
Mapping the Railway formalism onto
different domains

Zhong Xi Lu

Promoter: Hans Vangheluwe

Supervisor: Simon Van Mierlo

Overview

2

1. Abstract and Concrete Syntax

3

Railway Formalism

• Tracks

• Straight

• Turnout

• Junction

• Crossing

• Station

• Trains

• Lights

4

Based on: Railway Operation and Control by Joern Pachl

Abstract Syntax

5

Concrete Syntax

6

2. Operational Semantics

7

Train Schedule Formalism

8

Schedule

9

3. Safety Analysis

10

Mapping to Petri-nets

11

Links between
tracks

Transitions

Tracks Places

Lights
"Red/Green"

places

End station
End

place/transition

LoLA

• A Low Level Petri net Analyzer

• Command line tool

• Specify custom properties through CTL formulas

(Computation Tree Logic)

12

Safety Properties

• Deadlock: EF DEADLOCK

• Reachability: EF T > 0

• Safety: AG T ≤ 1

• Lights Invariant: AG (G = 1 OR R = 1)

13

Custom Properties

• New formalism to model properties

• Based on CTL

• Possible to reference particular tracks

14

Interfaces

• Use ID's for traceability ($atompmId)

• Generate LoLA petri net file

• Call LoLA via command

• Read results from files

15

Analyze

UpdateModel

Replay

• Replay trace of counterexample

• Trace generated by LoLA (fired transitions)

• Transformation rules (similar to operational semantics)

• Based on this trace instead of train schedule

16

Schedule

17

4. Queueing Analysis

18

DEVS Model

• Using PythonPDEVS

• Atomic models:

• RailwaySegment

• Join

• Split

• Crossing

• Generator

• Collector

19

DEVS Model Example

20

Source: http://msdl.cs.mcgill.ca/people/hv/teaching/MoSIS/assignments/DEVS

http://msdl.cs.mcgill.ca/people/hv/teaching/MoSIS/assignments/DEVS

Mapping to DEVS

21

End station Collector

Start station Generator

Other tracks correspond to atomic DEVS
model (e.g. Junction to Join)

Links between tracks become channels
(connect ports)

Properties

• Average transit time of schedule

• Throughput of track

• Average transit time of track

22

Interfaces

• Use ID's for traceability ($atompmId)

• Generate python PythonPDEVS file

• Call PythonPDEVS to run the simulation

• Read results from file

23

Simulate

UpdateModel

Schedule

24

5. Visualization

25

Model Generation

• Using Unity

• Small (xml) file to represent railway network

• Instantiate object in Unity

26

Simulation

• PythonPDEVS as simulator

• Custom tracer to create tracefile

• Read tracefile to resimulate model

• Gameloop:

27

Update():
while next event exists:

if timestamp of next event <= time since startup:
simulate next event

else:
break

6. Live Visualization and Interaction

28

Live Simulation

• PythonPDEVS as simulator

• Custom tracer to create tracefile send messages live to

Unity (through sockets)

• Same messages as in tracefile:

• No "gameloop" anymore

29

User interaction

• Tweak parameters during simulation

• Send message back to simulator from Unity

• Which model and what parameters to update

• Message interpreted as an external/user event in DEVS

30

