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Overview

e The Hamiltonian, the Hamiltonian equations of motion; simple
harmonic oscillator.

e Thermodynamics; internal energy and free energy.
e Kinetic theory; phase space and distribution functions.

e Statistical mechanics: ensembles, canonical partition function; the
ideal gas.

e Concluding remarks.
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Equations of Motion

Newton’s second law: F = ma.
Equations of motion: explicit expressions for F, a.

Different formulations give a recipe to arrive at this:
Lagrangian and Hamiltonian approaches.

In Classical Mechanics, the Lagrangian formulation is most common —
leading to Lagrange’s equations of motion.

The Hamiltonian formulation leads to Hamilton’s equations of motion.

In Statistical Mechanics and Quantum Mechanics it is more
convenient to use the Hamiltonian formalism.
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The Hamiltonian

e The Hamiltonian # is defined as follows:
H=T+YV.

T : kinetic energy of the system,
V . potential energy of the system.

e For most systems, # is just the total energy E of the system.
e Knowing # , we can write down the equations of motion.
e |n Classical Physics, # = E, a scalar quantity.

e In Quantum Mechanics, A is an operator.
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Generalized Coordinates

The concept of a ‘coordinate’ is extended, appropriate variables can
be used. For each generalized coordinate, there is a corresponding
generalized momentum (canonically conjugate). Notation:

q; . generalized coordinates;

pi . generalized momenta.

For example,
{g;} = Cartesian coordinates {x,y,z} for a free particle.
{g:} = the angle 0 for a simple pendulum.

Can transform between the regular coordinates and the generalized
coordinates.

Useful in dealing with constraints.
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Generalized Coordinates

Hamiltonian # = 7 ({q;},{pi}.t) = # (¢, p,?).

The generalized coordinates and momenta need not correspond to
the usual spatial coordinates and momenta.

In general for N particles, we have 3 N coordinates and 3 N momenta.

Coordinates and momenta are considered ‘conjugate’ quantities -
they are on an equal footing in the Hamiltonian formalism.

Coordinates and momenta together define a phase space for the
system.
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Equations of Motion

In the Hamiltonian formalism, the equations of motion are given by:

o
aql - pl ’
0"
dp; 1

Newton’s second law!
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Equations of Motion

e If there is no explicit time dependence in the Hamiltonian, then

H(q,p,t) = H(q,p);
s oH 0
dt ot '

— The energy of the system does not change with time, and it is
conserved.

e Symmetries of the Hamiltonian =—> conserved quantities.
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Simple Harmonic Oscillator (1-D)

mass m

spring k
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Example: Simple Harmonic Oscillator (1-D)

e Consider a block of mass m connected by a spring with spring
constant k.

e |ts displacement is given by x, has velocity v, momentum p = mv.
e One generalized co-ordinate x, its conjugate momentum p.

e The total energy : kinetic energy + potential energy

1 1
E = Emv2 + Ekxz.
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The Hamiltonian:

Simple Harmonic Oscillator

Hamilton’s equations of motion:
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OH

R

o
dp
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Simple Harmonic Oscillator

Rearrange, two first order ODEs:

d

v _ —kx; Newton’s Law
dt

dx  p

dt m

Can get the usual second order ODE:

dzxJr k 0
— 4+ —x=0.
dt?  m
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Thermodynamics

Thermodynamics: phenomenological and empirical.
A thermodynamic system: any macroscopic system.

Thermodynamic parameters (state variables): measurable quantities
such as pressure P, volume V, temperature T, magnetic field H.

A thermodynamic state is specified by particular values of PV, T, H...

An equation of state: a functional relation between the state
variables. Example: for an ideal gas, PV =nRT.

Other thermodynamic quantities: internal energy E, entropy S,
specific heats Cy,Cp (response functions).
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Thermodynamics

At equilibrium, observe average behaviour.
The internal energy E = average total energy of the system : < #H >.
Intensive and Extensive variables.

Intensive variables do not depend on the size of the system.
Examples: pressure P, temperature 7', chemical potential u.

Extensive variables depend on the size of the system. Examples: the
total number of particles N, volume V, internal energy E, entropy S.

The first law of thermodynamics: energy conservation:
change in internal energy = heat supplied - work done by the system.
Mathematically:

dE =TdS — PdV + udN.
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Thermodynamics

T, P, u are generalized forces, intensive. Each associated with an
extensive variable, such that

change in internal energy = generalized force x change in extensive
variable.

{T,S},{—P,V}, {u,N} are conjugate variable pairs.

Thermodynamic potentials: analogous to the mechanical potential
energy. Energy available to do work — ‘free energy’. The free energy
is minimized, depending on the conditions.

A Brief Introduction to Statistical Mechanics 15/36



Thermodynamics

e Helmholiz free energy:

F = E-TS,;
dF = dE —TdS — SdT

— TdS—PdV + udN—TdS — SdT
dF = —PdV —SdT + udN.

e Like E, the potentials contain all thermodynamic information.

e Equation of state from the free energy — relates state variables:

oF

PV.I.N)=— 5| .
TN
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Kinetic Theory

A dilute gas of a large number N of molecules in a volume V.
The temperature T is high, the density is low.
The molecules interact via collisions.

An isolated system will always reach equilibrium by minimizing its
energy. At equilibrium its energy does not change with time.

Consider, for each molecule, {r,p}: 3 spatial coordinates, 3 momenta.

Each particle corresponds to a point in a 6-D phase space.
The system as a whole can be represented as N points.

Not interested in the detailed behaviour of each molecule.
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Kinetic Theory — 6-D Phase Space

A4A
' ) o .
3 momenta ' ® 0 N points
t oo *°,°,
(Px/Py:Pz) . 0® °, 0
1, .. .
® o

e e e e = = = = = =
--------------
- = = o

3 coordinates (x,y, z)
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Kinetic Theory

e Define a distribution function f(r, p,) so that

f(r,p,t)drdp

gives the number of molecules at time ¢ lying within a volume element
dr about r and with momenta in a momentum-space volume dp about

P-
e f(r, p,t) is just the density of points in phase space.

e Assume that f is a smoothly varying continuous function, so that:

[ e p.r)drap=n.
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Kinetic Theory

Problem of Kinetic Theory: Find f for given kinds of collisions (binary,
for example) — can be considered to be a form of interaction.

Explicit expressions for pressure, temperature; temperature is a
measure of the average kinetic energy of the molecules.

The limiting form of f as t — oo will yield all the equilibrium properties
for the system, and hence the thermodynamics.

Maxwell-Boltzmann distribution of speeds for an ideal gas at
equilibrium at a given temperature: Gaussian.

Find the time-evolution equation for f - the equation of motion in
phase space.

Very messy!
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Ensembles and Statistical Mechanics

Gibbs introduced the concept of an ensemble.
Earlier: N particles in the 6-D phase space.

Ensemble: A single point in 6 N-dimensional phase space represents
a given configuration.

A given macrostate with {E,T,P,V,...} corresponds to an ensemble
of microstates: ‘snapshots’ of the system at different times.

Ergodic hypothesis: Given enough time, the system explores all
possible points in phase space.
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Ensemble Theory — 6N-D Phase Space

3 N momenta o 1l PoOint

\

3 N coordinates
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Ensembles and Statistical Mechanics

e Central idea: replace time averages by ensemble averages.
e Time Average: For any quantity ¢(r,p,?):

<o(r,p,t) >= ! /OT¢(r,p,t) dr.

T

e Ensemble Average: For T — oo:

< O(r,p,t) >= /p(r,m o(r,p,2) drdp.

dr =dridr; ...... dry;
dp =dpidp; -..... dpn.
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Ensembles

e p(r,p): probability density,
p(r,p) dr dp : probability of finding the system in a volume element
[dr dp] around (r,p).

e Different ensembles: microcanonical, canonical and grand
canonical ensembles.

e Microcanonical ensemble: isolated systems with fixed energy and
number of particles, no exchange of energy or particles with the
outside world. Not very useful !
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Ensembles

e Canonical ensemble: Energy is not fixed, can exchange E with a
reservoir; N fixed.

e Grand canonical ensemble: Both energy and N can vary.

e In the canonical ensemble, the probability of a given configuration with
energy E (corresponding to Hamiltonian #') :
e_B}[(rap>

Zn(V,T)

Pc —

e B=1/kpT, kp:Boltzmann constant=R/Nj,.

e ¢ B (rP): Boltzmann factor or Boltzmann weight.
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The Canonical Partition Function

1
Zy(V,T) = TN /dr dp e P (TP)

h: Planck’s constant.

e /y : phase space volume, each volume element weighted with the
Boltzmann factor.

e From Zy, we can calculate various thermodynamic quantities.
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The Canonical Partition Function

e For example: internal energy E is given by the ensemble average
< #H > of the Hamiltonian:

E = <H>

= : / drdp 3 ¢ P (FP)
ZN(V7 T)

e Also, more conveniently,

_ 3nzZy(V,T)
_ o

N,V

13 May 2005. A Brief Introduction to Statistical Mechanics

27/36



The Canonical Partition Function

Can show that it is related to the Helmholtz free energy F:

F=E—-TS
ZN(V,T) = ¢ BF

F=—kgT InZy(V,T).
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Example: The ldeal Gas

e One of the simplest statistical systems: a gas of N non-interacting
particles, each of mass m, in a volume V at temperature 7.

e The Hamiltonian # = Kinetic Energy:

) N

e The canonical partition function:

1 _
Zy(V.T) = 5w /drdpe pst (r.p)

1
Zn(V,T) = NN /dr dp exp <—.
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Example: The ldeal Gas

3N
—Bp?/2m
IN = N!hSN (/ dp e Pr/ )
VN 3N
Zv = g (V2Em/B)
VN

3
InZy =NInV + EN [In(2tm) —InB] — InN! — 3N In A.
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The ldeal Gas

e Can calculate macroscopic thermodynamical quantities.

e Average (kinetic) energy of the gas:

aanN
E = ——53
d(— 3N 1np)
3N
— iﬁ
E = éNkBT.
2

e Average (kinetic) energy per particle: ]EV = %kB T.
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The ldeal Gas

3
InZy =NInV + EN [In(2tm) —InB] — InN! — 3N In h.

The Helmholtz free energy:

F=— kB T In ZN.
The ideal gas equation of state:

P(V,T,N)= — —
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The ldeal Gas

Equation of state:

8(—k3 TN II’IV)

P = -
1%
B NkgT
N 1%
PV = nNAkBT
PV = nRT
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The Partition Function

The partition function approach is very important because of its
success.

A whole range of equilibrium phenomena can be understood this way.

Recipe: Write down the Hamiltonian - mostly interested in the
potential energy term:

V= Vext + Vint
The V;,; term includes all the interactions: two-body, three-body ...
Get the free energy from the partition function.

Minimize the free energy: the equilibrium ‘ground state’ of the system.
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Extensions ?

The Hamiltonian can be either discrete or continuous.

Continuous systems: concept of fields (example: density field,
magnetization field, field of interactions).

When dealing with fields, the Hamiltonian, and the free energy,
become functionals :

H =H [(])(r,t)]

Use field theory techniques and variational calculus.

Non-equilibrium: time-dependent Hamiltonian, dissipation =—

transport properties; failure of equilibrium statistical mechanics.

Deal with time-dependent probabilities: stochastic equations.
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Concluding Remarks

What has all this to do with research at MSDL ?

Look for universal features and quantify them: symmetry properties;
conservation laws ?

Equivalent concepts to: generalized coordinates, energy, energy
minimization.

Typical scales in a problem: length and time. Approximations based
on this.

Map one problem onto another: reduce it to something you know
(SHO) .

Apply the statistical mechanical approach to agents.
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