
Play-In/Play-Out &
LSC to State Chart Transformation

Riandi Wiguna
rian.wiguna@mail.mcgill.ca
School of Computer Science

McGill University
August 27, 2004

“You better hit bull's eye, the kid don't play.”
-Vanilla Ice, “Ice, Ice, Baby”

Overview

1.Intro to Play-In/Play-Out
2.LSCs (Live Sequence Charts)
3.Play-In
4.Play-Out
5.Example: Simple Microwave
6.LSC to Statechart Transformation

Intro to Play-In/Play-Out

The Play-In/Play-Out Approach is a way to easily
generate and test LSCs (Live Sequence Charts).
LSCs model all desired system reactions,
providing a complete design for the system.

The basic idea is to feed both input and desired
output into a “Play-Engine” which generates
LSCs automatically. We then run the system
through the Play-Engine, making sure the system
satisfies our requirements.

Intro to Play-In/Play-Out

A step-by-step view of the Approach:
1.Determine system requirements
2.Build system GUI (graphical user interface)
3.Play-In scenarios into GUI / Play-Engine makes

LSCs
4.Play-Out system through GUI, testing it / Play-

Engine displays system's fidelity to LSCs throughout
run

Both designers and end-users can participate in the
software design process through Play-In/Play-
Out.

Intro to Play-In/Play-Out

This presentation is based off “Specifying and Executing
Behavioral Requirements: The Play-In/Play-Out
Approach” by David Harel and Rami Marelly

and “Synthesizing State-Based Object Systems from LSC
Specifications” by David Harel and Hillel Kugler.

Additional information from:
1.“DCharts, a Formalism for Modeling and Simulation Based Design for

Reactive Software Systems” by Thomas Huining Feng

2.“Can Behavioral Requirements be Executed? (And why would we
want to do so?)” by David Harel

LSCs (Live Sequence Charts)

● Modified MSCs (Message Sequence Charts)

● LSCs model system reactions that must happen as
well as those that just may happen

● LSCs model messages that must be sent as well
as those that just may be sent

● Two different kinds of LSCs:
– Universal
– Existential

(from pgs. 4-6 of “Specifying
and Executing...”)

Universal LSCs

● Model system reactions that must happen

● Drawn with solid border

● Pre-Chart is condition for main chart actions

● Violating these or exiting prematurely causes a
system error/crash

● Drive system execution during Play-Out

Existential LSCs

● Model system reactions that may happen

● Drawn with dashed border

● Must be able to run to completion in at least one
system scenario

● Monitored during Play-Out

LSC Logic Symbols

● Message (Arrow)
– Hot (solid tail, must always be sent)
– Cold (dashed tail, may be sent)

● Condition (Hexagon)
– Half-circles denote object synchronicity

● Loop (Rectangle)
– Integers in corner denote predetermined number of

iterations

LSC Logic Symbols

● If-Else (Dashed Hexagon in Rectangles)
– Rectangles contain consequences of each possible

outcome

● Local Variable Assignment (“Note” Rectangles)
– Half-circles denote object dependency

Universal Chart

if ()

then {
}

if ()

then {
}

else if () {
}

Existential Chart

Play-In

● User only deals with GUI, not LSCs themselves
● Basic procedure:

1.User creates use case and describes it
2.User interacts with a GUI element as if actually

running system (click buttons, highlight text, type
text, etc.)

3.User utilizes right-clicks/context menus on GUI
elements to describe how they should be affected by
previous interaction

4.Play-Engine updates GUI interface and LSCs
automatically

5.User repeats steps 1-4 until all LSCs generated

(from pgs. 7-8 of “Specifying
and Executing...”)

Play-In

● Play-Engine provides dialogs to input
information about if-else blocks, type of
messages (hot or cold), and other logic symbols

● User can create functions to generalize actions
(system responses to clicking digits 1-9 on a
calculator)

● User can right-click a GUI element, choose
“External Change” to mimic environmental
inputs/effects on objects' states

Play-Out

● The system runs as if it was fully implemented

● Displays active and monitored LSCs. User may
ignore LSCs and focus on GUI

● Modes
– Step (System stops after every reaction, waits for user

input/acknowledgment)
– Super-Step (System continues making reactions until

no new ones can be made, waits for user input)

(from pgs. 8-10 of “Specifying
and Executing...”)

Play-Out

● “Cuts” show position of system in the LSCs
– Hot (“Combed” red line, system aborts if LSC

violated)
– Cold (“Combed” blue line, system exits LSC if LSC

violated)

● Play-Out runs can be saved in XML format

● LSCs are framed in blue when completed

● LSCs are crossed out when violated

Example: Simple Microwave

● System Constraints:
– Take button presses as

“TimeRemaining”
– Start microwave on event

“Start”
– Stop microwave on any

of below
● event “Stop”
● event “OpenDoor”
● “TimeRemaining == 0”
● event “SmokeDetected”

Playing-In Microwave

Playing-In Microwave

Playing-In Microwave

Playing-Out Microwave

Playing-Out Microwave

Playing-Out Microwave

PIPO Conclusions & Questions

The Play-In/Play-Out Approach:
– Simple
– Powerful
– Extendible
– Allows involvement of future users, domain experts

Questions?

LSC to Statechart Transformation

● Goal of this example:
transform LSC for the
'Popcorn' button into
language of Statecharts

● We'll use multiple
Statecharts

Popcorn Univ. LSC

1

2

3

4

5

6

7

7

1 2

4 5

6

Note transition 3: “/Power->POP_ACTIVE”
starts chain of object notification

1

1

2

12

2

Popcorn DChart

LSC to Statechart Transformation

1.Create one statechart for each unique object in
Universal LSC

2.For each statechart:
1.Create default state
2.Create one state for each action requiring the object
3.Chain states together with transitions.
4.Create one transition from state at end of chain to

default state
5.Label transitions with above actions and “ACTIVE”

notification
6.Create transitions for actions that do not follow

PreChart

LSC to Statechart Transformation

3.Use orthogonal components if object is in more
than one Universal LSC*

4.Check Bad
max

, set of all supercuts without

successors or that lead to those without
successors*

*We didn't do these in the example

Power

Door

Timer

Oven

+1Min.

Start

Popcorn, Defrost

LSC Transformation Questions

Final Questions?

References

1. Feng, Thomas Huining. “Charts, a Formalism for Modeling and
Simulation Based Design of Reactive Software Systems”.
http://moncs.cs.mcgill.ca/people/tfeng/thesis/thesis.html. Feb.
2004.

2. Harel, David. “Can Behavioral Requirements be Executed? (And
why would we want to do so?)”

3. Harel, David and Hillel Kugler. “Synthesizing State-Based Object
Systems from LSC Specifications”.

4. Harel, David and Rami Marelly. “Specifying and Executing
Behavioral Requirements: The Play-In/Play-Out Approach”.
September 10, 2002.

