
Mapping the Railway formalism onto different domains

Zhong Xi Lu

Department of Mathematics
and Computer Science

University of Antwerp, Belgium

zhong-xi.lu@student.uantwerpen.be

July 2019

1 Introduction

Modelling is a powerful technique which allows us to work on the right abstraction level and
avoid accidental complexity. Nowadays, we have a lot of different formalisms at our disposal, so
it’s necessary to choose the most appropriate language when building a model. Aside from that,
it’s also possible to define a mapping from one formalism to another, so that we can expose the
functionality of one another.

This paper will revolve around the Railway formalism, which is mostly based on Railway
Operation and Control [1] by Joern Pachl and some of the assignments [2] given in the Model
Driven Engineering course at the University of Antwerp. This formalism is first modelled in the
tool AToMPM [3] to create a basic visual modelling environment, here we can also simulate a
model by defining its operational semantics. To analyze if a model satisfies certain properties,
we will map it to petri-nets, where we can do a reachability, coverability, deadlock, ... analysis.
Next to that, we can also map it to Discrete Event System Specifications (DEVS), which is more
appropriate when it comes to queueing, throughput, ... analysis. Finally, to visualize and animate
the model, we make use of Unity [4], here we also allow the user to modify the model. In the
appendix (section 9), a few examples are worked out with a few analyses for illustration.

In figure 1, a small overview is given with the different formalisms and mappings in between
them.

Figure 1: Overview of the different formalisms and mappings

1

mailto:zhong-xi.lu@student.uantwerpen.be

2 Railway Formalism

As earlier mentioned, the book Railway Operation and Control by Joern Pachl [1] was a starting
point for this Railway formalism. However, the language used in that book is heavily simplified
to make the steps throughout this project much easier. On top of that, the focus mainly lies on
the railway (that consists of different segments) and not much on scheduling, signaling, ... This
section will give a brief introduction on this simplified Railway formalism.

At its core, a model consists of multiple segments which can be connected to each other to
form a railway network. These segments also have a signalling light equipped which will inform
an approaching train about its current state: green light means that there’s no train represent
on the segment and red light means there is. The different types of segments supported by this
formalism can be found in table 1.

Name: Symbol: Description:

Straight
a basic segment that connects and is connected
by one other segment

Turnout
a segment with internally a switch, which can be
used to control its outgoing rail (either going
straight or make a turn)

Junction
similar to a turnout, but instead of controlling its
outgoing rail, it will control the ingoing rail
(trains can arrive straight or in a turn)

Crossing
a combination of a turnout and a junction, has two
switches available, allowing to control both the
incoming and outgoing rails

Station a segments with a train station next to it

Table 1: All the different types of segments supported by the Railway formalism

3 Abstract and Concrete Syntax

Now that we have defined the initial concepts of our formalism, we can start by building the
syntax. This is split in two parts, namely the abstract and concrete syntax. For more information
on this topic, I refer to AToMPM ’s documentation [5].

2

3.1 Abstract Syntax

Figure 2: Abstract syntax of the Railway formalism

Since we deal with multiple types of segments, an inheritance tree would be suitable for this
problem. At the root, we have an abstract class Track, from here on, we have three (abstract)
subclasses:

• BasicTrack: All the most basic tracks that have at most one incoming and outgoing track.

• Join: A track where two incoming tracks converge, in other words, a junction. It also has
an attribute (inDirection) which tells in which the switch is set.

• Split: A track that has two outgoing tracks. Similar to Join, this also has an attribute
(outDirection) to indicate the current direction of the outgoing track.

To actually connect the tracks to one another, the TrackToTrack link is used, by default
a Track can only connect and be connected by one other track. However, there are of course
segments where this is not the case and where we have to override the existing cardinality constraint
constraint; for example, Joins can have two incoming one’s and Splits two outgoing one’s. This
link also has an extra attribute direction to store to which ”port” it has been connected in case
it’s connected to a junction; for example STRAIGHT means that it is connected to the STRAIGHT

rail of the junction.
Aside from track, we can also create Trains, which is self-explanatory, and Lights that are

used for signalling purposes. These objects can of course be linked and placed on tracks, this is
managed by the TrainOnTrack and LightOnTrack links. Finally, a Clock is explicitly modelled
here as well, this is to keep track of the simulation steps and make the simulation process easier
later on.

3

Note that there are some ”visual” attributes present in the model: position, width and
height. These attributes are mainly used to automatically connect segments to each other when
they are linked. In true nature, this is not the ideal method to store this in the abstract syntax,
but this is just a slight work around to store some visual information. As such, there exists an
abstract base class Positionable to deal with this.

3.2 Concrete Syntax

Figure 3: Concrete syntax of the Railway formalism

Having modelled the abstract syntax, we can now define the icons for our formalism (see figure
3). Most of these notation are based on the one used in the book Railway Operation and Control
by Joern Pachl [1]. Besides that, these icons also change depending on the state; for example, a
junction will show the current direction of the switch (indicated by the arrow). Either way, most
these symbols are pretty straightforward.

4 Operational Semantics

This section will go over the operation semantics of the Railway formalism, i.e. how the whole
system behaves and operates. To model this, we make use of transformation rules, again I refer
to AToMPM ’s documentation [5] for more detail.

4.1 Train Schedule Formalism

Before we implement the rules, a second domain specific language is modelled to define train
schedules (the path it takes from start to end station) as was suggested in the [2] given in the
Model Driven Engineering course [2]. This way, we can easily operate the switches by looking at
the train schedules.

The abstract syntax can be found in figure 4 and the concrete in figure 5. Basically, a schedule
consists of one start station and one ending station. In between are zero or more steps that tell in
which direction the train should move when it encounters a waypoint (turnout or crossing). One
schedule is associated with exactly one train and vice versa.

4

Figure 4: Abstract syntax of the Train Schedule formalism

Figure 5: Concrete syntax of the Train Schedule formalism

5

4.2 Operational Semantics

Figure 6: Schedule for the operational semantics

To explain the semantics, I will go over the MoTif schedule (figure 6):

1. Initialization: Adds signalling lights to all tracks if that wasn’t the case already and it will
place all the trains on their starting station according to their unique train schedule.

2. Set Lights: Set the lights correctly depending on their state; set the light green if there’s no
train present on the track the light is on and red otherwise.

3. Set switches: Set the switches on splits and joins:

• Joins: if a train wants to enter a junction, the control system will set the direction of
the incoming track correctly so that the train can enter. If two trains want to enter, it
will ”randomly” choose one.

• Split: to set the switch for splits, we look at the train schedule of the train that is
currently on this split. This schedule will tell us in which direction we should move.
We then remove that step, indicating it was taken. (see figure 7)

6

Figure 7: Transformation rule for setting switch on splits

4. Move Train: This step will try to move a train to the next segment. There are however
several cases that we have to keep in mind; for example, we can only move if the light on the
next section is green. Most of these cases also verify if the in/out-direction is set correctly,
e.g. a train cannot move to a junction when the switch is not set correctly.

5. Remove Train: Whenever a train reaches its end (station), we will remove it from the model,
so that potential future train can enter this station as well.

6. Train Exists: A simple query rule to check if there are still trains left on any track. This
serves as the end condition and the transformation will halt if there cannot be a train found.

7. Update Clock: Finally, if the TrainExists was successful, we can move to the next simula-
tion cycle: this step will update the clock as well as the step internally of all the trains so
that they are synchronized with the clock.

5 Safety Analysis

Given a model written in our railway formalism, one would also want to do some analysis regarding
its safety, for example if there is a reachable deadlock state. To do all this, we can define a mapping
(using transformation rules) to petri-nets. These nets are highly suitable to these kind of analyses.
In this case specifically, the tool LoLA (a Low Level Petri net Analyzer) [6] will be used to analyze
a given petri-net. The reason LoLA is used, is because, as the name already suggests, it is a
low level analyzer, that way, we can easily ”integrate” it in our transformations just by running
a few commands. Another advantage is that it is possible to specify custom properties through
Computation Tree Logic (CTL) formulas, this will come in handy when we define the safety
properties for our railway network.

7

Figure 8: Schedule for the safety analysis

The full MoTif schedule for the safety analysis can be found in figure 8. First, we initialize the
model so the trains are on the right tracks and the lights are all set correctly. Then we actually
do the petri-net mapping and finally we can analyze the intermediate petri-net with a few LoLA
calls. Note that during this step an intermediate file is created to represent the petri-net, this will
then consequently be used by LoLA to perform the analyses. Lastly, we update the railway model
according to the results.

This section is divided in three parts; section 5.1 will define the mapping itself, section 5.2 will
discuss some ”safety” properties and how we can define those in LoLA and finally, section 5.3 will
go over how we communicate from AToMPM to LoLA and vice versa, i.e. what their interfaces are.

5.1 Mapping

The complete mapping is fairly trivial and can be split in several steps/rules:

• Tracks become places. If one contains a train, the place has a marking value of 1.

• Links between tracks (TrackToTrack) become transitions. Note that when a train goes from
one track to another, it will also look at the places that correspond to the lights (see next
point).

• Lights can be split up in two places: one for the green color and one for the red color. This
will mean that at all time the sum of the tokens of these places will be equal to 1.

• To make sure the petri-net can run forever, we add one additional place for each end station
in a train schedule and one transition that will take all the tokens in those places and put
them back. This means that if all the trains have reach their end station, this transition can
fire an infinite amount of times.

Combining all these rules, we now have an analyzable petri-net that represents the Railway
formalism.

8

5.2 Analysis

On this intermediate petri-net, we can run several analyzes using LoLA to verify if the model
satisfies a particular property. As a small side note, the way LoLA generally does an analysis is
by building a reachability graph for a given petri-net and then make a search depending on the
property.

5.2.1 Deadlock

A simple property is deadlock; we want to be able to verify if there is a reachable deadlock state
from the start state. If there is any, the user may want to change the initial model to prevent
this from happening. In this context, a deadlock means that it is possible for a train to get stuck
somewhere in the railway network and never get moving again, which is of course not what we
want. This property will also implicitly tell us whether the trains can all reach their end station.

This property is already predefined in LoLA (”EF DEADLOCK”), this simply means if there exists
(E) a path, starting from the initial marking, where it eventually (F) reaches a deadlock state (no
transition is enabled). This condition holds true if a possible deadlock state can be reached.

5.2.2 Reachability

Petri-nets are highly suitable for reachability analysis, more specifically, with this we can verify if
a specific place is reachable from the initial state. In other words, tracks that cannot be reached
by a train (in the initial setup). For this, we make n LoLA calls (n = number of tracks) where we
check each time individually if that track can be reached from the initial marking.

The CTL formula to verify this is ”EF T > 0” (with T the name of the track/place), this
translates to whether it’s possible to reach a state where the marking value of this place is strictly
greater than 0.

5.2.3 Safenty

Since we’re dealing with trains on rails, it’s of course desirable to have that trains cannot crash
into each other, i.e. two trains on one single track. To verify this, we can check if our whole
petri-net is 1-bounded or safe, meaning in every place there cannot be more than one token or on
every track there can be at most one train present.

As a CTL formula, it would be written as ”AG T ≤ 1” (with T the name of the track/place),
here we check if on all paths (A) and globally (G), i.e. every step on this path, the marking of this
place is never greater than 1. Again, we run this property check for every track in our railway
network.

5.2.4 Lights Invariant

In our petri-net mapping, we introduced two places for each signalling light. Implicitly, this means
that only one token can be in those two places combined or else the lights are both green and red
(or neither of them are on). This property will then check if at all time the sum of the tokens of
these two places (of a light) is equal to 1 (invariant).

This invariant we can model as ”AG (G = 1 OR R = 1)” (where G and R stand for the places
that respectively correspond to the green and red light of a track). Similarly to the previous
property, this will make sure that on all paths (A) and globally (G), either there is a token in the
”green” place or one in the ”red” place. Of course, here we do this same call for each track, since
we want to verify this invariant for every light.

5.2.5 Custom Properties

It’s all well and good having these safety properties, but it doesn’t allow much for extensibility
in the sense that we can define our own properties if that’s needed. Hence, we can again define
our own little language that has the ability to model these properties. However, this language is

9

merged into the railway formalism, so we can reference particular tracks and individually check
certain tracks.

This property formalism is heavily based on the CTL language that we pass onto LoLA, so in
the end a user has to know a little bit about this to define a property.

5.3 Interfaces

As slightly mentioned, to be able to call LoLA, we first generate a petri-net file suitable for analysis.
Then we can simply call LoLA via a command and make the necessary property checks. This is
all done in one transformation rule (the Analyze step in figure 8).

When analyzing and generating the results, we want to be able to show them to the user
somehow. The way this is achieved is also through a small model transformation that reads the
(LoLA generated) results in and updates the railway model accordingly. For example, highlight
(and add a few comments about) the path that led to a deadlock state.

Another way of showing these results, is to show a replay of a counterexample if one exists
and is given by LoLA. This replay is of course done through almost the same transformation rules
as the ones in the operational semantics. However, this time we don’t take the train schedules
into account, instead we base the semantics on the generated trace by LoLA. This trace tells us
precisely which actions have been taken (which transitions have been fired), so all that we have
to do, is translate and replay these actions on our railway model.

One important thing to note is when mapping the results (of the analysis) back to our original
model, we need some form of traceability. We can create traces by making use of unique identifiers
for the objects in the railway model and then use the same ones in the petri-net model. This way,
we can correspond a petri-net element to its original element.

6 Queueing Analysis

Another analysis we can perform is queueing analysis, for example, how long it averagely takes
for a train to reach its end station or how long a train has to wait to enter its next segment.
To do this, we create another mapping, this time we map the Railway formalism to Discrete
Event System Specifications (DEVS). Here we can simulate a given DEVS model and retrieve the
necessary information from it. The DEVS library used for this is PythonPDEVS [7].

Figure 9: Schedule for the queueing analysis

10

6.1 DEVS model

Before mapping the Railway elements to DEVS elements, one must first specify the DEVS model.
For instance, we need a DEVS model for a track that describes its behaviour. One such model has
different components, such an internal transition function, states, output function, etc. However,
I did not choose to take this path, instead I already had these models implemented with the
PythonPDEVS library, so I saved myself some time, but ideally one should also model this (in
AToMPM). I will not go into details on the semantics of the DEVS models, but more on how
I implemented these can be found in the DEVS assignment, part of the Modelling of Software-
Intensive Systems course [8].

Figure 10: Example of coupled DEVS model for the Railway formalism [8]

Essentially there are a couple of atomic DEVS, which we can link together to form a coupled
DEVS model. Most of these models actually somewhat correspond to the abstract syntax (figure
2); there are four main atomic models, namely RailwaySegment, Join, Split and Crossing. Most
of these instances also link to in- and out-ports. The in-ports are train in, Q recv and Q rack

and the out-ports train out, Q send and Q rack. What these ports specifically mean, I refer to
the DEVS assignemnt [8]. Note that some of these models can have more ports, depending on
their type; for example, a split will have a train out and train out2 port.

Since we are performing a queueing analysis, we most likely want more than a few trains in
our network. Hence, there is also a Generator DEVS model; this will generate trains following an
inter arrival time distribution. This way, a more in depth analysis can be performed and trains
actually get queued. The railway element that gets mapped to this generator is the Station that
is also the start (station) of a train schedule.

On the other hand, a Collector is also represent. This will simply remove a train object and
store some statistics. Here, the Station that corresponds to an end station of a schedule will get
translated to this collector element.

A small example of how the atomic models connect to each other can be found in figure 10.
At the very first step of the simulation, i.e. at time 0, all the atomic models will enter their initial
state depending on their initial condition. Together with that, it will schedule the next internal
transition based on the time advance function which will tell how long it will take to reach the next
transition depending on the current state. For example, a generator might have the first transition
at time 10 where it will generate a new train. After all these transitions have been scheduled,
the simulator will run until the next transition is enabled, then it will take this transition and
execute the related action code (e.g. calculate a train’s velocity), send some output if necessary
and finally, it will schedule the next transition.

Next to internal transition, external transitions can also occur, this is determined by another
model; for example, when a new train arrives at a segment, it will receive this and handle this
event. During this, it will of course go to a certain state and schedule a new transition. This
continues until the end condition is met (e.g. termination time).

6.2 Mapping

For the mapping, we need to create instances of these aforementioned DEVS models and encapsu-
late them in a coupled DEVS and of course, we use transformation rules yet again to transform our
railway model. Since we based those atomic models on our abstract syntax, the transformation
can easily be done by mapping tracks to their corresponding atomic models and the links between
the tracks (TrackToTrack) become so-called channels which connect to in- and out-ports.

11

6.3 Analysis

Simulating a complete coupled DEVS model with PythonPDEVS will create a detailed trace that
specifically tells us at each point in time what has happened, but to retrieve more information,
we need to add more logic to the models, but this is quite easily done. On top of that, there are
some extra attributes in the abstract model (e.g. segment length, train acceleration, ...), so that
the user can manually (or by script) tweak the settings and try to optimize a given railway model.
In the following small subsections, the few statistics integrated are discussed.

6.3.1 Average Transit Time of a Schedule

In the railway formalism we allowed the user to define the schedule for a particular train, but it
might also be interesting to see if the schedule is actually effective, i.e. getting fast from the start
station to the end station and having to wait minimally. Maybe some schedules are interfering
with each other, i.e. a train has always to wait for another train (some sort of priority), so knowing
the actual transit time can be quite useful. To retrieve this information, we add an extra attribute
to a train, namely the train’s departure time and when a train arrives at its end station (i.e. a
collector), we can subtract the current time with that departure time. At the end of the simulation,
we can take the average of all the transit times to get the final result.

Next to this, we can also show the number of trains that have been generated (at their start
station) and that have arrived to their destination, this can then also tell us whether all the trains
seemingly can drive to their end location.

6.3.2 Throughput and Average Transit Time of a Railway Segment

It might also be interesting to look at an individual segment instead of the complete schedule. In
such manner, we can isolate single tracks and look at their own performance. First, we can record
the time that a train needs to pass through this segment. This implicitly also says whether a train
has to wait a lot while being on this segment. Knowing this, we can try to avoid this by changing
the initial schedule and for instance, take another route.

Secondly, we can also store a track’s throughput, i.e. the percentage that a train is present on
the track. Generally, having a higher throughput is better, but together with the average time to
pass this segment, one might expose some conjunction points in the railway network. For example,
a certain junction has a high throughput which might mean that trains get clustered before that
junction. Additionally, the amount of trains that passed this section is also kept, so we can easily
track the trains.

6.4 Interfaces

Like with the safety analysis, the Analyze step here in the MoTif schedule (figure 9) is responsible
for creating the actual DEVS file (which contains the complete coupled DEVS model) after the
mapping and for calling PythonPDEVS via a command, which will then simulate the DEVS model.

On the other hand, after the simulation has ended, the results are automatically written to a file,
this can then be read by the UpdateModel transformation rule to display the useful information.
Again, we make use of id’s to have backward traceability, so we can precisely relate the results to
a track.

7 Visualization

This whole time we stayed in AToMPM ’s environment, both for creating the railway model and
showing the results of the analyses. In the back-end, we did use some other tools though, such
as LoLA and PythonPDEVS, but in the end we went back to the railway formalism. This section
will go over how we can visualize a railway model in a more user-friendly way by creating a 3D
world in Unity.

12

7.1 Model Generation

The first step is generating all the 3D objects, unfortunately we cannot directly use transformation
rules to transform our model to one written for Unity. Therefor, an intermediate step is taken; I
created a small (xml) file that contains the essential information of the railway network, such as
how the railway is structured or what parameter values are associated with a track. This file can
then be used to instantiate the objects in Unity.

7.2 Simulation

Not only do we want to visualize a model, we also want to see the interactions in the model. To do
this, we simulate the model (in AToMPM) by mapping it to DEVS and the let the PythonPDEVS
simulator do the work. During this simulation, it will create a trace file, telling precisely at each
point in time the dynamics of the system. For this, however, a custom tracer was written to
incorporate additional information about the models.

After the creation of a trace, we can start our ”gameloop” in Unity (Update()); first, we
generate the world by loading the xml file that represented the railway network. Then the Update

function is called each frame (note that we can also use FixedUpdate to get a consistent update).
During this frame, we check the trace if there are any events that occurred in the past, i.e. the
timestamp of the event is less or equal than the time since the startup. If this is the case, we
simulate all these past events, otherwise we just wait for the next frame and repeat the process.
The psuedocode for this gameloop can be found in listing 1. In this manner, we respect the timings
of the simulation. Note that since the whole simulation was already ran, we can easily allow the
user to set a speed up factor for a faster simulation time.

1 Update () :
2 whi le next event e x i s t s :
3 i f timestamp o f next event <= time s i n c e s ta r tup :
4 s imulate next event
5 e l s e :
6 break

Listing 1: Pseudocode Gameloop

Finally, there is also support for live simulation, i.e. visualizing the railway system while it’s
running. This is done by simulating the DEVS model in real time and each time a transition is
taken or an event is occurring, the simulator (or rather the tracer) will then pass a message to
Unity through sockets, which will then parse it and display the results of it. It’s basically the same
as before, but instead of reading the event from a tracefile, we now get these messages live from
the simulator. This also means that we don’t really have a gameloop anymore or have to worry
much about the timestamps since all that is dealt with in the original simulator in PythonPDEVS.
Note that here, we also have to load the world prior to the actual simulation, this means that an
xml must already exist before we can do the live simulation. A small overview of all this is given
in figure 11.

13

Figure 11: Overview of the live simulation and visualization

7.3 User Interaction

Since we support live simulation, it might also be very useful to allow user interaction. By doing
so, a user can easily tweak a few parameters in Unity and immediately see the effect of it. The way
this is achieved is by sending a message back to the DEVS simulator from Unity (again, through
sockets). This message will contain information of which model to update (we can precisely specify
the model with the id), based on this the simulator will relay this message to the appropriate model.
This is then interpreted as an external (or user) event in the DEVS model, meaning that it will
handle this event, go to a (new) state and schedule the next transition. The received message also
stores the parameters with their (new) values, so the model can update its parameters while the
simulation is still running.

8 Future Work

This research project serves as a proof of concept, we created a few mappings starting from a
railway formalism. However during this work, I took many shortcuts that could be improved in
the future; these are some some of things that may need some work:

• The base railway formalism can be extended; for example, to allow the railway formalism to
construct tracks that allow trains to transit in two directions.

• Currently the DEVS model is implemented in PythonPDEVS, but this could of course also
be modelled explicitly and replace the current one. On top of that, the current simulator is
missing some features as well, such as explicit switches on junctions or allowing to bypass a
station.

• It’s possible to add additional properties for both the safety and queueing analysis.

• The visualization in Unity is at this point a little bit sloppy in the sense that the movement
of trains is not really accurately being displayed (trains are not pixel-perfect on tracks). This
could be improved as well as general user-friendliness.

Apart from improving existing translations or models, it is also possible to add more mappings.
For example, one could maybe model the user interaction explicitly in statecharts.

14

9 Conclusion

The whole idea behind this project was to model as much as possible and use the many advantages
modelling offers without coding too much. In this particular case, we used a railway system as our
base formalism and tried to map it onto many different domains. We successfully defined several
mappings with the goal that we can solve the ”problem” there, i.e. some sort of analysis and
then link the results back. As earlier mentioned in the introduction, this way we tackled down the
accidental complexity that programming brings with it and used modelling instead.

References

[1] J. Pachl, Railway Operation and Control. VTD Rail Publishing, 1 ed., 2002.

[2] S. Van Mierlo and H. Vangheluwe, “Assignments domain-specific modelling.” http://msdl.

cs.mcgill.ca/people/hv/teaching/MSBDesign/201516/assignments/, 2015.

[3] “AToMPM homepage.” https://atompm.github.io/.

[4] “Unity homepage.” https://unity3d.com/.

[5] “AToMPM documentation.” https://msdl.uantwerpen.be/documentation/AToMPM/.

[6] K. Schmidt, LoLA: a Low Level Petri net Analyzer, September 2000.

[7] “PythonPDEVS homepage.” http://msdl.cs.mcgill.ca/projects/DEVS/PythonPDEVS.

[8] S. Van Mierlo and H. Vangheluwe, “Devs modelling and simulation.” http://msdl.cs.

mcgill.ca/people/hv/teaching/MoSIS/assignments/DEVS, 2018.

15

http://msdl.cs.mcgill.ca/people/hv/teaching/MSBDesign/201516/assignments/
http://msdl.cs.mcgill.ca/people/hv/teaching/MSBDesign/201516/assignments/
https://atompm.github.io/
https://unity3d.com/
https://msdl.uantwerpen.be/documentation/AToMPM/
http://msdl.cs.mcgill.ca/projects/DEVS/PythonPDEVS
http://msdl.cs.mcgill.ca/people/hv/teaching/MoSIS/assignments/DEVS
http://msdl.cs.mcgill.ca/people/hv/teaching/MoSIS/assignments/DEVS

Appendix: Examples

Operational Semantics

Figure 12: Railway model for the operational semantics

Figure 13: Train schedule models for the railway model in figure 12

The example model we will be working on for the operational semantics is shown in figure 12. The
small network consists of four start and end stations that are connected to some sort of ladder.
For each start station we also associate exact one train schedule, which can be found in figure 13.
For example, train T1 has to continuously go straight, while T4 always has to take a turn on a
turnout.

Figure 14: Model after initialization

After the initialization (figure 14), all the trains are placed on their start station and all the
signalling lights are added and set correctly.

16

Figure 15: Model after first iteration

Now, the real simulation loop can start. The first iteration (figure 15) starts by setting the
switches, in this case, only one switch (most bottom junction) will be set. There are however two
trains (T3 and T4) who want to enter this junction, so it will randomly select one (T3 here). After
this step, the trains can try to move to the next segment, all the trains can move, except T4 since
the switch of the junction is not set correctly.

Figure 16: Model after several iterations

If we let the simulation run several iterations, we come to the following model in figure 16.
Interestingly enough, T1 is almost already at its destination, while T4 just left its start station.
This is due to the fact that T1 only has to enter one junction. Finally, if we let the simulation run
until the end, all the trains will eventually reach their end location. However, I noticed that the
order in which the trains arrive can differ in each simulation; for example T2 might arrive before
T1, but more on this in the Queueing Analysis section.

17

Safety Analysis

Figure 17: Railway and Train Schedule Model for the safety analysis

The model that we will be analyzing is pictured in figure 17. It contains only one train of which
its schedule is simply going straight until it reaches its end station.

Figure 18: Intermediate petri-net model

When running the model transformations, an intermediate petri-net model is created, this can
be viewed in figure 18. All of the tracks have three places, one for the actual track and two for
the light. For each end station (of a schedule) we also associate one place (here it is End1Train1)
where the train resides after it has reached its end station. Note that the PreEnd1Train1 place
holds one token, so that only one train finish in this station. Finally, if the end condition is met
(all trains are in their end station), the EndTransition will then infinitely be enabled and fired.

18

Figure 19: Safety analysis results

From this intermediate petri-net, we can run our analysis and import the results back onto our
railway model. The effect of this can be seen in figure 19. First, there is an unreachable station
Station and secondly, it might be possible to end up in a deadlock situation if we follow the
indicated path on the model, i.e. instead of going straight on the turnout, the train takes a turn
and goes into a dead path. Note that in practise this should not be possible if the control system
is functioning correctly, i.e. setting the switch on the turnout according to a train’s schedule.

Figure 20: Some custom defined properties

In figure 20 a couple custom define properties are modelled. As earlier mentioned, this is in
the form of CTL. Also note that in the formulas it is possible to reference a particular track, if we
do this, we do have to create a link between the referenced name (T is used here) and the actual
track in the railway model.

19

Figure 21: Results for the custom defined properties

This time, we can call the custom analysis, which will take this CTL formulas and directly
pass it to LoLA for analysis. After each call, we can easily give feedback on whether the property
was satisfied or not (green is satisfied and red isn’t). For example, the EF DEADLOCK is satisfied,
meaning that it found a path to a deadlock state.

Figure 22: Results for the replay of the deadlock property

Lastly, we can ask for a replay to precisely give us the snapshots during the run. In figure 22,
the last snapshot is given and as expected from the default analysis (figure 19), we concluded with
the same path that led to a deadlock state.

Queueing Analysis

For the queueing analysis, we start off with the same model we used for the operational semantics
(figure 12 and 13). Note that the railway segments are all five kilometers long, the inter arrival
time (IAT) for all the generators are [5, 10] seconds, the train’s acceleration is [0.2, 0.7]m/s2 and
the simulation runtime is 100.000 seconds (or roughly 28 hours). We make the inter IAT short
enough so that trains can get queued, so we can see how the train system will function under
heavy load. As earlier mentioned, we could already tell that T1 reached its end station way before
the others, but to go deeper on this, we can make use of the queueing analysis.

20

Figure 23: Intermediate coupled DEVS model

Similarly to the safety analysis, we create an intermediate coupled DEVS model here (figure
23). This we can then use to simulate the whole railway system and retrieve the necessary statistics.

Figure 24: Queueing analysis results

Looking at the results, we immediately see that the middle junction and turnout have a high
throughput, meaning a lot of traffic (in fact, all traffic) goes through this point. Another shocking
fact is that only one train from schedule 4 (Start4 - End4) has arrived at their end station and
that most of the trains that finished are from schedule 1. Furthermore, we can conclude that the
tracks starting from Start1 have a high throughput and a low transit time which is desirable.
On the other hand, the tracks starting from Start4 also have a high throughput (approx. 100%
even), but they have an extremely long transit time since the trains probably have to wait for the
other ones. Judging from this, there is some kind of indirect priority system (probably due to the
pseudo-randomness), i.e. trains from schedule 1 have the most priority.

21

	Introduction
	Railway Formalism
	Abstract and Concrete Syntax
	Abstract Syntax
	Concrete Syntax

	Operational Semantics
	Train Schedule Formalism
	Operational Semantics

	Safety Analysis
	Mapping
	Analysis
	Deadlock
	Reachability
	Safenty
	Lights Invariant
	Custom Properties

	Interfaces

	Queueing Analysis
	DEVS model
	Mapping
	Analysis
	Average Transit Time of a Schedule
	Throughput and Average Transit Time of a Railway Segment

	Interfaces

	Visualization
	Model Generation
	Simulation
	User Interaction

	Future Work
	Conclusion

