azie aumoidig M |

|

|

|
4SBSNH

|

|

UL IUNGS SHESNH
ey paubisun : eeps
azIg | 8zIsY

INIINIYIIY 195PIM |

£¢/8C°d

SuLISpUY 03PIA POPEITYL-BINIA

I2ARTITAITNNISON

AVNNVT UuBYox — 9007 © IysriLdo)

()/dnuesya | dois

lan) = Aejdsip

{eamaid Adoo
‘any = payoo)” aunyad
| #5181 = payoo] sumaid

Kejdsig
sy

{lweam | angy = payoo| aimod

gD 104 (Jdnuesjo | dois

Buniepm

asjey = payotol eimad

asiej=Ae[dsip
Haumod)Aejdsip
lary = payooy aungaid
| s|E1 = payao] aumoid

Jayng Ui ainjord pafedsiqg

(em
| &gy = Jaygng ul edngoid

pBIBLLOD asjej = payao| enjoid |

pajlauuo

pajoauuoasiq

(hoeuuog | @s|e) = pajpeuunD

$J 4104

Aejdsip

B L R A A s M A . .=

‘asjgy = 4oue (i | Bunepm
{hosuuoa | as|e) = pelaeULOD '8s|B) = PEJDBLLOD o
| enn = Jona
/ (g |
(hem | angy = paxoo] sumod (em | esie) = Aerdsip
Jeuueyg uesg

uonoeJajuy wom:Q&hU ¥» sppuuey) =m

€€/67 °d SurIpURY 03PIA PIPBIIYL-BINIA I0AeTdTATNNAON

NetMultiPlayer Multi-Threaded Video Rendering P. 30/33

Algorithm & Future Plans

/// graphic thread
procedure GRAPHICS::graphic thread:
init ()
while CORE.stop = 0 do
/// process the commands list if needed
if commands list != empty then
processCommands (commands list) ;
end if

/// GTK message pump
GUI.process gtk events();

if CORE.isRenderingEnabled() then
CORE.render scene(); // allow the core to render the scene
flush gl commands(); // execute all GL commands

end if

sleep () ;
end do
cleanUp ()
end proc

/// GKT message pump
procedure GUI::process_gtk events:
loop time = GetCurrentTime () // time reference
while gtk events pending ()
&& GetCurrentTime () - loop time < 20 do //don’t loop forever
gtk process events();
end do
end proc

/// scene rendering
procedure CORE::render scene:
[...]
for each channel name in display list do
CHANNELS.displayChannel (channel name) ;
end do
end proc

/// channel’s rendering

procedure CHANNELS::displayChannel (channel name) :
channels list.lock();
channel = channels list.getChannel (channel name) ;
channel.display () ;
channels list.unlock();

end proc

/// channel’s rendering

procedure CHANNEL: :display:
lockPicture () ;
GRAPHICS.displayChannel (this.id, this.buffer);
unlockPicture () ;

end proc

Copyright © 2006 — Yohan LAUNAY

NetMultiPlayer Multi-Threaded Video Rendering P.31/33

/// channel’s display

procedure GRAPHICS::displayChannel (id,picture)
channel = getChannel (id) ;
channel .updateTexture (picture) ;

end proc

We have four modules interacting here:
GRAPHICS: graphical engine
CHANNELS: video channels

GUI: GTK GUI management

CORE: handle session information and link modules together.

First, the GRAPHICS ask the core to render the scene. The CORE will first render everything
related to a Multivision (multiple cameras on the screen, cameras information, menus, etc.).
Then, the CORE will loop through the list of channels ready to be displayed (registered as ready)
and ask the CHANNELS module to display them. The CHANNELS module will find each
corresponding channel and ask it to display its buffer. The channel will ask the GRAPHICS
module to update its picture data. The GRAPHICS module will find the corresponding graphics

channel and update the texture.

We see in this algorithm that each module is handling its own mutex and data. The GRAPHICS

module doesn’t directly access to the channel’s buffer.

A modification of the above algorithm would be to record the channel’s desire to be displayed
directly in the GRAPHICS. The GRAPHICS module would then find the corresponding graphics
channels and directly ask them to be displayed. Moreover, this allows the addition of decorators
and other extra widgets to be displayed at the exact same time as we know which channel to
target and when. The purpose is to progressively get rid of the CORE module and only have the

other modules to interact together.

Copyright © 2006 — Yohan LAUNAY

ssa90.d Bunspusy
:ubug (eaydern

BINIHI0TUN m
BINIIgRO] m

I

I

I
1

AVNNVT UuBYox — 9007 © IysriLdo)

saiydesnyaoun m

b

-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

aNEuE Y. SEuuEy

TE0nUGL), SlauUEy

——————————— e =]

BIUBATHISESID0N

duwndafessappo

SPUBLLALZSSE00) 4 m

TR[ONU0 Y. e

| T ittt —
| 000U
IIIIIIIIIII —3
SIBUUBYONRCTUN
|||||||||||| |¢
T |||||||||||| e — —— — — — — — — — e e = e e e e e e e e e e e] e ——
{mumad g Aepdsp ’ (aumpidjainpe | sjpdn
Aedsp
SEUUELHIaT A
iqilEuLEyIEpUSY
aU0oo0T .\/\\v
ausoglapuay
IIIIIIIIIIIIIIIIIIIIIIIIIII —
sy
paigeugBuUspUaYs!
|
|
IIIIIIIIIIIII —

TBOIIeT NS

t£e/te'd

SuLISpUY 03PIA POPEITYL-BINIA

I2ARTITAITNNISON

NetMultiPlayer Multi-Threaded Video Rendering P. 33/33

B OpenGL Game Mode

The current graphical engine is still relying on a GTK layer to handle the GUI (windows, buttons,
etc.). This forces OpenGL to run in a windowed mode (even if it is fullscreen). Currently, the
GLUT fullscreen mode is basically made by a window covering the entire screen with off-screen
borders. Moreover, the graphical engine loop runs the GTK message pump for every loop so that

GTK messages are processed at the same speed as the graphical engine.

The downside of this dual GTK/OpenGL design is that OpenGL capabilities are limited due to
the required interaction with the operating system in window mode. Indeed, GLUT windowed

mode will have to process all Windows or Linux messages.

In OpenGL there is a mode, called Game Mode, which creates a direct link between the graphical
card and the screen. This mode is mostly used by game makers. This mode is way faster than the
windowed mode as OpenGL/GLUT disables all the window management and other related
features, only focusing on rendering. This mode is really interesting but it prevents the use of a
GTK-like GUI as windows cannot be drawn on screen and interacts with the OS anymore. Using
such mode requires the programmer to design a complete OpenGL GUI which can take a lot of

time.

Copyright © 2006 — Yohan LAUNAY

