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Overview
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1. Abstract and Concrete Syntax
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Railway Formalism

• Tracks

• Straight

• Turnout

• Junction

• Crossing

• Station

• Trains

• Lights
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Based on: Railway Operation and Control by Joern Pachl



Abstract Syntax
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Concrete Syntax
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2. Operational Semantics
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Train Schedule Formalism
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Schedule
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3. Safety Analysis
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Mapping to Petri-nets
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LoLA

• A Low Level Petri net Analyzer

• Command line tool

• Specify custom properties through CTL formulas 

(Computation Tree Logic)
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Safety Properties

• Deadlock: EF DEADLOCK

• Reachability: EF T > 0

• Safety: AG T ≤ 1

• Lights Invariant: AG (G = 1 OR R = 1)
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Custom Properties

• New formalism to model properties

• Based on CTL

• Possible to reference particular tracks
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Interfaces

• Use ID's for traceability ($atompmId)

• Generate LoLA petri net file

• Call LoLA via command

• Read results from files
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Analyze

UpdateModel



Replay

• Replay trace of counterexample

• Trace generated by LoLA (fired transitions)

• Transformation rules (similar to operational semantics)

• Based on this trace instead of train schedule
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Schedule
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4. Queueing Analysis
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DEVS Model

• Using PythonPDEVS

• Atomic models:

• RailwaySegment

• Join

• Split

• Crossing

• Generator

• Collector
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DEVS Model Example
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Source: http://msdl.cs.mcgill.ca/people/hv/teaching/MoSIS/assignments/DEVS

http://msdl.cs.mcgill.ca/people/hv/teaching/MoSIS/assignments/DEVS


Mapping to DEVS
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End station Collector

Start station Generator

Other tracks correspond to atomic DEVS 
model (e.g. Junction to Join)

Links between tracks become channels 
(connect ports)



Properties

• Average transit time of schedule

• Throughput of track

• Average transit time of track
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Interfaces

• Use ID's for traceability ($atompmId)

• Generate python PythonPDEVS file

• Call PythonPDEVS to run the simulation

• Read results from file
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Simulate

UpdateModel



Schedule

24



5. Visualization
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Model Generation

• Using Unity

• Small (xml) file to represent railway network

• Instantiate object in Unity
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Simulation

• PythonPDEVS as simulator

• Custom tracer to create tracefile

• Read tracefile to resimulate model

• Gameloop:
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Update():
while next event exists:

if timestamp of next event <= time since startup:
simulate next event

else:
break



6. Live Visualization and Interaction
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Live Simulation

• PythonPDEVS as simulator

• Custom tracer to create tracefile send messages live to 

Unity (through sockets)

• Same messages as in tracefile:

• No "gameloop" anymore
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User interaction

• Tweak parameters during simulation

• Send message back to simulator from Unity

• Which model and what parameters to update

• Message interpreted as an external/user event in DEVS
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