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Overview

• What are complex systems ?

– Examples; Common Characteristics.

– Disorder to Order; Scale Invariance, fractals and power laws.

– Critical Phenomena; self-organization and emergent behaviour.

– Simplicity and Complexity; equilibrium and non-equilibrium.

• Self Organized Criticality (SOC)

– Examples and Models.

• Concluding remarks.
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What are Complex Systems ?

Examples

• The universe – galaxies – stars and planetary systems.

• Weather, rainfall, earthquakes, forest fires, epidemics.

• Traffic jams, the economy and stock market.

• Biological evolution, ecoystems, social behaviour: insect colonies and
swarms, flocking of birds and herding of animals; crowd behaviour;
predator-prey systems.

• Pattern formation: zebra stripes, insect wings, leopard spots, sea
shells.

• The human brain, the immune system.

• Organs — tissues — cells.
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Common Characteristics

• A very large number of interacting units.

• The emergence of ‘order’ from ‘disorder’: collective or co-operative

behaviour not obvious from the individual behaviour – leading to

self-organization and emergent behaviour.

• Highly non-linear; feedback and adaptation.

• Individual units obey simple local rules. Leads to optimization, with a

parallel evaluation of options.

• Hierarchical complexity - complexity on several length scales.

• Power laws, scale invariance, self-similarity.
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Common Characteristics

• Driven dynamical systems which are far from thermodynamic
equilibrium.

• Computationally complex: computer models and simulation,

interdisciplinary.

• Mathematical techniques: non-linear differential equations, cellular

automata and difference equations, probability and stochastic theory,

graph theory, game theory, genetic algorithms...

• Self-organized criticality : a possible mechanism explaining some

features.
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Disorder to Order

• Equilibrium phase transitions or critical phenomena from a

disordered phase to an ordered phase as some parameter is varied,

such as temperature.

• Disordered phase above a critical temperature TC, ordered phase

below it. Spontaneous symmetry breaking: state of higher symmetry
to lower symmetry; higher entropy to lower entropy.

• Gas – liquid and liquid – crystal transitions: first order, discontinous.

• Paramagnet – ferromagnet; normal metal – superconductor, normal

fluid – superfluid transitions; second order, continuous.

• Can define an order parameter: zero in the disordered phase and

non-zero in the ordered phase; discontinuous or continuous.
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The Gas–Liquid–Solid Transition

Disordered Gas Ordered Crystal

T > Tc T < Tc
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The Ferromagnetic Transition

Ferromagnet

T > Tc T < Tc

Paramagnet

After Chaikin and Lubensky,    Principles of Condensed Matter Physics
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Scale Invariance – Self Similarity

• Scale Invariance or Self Similarity: an object ‘looks the same’ at any

length scale.

• Self similar objects: fractals: have fractional dimensions.

• Fractals occur everywhere in nature; both spatial and temporal

fractals.

• Spatial fractals: coastlines, clouds, river networks, blood vessels in

the lungs, folds in the brain, . . .

• Temporal fractals: light emitted from quasars, highway traffic, sunspot

activity, pressure variations in air caused by music, the height of the

river Nile, . . .
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Statistical Fractals: Random Walks
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Statistical Fractals: Stock Index
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Mathematical Fractals: The Koch Curve
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Scale Invariance – Self Similarity

• Fractals in Nature are statistical fractals.

• Can construct fractals - mathematical fractals. Examples: The Koch

curve, random walks.

• The dimension of the Koch curve is log4/ log3 ' 1.26186.

• An important consequence of scale invariance - occurence of power
laws.
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Scale Invariance – Power Laws

• Power law behaviour:

G(x) ∼ x−p

log G(x) ∼ −p log x.

=⇒ The plot should be a straight line, the slope gives the exponent.

• Another way of looking at this:

G(bx)/G(x) = b−p.

– Independent of x.

• A straight line: featureless, no length scale is important, or all length

scales are equally important.
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Power laws

log G(x)

log x

G(x) ~ x-p 

p  = 1
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Correlation functions and Power Laws

• Why are power laws important ?

• Study co-operative behaviour: different parts of the system interact

or talk to each other: their properties or behaviour are correlated.

• Define correlation functions and look at their decay in space and

time.

• For a 1-D system: for two points at (x,x′),

G(|x− x′|) = < m(x)m(x′) >

.
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Correlation functions and Power Laws

• For uncorrelated systems: G(x) decays exponentially:

G(x) ' exp(−x/ξ) ,

there is a correlation length ξ.

• For correlated systems, G(x) decays only algebraically – power law:

G(x) ' x−p

.

• In the theory of phase transitions, m is the order parameter.
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Criticality

• Near criticality, the correlation length grows very large (diverges at

TC). It is the only important length scale in the system.

• The growth of the correlation length, the decay of the correlation

function, and the behaviour of other quantities near TC are all power

laws: critical exponents.

• Universality: Using Renormalization Group Theory, can prove that

the critical exponents only depend on the dimensionality of the

system, the symmetry of the order parameter, the symmetry and

range of the interaction. The exponents do not depend on the

details of the interactions.

• Very different systems have identical critical exponents.
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Temporal correlations: 1/ f noise
• Look at a time-dependent signal N(t): it fluctuates in time, and

analyze it statistically using a correlation function (fluctuations):

G(τ) = < N(t)N(t + τ) > −< N(t) >2.

Look at the decay of the fluctuation from its instantaneous value G(0).

• The power spectrum S( f ): Fourier transform of the square of the
amplitude of the signal - just cosine transform of G(τ).

• S( f ) ' 1/ f : 1/ f noise - there are fluctuations of all durations - no
one time scale is picked out: scale invariance in time.

• Many natural phenomena exhibit 1/ f noise: fractals in time; visible
light: ‘pink noise’.

• More generally, 1/ f α, with α between (0,2].
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Self-organization and emergent behaviour

• Classic examples: insect colonies and bird flocks. Each individual

performs its own task, and collectively they achieve a totally different

goal - emergent behaviour.

• Self-organization: no external tuning making the individuals behave

collectively.

• Simulation attempts: artifical ants, termites and birds - cellular

automata. A large number of interacting units. Each unit follows

simple local rules.

• The system as a whole shows emergent behaviour: termites

collecting wood-chips into piles, birds flocks, insect swarms, schools

of fish - emergent patterns.
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Flocking behaviour: Boids

• Craig Reynolds introduced generalized objects called ‘boids’: simple
geometrical objects. Each boid is an individual agent following a
simple set of rules, optimize individual goals.

• Rules:

– Avoidance: move away from boids too close, reduce the chance
of collisions.

– Copy: fly in the general direction that the flock is moving in,
average over the other boids’ velocities and directions (cohesion).

– Centre: move towards the centre of the flock, minimize exposure
to the exterior.

– View: (Gary William Flake) move laterally away from any boid that
blocks the view.
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Flocking of birds: Boids
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Flocking of birds: Boids
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Flocking of birds: Boids
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Flocking of birds: Boids
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Flocking behaviour: Boids

• Update the velocity: a weighted sum over velocities given by the four

rules: play with the weights. Also update the position.

• Intelligent behaviour! Each of the rules is a ‘behavioural agent’ that

competes and co-operates with the other agents, ultimately yielding

emergent, ‘intelligent’ behaviour; ‘recursion’ in agents: each agent

made up of subagents, . . .

• Physics approach (Toner and Tu, 1998): treat the birds as a fluid.

Flocking represents a transition to an ‘ordered phase’. The average

velocity is the order parameter.
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Simplicity and Complexity

• Is Nature ultimately simple ? Can describe a large number of

phenomena with simple laws.

• Newton’s laws of motion and gravitation, Maxwell’s laws of

electromagnetism - hold over a wide range of length scales.

• Reductionism: If a system has a large number of parts, break it down

into smaller parts. Understand the small parts, you can understand

the larger system.

• Not true for complex systems - cannot get emergent behaviour.

Example, boids. ‘The whole is greater than the sum of its parts’.

• Distinguish between simple systems that lead to complicated

behaviour and truly complex systems.
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Simplicity and Complexity

• Simple systems: write down the equations of motion, behaviour is

understood.

• A double pendulum is a simple system: however can lead to chaos.

• Chaos: sensitivity to initial conditions; even simple deterministic

systems can lead to unpredictable behaviour for a range of parameter

values.

• However chaos is not complex.
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The Double Pendulum
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Equilibrium and Non-equilibrium

• How to study a system with a large number of ‘degrees of freedom’?

Typically, 1023 molecules.

• Systems in thermodynamic equilibrium: do not evolve in time.

• Thermodynamics: empirical laws from measurements of macroscopic

properties such as pressure, volume, temperature.

• Equilibrium Statistical Mechanics: Impossible to follow the motion of

individual particles or entities. However can relate the observable

macroscopic proerties to the average behaviour obtained in a

statistical way.

• Equilibrium phenomena: idealized systems, but can be well

approximated by controlled experiments: so well understood.
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Equilibrium and Non-equilibrium

• Huge success story of this approach: critical phenomena.

• The appearance of order in critical phenomena is boring! They are

now not considered complex: there is no emergent behaviour. (Are

power laws emergent behaviour ?)

• Real systems in Nature are non-equilibrium, open systems;

continuous inflow of energy, dissipation.

• The order seen, such as in pattern formation or self-organization, is

dynamical.
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Motivation for SOC

• 1/ f noise, fractals and power laws in various natural phenomena :
motivating features leading to the formulation of SOC. Per Bak:
‘father’ of SOC.

• Scale invariance and power laws : indicative of critical behaviour. For
critical systems, there is tuning: the temperature.

• No external ‘tuning’ required for systems to show collective behaviour:
self-organization.

• The dynamics of a complex system characterized by avalanche-like
changes in the system state: long periods of stasis or quiescence,
followed by avalanche-like events - a chain of events.

• The growth of the avalanches, or their size distribution, follows simple
power laws.
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Earthquakes

• Gutenberg-Richter law. A measure of the size of an earthquake is the

energy released. Plot the number of earthquakes of a given energy

against the energy on a log scale:

N(E) ∼ E−B; B : [1.8,2.2].

• The temporal frequency of aftershocks (Omori law): the number of

aftershocks occuring after a major earthquake:

n(t) ∼ t−A; A : [1,1.5]

The morphology of the faults is fractal.
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Biological Evolution

• Extinction events - not a gradual process.

• ‘Punctuated equilibrium’ (Stephen Jay Gould): long quiet periods

followed by bursts of activity.

• ‘Co-evolution’: different species become extinct together.

• The ‘size’ of an extinction event is measured by the number of species

becoming extinct together. Paleontological data for 600 million years

(Sepkowski and Raup).

• Plot the number of genera against their lifetimes (log-log): power law

distribution, with exponent 2.

• The Bak–Sneppen model of evolution (1993).
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Software Evolution

• Punctuated equilibrium in software evolution (Gorshenev and Pismak,
2004).

• MOZILLA, FREE-BSD, Gnu-EMACS. Changes or modifications are
avalanche-like events. Data from version control systems - CVS.

• For each change of file, count the number of lines deleted (D), number
of lines added (A). Distributions P(A) and P(D) - power laws.

• P(A) ∼ A−a and P(D) ∼ D−d .

FREE-BSD : a = 1.44, d = 1.48.

MOZILLA : a = 1.43, d = 1.47.

EMACS : a = 1.39, d = 1.49.

• Is it SOC ?
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SOC Models: The Sandpile

• Cannot really experiment with earthquakes, evolution, forest fires, . . .

• The sandpile paradigm (Bak, Tang, Wiesenfield, 1987): add sand
grains slowly. The slope of the pile increases. Beyond a certain slope
the pile becomes unstable and there are avalanches.

• The simplest version: a square grid in two dimensions - a cellular

automaton.

• A square of the grid is located at (i, j). Define a function Z(i, j), the
total number of sand grains on that square, or the local height of the
sandpile.

• The inital state of the sandpile: for every square of the grid, assign a
number between 0 and 3. This is a stable sandpile, where we have

chosen the threshold to be 3.
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The Sandpile Model

• Add a grain of sand randomly to this sandpile: Z(i, j) −→ Z(i, j)+1.

• Dynamics: ‘toppling’ rule: if the total number of grains exceeds the
threshold ZC = 3, the square topples and distributes 1 grain each to
its nearest neighbours:

Z(i±1, j) −→ Z(i±1, j)+1;

Z(i, j±1) −→ Z(i, j±1)+1;

Z(i, j) −→ Z(i, j)−4.

• Open boundaries: the grains leave the system when the site topples.

• Initially nothing happens. After several time steps, one site may
topple.
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The Sandpile Model

• At some point, once a site topples, a neighbour will also topple at the

next time step. This is an ‘avalanche’ - the toppling may continue to

several orders of neighbours.

• After a long time, the sandpile reaches a stationary state, where the

average height does not change, less than the threshold.

• At this SOC state, addition of a grain anywhere might lead to an

avalanche of any size.

• The system never reaches the maximally stable state where the

height = 3 for all sites.
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The Sandpile Model (Per Bak, How Nature Works)
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The Sandpile Model

• Number of avalanches N(s) of a given size s:

N(s) ' s−p. p ∼ 1.1

• The durations of the avalanches also follow a power law - not 1/ f but

1/ f 2.

• The SOC state is robust. Vary the kind of grid; the threshold; topple

by adding sand to random neighbours; increase the height by random

amounts; remove the randomness: in all cases the sandpile gets into

an SOC state.

• Cannot arrive at the exponent analyically: true of most SOC models.
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The Sandpile Model – Theoretical Approach

• Discrete version of a diffusion process.

• The updating algorithm can be written as an ‘equation of motion’.

• The height Z(r, t) is a real, continuous variable at a random lattice
position r. It is incremented by a random amount η ∈ [0,1]. The
threshold is ZC.

• The update rule then becomes (time and space are discrete):

Z(r, t +1) = Z(r, t) [1−Θ(Z(r, t)−ZC) ]

= +∑
rnn

1
4

Z(rnn, t)Θ(Z(rnn, t)−ZC )+η(r, t) .

• Here Θ is the Heaviside step-function: Θ(x) =







0 x < 0;

1 x ≥ 0.
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The Sandpile Model: Continuum Limit

• Mean Field Theory: popular first attack in a theory, for large number of
variables. Qualitatively correct answers.

• Replace the site variable Z(r, t) by a ‘coarse grained’ value: an
average over a local neighbourhood - ‘mean field’.

• The equation of motion becomes:

∂Z(r, t)
∂t

= D∇2 [Z(r, t)Θ(Z(r, t)−ZC ) ]+η(r, t).

• This is a stochastically driven diffusion equation, Langevin
equation.

• Not easy to solve, because of the discontiuous non-linear term.

• DDRG: dynamically driven renormalization group theory.
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The Bak–Sneppen Model of evolution

• A simple model of evolution of interacting species.

• Self-organizes into a critical steady state with intermittent avalanches

of all sizes: punctuated equilibrium.

• A coarse grained model at the species level: the entire species is

represented by a single ‘fitness’.

• The fitness of a species is affected by the fitness of other species.

• The stability of each species corresponds to a ‘fitness barrier’.

• High fitness ⇒ high barriers ⇒ stable states.

• Low fitness ⇒ low barriers ⇒ more likely to mutate.

• ‘Fitness’ landscape (Sewall Wright).
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The fitness landscape
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The Bak–Sneppen Model

• N species are arranged on a line with periodic boundary conditions:

circle.

• For each species i, assign a random barrier Bi uniformly distributed in

[0,1).

• The ecology is updated: at each time step t,

– locate the site with the lowest barrier, mutate by assiging a new

random number.

– change the fitness of its two neighbours, with new random

numbers.

• Initially, isolated events. After a long time, clusters of sites begin to

mutate together: SOC state with a threshold, BC ∼ 0.67.
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The Bak–Sneppen Model

• At criticality, the avalanche distribution; the correlation function; the

interval between mutations for a given site, are all power laws.

• SOC is robust: change initial conditions, interactions: random

neighbours, . . . .

• The critical fitness is not 1, but less.

• Darwinian picture: gradual evolution, survival of the fittest.

SOC picture: elimination of the least fit.

• Dinosaur extinction is not special ! Need not invoke an external

catastrophe.

• Software evolution: similar model, with ‘program fitness’.
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Summary of SOC

• How real is SOC ? Where do you see SOC ? What new things have

we learned ?

• Real sandpiles don’t show SOC, but rice piles do. Avalanche-like

events in other experiments.

• Not all power law behaviour or 1/ f noise systems are SOC systems.

• SOC systems: Slowly Driven Interaction Dominated Threshold

Systems (SDIDT: Jensen).
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Summary of SOC

• Separation of time scales because of a threshold: a slow driving

force (dropping of sand, building up of strains in the earth’s crust), and

faster internal relaxation between metastable states.

• Interaction dominated many-body systems. The slow drive is weak,

interaction controls the dynamics.

• Self-organization: no external tuning, the interactions themselves

provide the threshold.

• A large number of metastable states.

• Fluctuations are important.
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Concluding Remarks

• Complex Systems: open problem.

• From the point of view of Physics, equilibrium systems are well

understood.

• Cannot extend Statistical Mechanics to non-equilibrium systems.

• Systems with dissipation, time-dependent probabilities, dynamical

order . . . : energy minimization may not be true, no unique ground

state.

• SOC offers some insight into power laws and scale invariance.

• Wait for the Unified Theory of Everything !
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