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Overview

• The Hamiltonian, the Hamiltonian equations of motion; simple

harmonic oscillator.

• Thermodynamics; internal energy and free energy.

• Kinetic theory; phase space and distribution functions.

• Statistical mechanics: ensembles, canonical partition function; the

ideal gas.

• Concluding remarks.
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Equations of Motion

• Newton’s second law: F = ma.

• Equations of motion: explicit expressions for F, a.

• Different formulations give a recipe to arrive at this:

Lagrangian and Hamiltonian approaches.

• In Classical Mechanics, the Lagrangian formulation is most common –

leading to Lagrange’s equations of motion.

• The Hamiltonian formulation leads to Hamilton’s equations of motion.

• In Statistical Mechanics and Quantum Mechanics it is more

convenient to use the Hamiltonian formalism.
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The Hamiltonian

• The Hamiltonian H is defined as follows:

H = T +V.

T : kinetic energy of the system,

V : potential energy of the system.

• For most systems, H is just the total energy E of the system.

• Knowing H , we can write down the equations of motion.

• In Classical Physics, H ≡ E , a scalar quantity.

• In Quantum Mechanics, H is an operator.
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Generalized Coordinates
• The concept of a ‘coordinate’ is extended, appropriate variables can

be used. For each generalized coordinate, there is a corresponding
generalized momentum (canonically conjugate). Notation:

qi : generalized coordinates;

pi : generalized momenta.

• For example,
{qi} ≡ Cartesian coordinates {x,y,z} for a free particle.
{qi} ≡ the angle θ for a simple pendulum.

• Can transform between the regular coordinates and the generalized
coordinates.

• Useful in dealing with constraints.
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Generalized Coordinates

• Hamiltonian H = H ({qi},{pi}, t) = H (q, p, t).

• The generalized coordinates and momenta need not correspond to

the usual spatial coordinates and momenta.

• In general for N particles, we have 3N coordinates and 3N momenta.

• Coordinates and momenta are considered ‘conjugate’ quantities -

they are on an equal footing in the Hamiltonian formalism.

• Coordinates and momenta together define a phase space for the

system.
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Equations of Motion

In the Hamiltonian formalism, the equations of motion are given by:

∂H
∂qi

= − ṗi;

∂H
∂pi

= q̇i;

Newton’s second law!
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Equations of Motion

• If there is no explicit time dependence in the Hamiltonian, then

H (q, p, t) = H (q, p);

dH
dt

=
∂H
∂t

= 0.

=⇒ The energy of the system does not change with time, and it is

conserved.

• Symmetries of the Hamiltonian =⇒ conserved quantities.
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Simple Harmonic Oscillator (1-D)

x

mass m

spring k
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Example: Simple Harmonic Oscillator (1-D)

• Consider a block of mass m connected by a spring with spring

constant k.

• Its displacement is given by x, has velocity v, momentum p = mv.

• One generalized co-ordinate x, its conjugate momentum p.

• The total energy : kinetic energy + potential energy

E =
1
2

mv2 +
1
2

k x2.
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Simple Harmonic Oscillator

The Hamiltonian:

E =
1
2

mv2 +
1
2

k x2.

H =
p2

2m
+

1
2

k x2.

Hamilton’s equations of motion:

∂H
∂x

= − ṗ;

∂H
∂p

= ẋ.
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Simple Harmonic Oscillator

k x = − ṗ;
p
m

= ẋ;

Rearrange, two first order ODEs:

d p
d t

= −k x ; Newton’s Law

d x
d t

=
p
m

.

Can get the usual second order ODE:

d2 x
d t2 +

k
m

x = 0.
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Thermodynamics

• Thermodynamics: phenomenological and empirical.

• A thermodynamic system: any macroscopic system.

• Thermodynamic parameters (state variables): measurable quantities

such as pressure P, volume V , temperature T , magnetic field H.

• A thermodynamic state is specified by particular values of P,V,T,H...

• An equation of state: a functional relation between the state

variables. Example: for an ideal gas, PV = nRT .

• Other thermodynamic quantities: internal energy E , entropy S,

specific heats CV ,CP (response functions).
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Thermodynamics
• At equilibrium, observe average behaviour.

• The internal energy E = average total energy of the system : < H >.

• Intensive and Extensive variables.

• Intensive variables do not depend on the size of the system.
Examples: pressure P, temperature T , chemical potential µ.

• Extensive variables depend on the size of the system. Examples: the
total number of particles N, volume V , internal energy E , entropy S.

• The first law of thermodynamics: energy conservation:
change in internal energy = heat supplied - work done by the system.
Mathematically:

dE = T dS − PdV + µ dN .
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Thermodynamics

• T , P, µ are generalized forces, intensive. Each associated with an

extensive variable, such that

change in internal energy = generalized force × change in extensive

variable.

• {T,S}, {−P,V}, {µ,N} are conjugate variable pairs.

• Thermodynamic potentials: analogous to the mechanical potential

energy. Energy available to do work – ‘free energy’. The free energy

is minimized, depending on the conditions.
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Thermodynamics

• Helmholtz free energy:

F = E − T S ;

dF = dE − T dS − SdT

= T dS − PdV + µ dN − T dS − SdT

dF = −PdV − SdT + µ dN .

• Like E , the potentials contain all thermodynamic information.

• Equation of state from the free energy – relates state variables:

P(V,T,N) = −
∂F
∂V

∣

∣

∣

∣

T,N
.
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Kinetic Theory

• A dilute gas of a large number N of molecules in a volume V .

• The temperature T is high, the density is low.

• The molecules interact via collisions.

• An isolated system will always reach equilibrium by minimizing its

energy. At equilibrium its energy does not change with time.

• Consider, for each molecule, {r, p}: 3 spatial coordinates, 3 momenta.

• Each particle corresponds to a point in a 6-D phase space.

The system as a whole can be represented as N points.

• Not interested in the detailed behaviour of each molecule.
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Kinetic Theory – 6-D Phase Space

3 coordinates (x,y,z)

3 momenta 
(px,py,pz)

N points  
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Kinetic Theory

• Define a distribution function f (r, p, t) so that

f (r, p, t) dr dp

gives the number of molecules at time t lying within a volume element

dr about r and with momenta in a momentum-space volume dp about

p.

• f (r, p, t) is just the density of points in phase space.

• Assume that f is a smoothly varying continuous function, so that:
Z

f (r, p, t) dr dp = N.

13 May 2005. A Brief Introduction to Statistical Mechanics 19/36



Kinetic Theory

• Problem of Kinetic Theory: Find f for given kinds of collisions (binary,

for example) – can be considered to be a form of interaction.

• Explicit expressions for pressure, temperature; temperature is a

measure of the average kinetic energy of the molecules.

• The limiting form of f as t → ∞ will yield all the equilibrium properties

for the system, and hence the thermodynamics.

• Maxwell–Boltzmann distribution of speeds for an ideal gas at

equilibrium at a given temperature: Gaussian.

• Find the time-evolution equation for f - the equation of motion in

phase space.

• Very messy!
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Ensembles and Statistical Mechanics

• Gibbs introduced the concept of an ensemble.

• Earlier: N particles in the 6-D phase space.

• Ensemble: A single point in 6N-dimensional phase space represents

a given configuration.

• A given macrostate with {E,T,P,V, . . .} corresponds to an ensemble

of microstates: ‘snapshots’ of the system at different times.

• Ergodic hypothesis: Given enough time, the system explores all

possible points in phase space.
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Ensemble Theory – 6N-D Phase Space

 3 N coordinates

3 N momenta 1 point  

Ensemble
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Ensembles and Statistical Mechanics

• Central idea: replace time averages by ensemble averages.

• Time Average: For any quantity φ(r,p, t):

< φ(r,p, t) >=
1
τ

Z τ

0
φ(r,p, t) dt.

• Ensemble Average: For τ → ∞:

< φ(r,p, t) >=

Z

ρ(r,p) φ(r,p, t) drdp.

dr = dr1 dr2 . . . . . .drN ;

dp = dp1 dp2 . . . . . .dpN .
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Ensembles

• ρ(r,p): probability density,

ρ(r,p) dr dp : probability of finding the system in a volume element

[dr dp] around (r,p).

• Different ensembles: microcanonical, canonical and grand
canonical ensembles.

• Microcanonical ensemble: isolated systems with fixed energy and

number of particles, no exchange of energy or particles with the

outside world. Not very useful !
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Ensembles

• Canonical ensemble: Energy is not fixed, can exchange E with a

reservoir; N fixed.

• Grand canonical ensemble: Both energy and N can vary.

• In the canonical ensemble, the probability of a given configuration with

energy E (corresponding to Hamiltonian H ) :

pc =
e−βH (r,p)

ZN(V,T )
.

• β = 1/kB T , kB : Boltzmann constant = R/NA.

• e−βH (r,p): Boltzmann factor or Boltzmann weight.
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The Canonical Partition Function

ZN(V,T ) =
1

N! h3N

Z

dr dp e−βH (r,p)

h: Planck’s constant.

• ZN : phase space volume, each volume element weighted with the

Boltzmann factor.

• From ZN , we can calculate various thermodynamic quantities.
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The Canonical Partition Function

• For example: internal energy E is given by the ensemble average

< H > of the Hamiltonian:

E = < H >

=
1

ZN(V,T )

Z

dr dp H e−βH (r,p)

• Also, more conveniently,

E = −
∂ ln ZN(V,T )

∂β

∣

∣

∣

∣

N,V
.
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The Canonical Partition Function

Can show that it is related to the Helmholtz free energy F :

F = E −T S

ZN(V,T ) = e−βF

F = −kB T ln ZN(V,T ).

13 May 2005. A Brief Introduction to Statistical Mechanics 28/36



Example: The Ideal Gas

• One of the simplest statistical systems: a gas of N non-interacting
particles, each of mass m, in a volume V at temperature T .

• The Hamiltonian H = Kinetic Energy:

H =
N

∑
i=1

p2
i

2m
=

N

∑
i=1

p2
i

2m
. (1)

• The canonical partition function:

ZN(V,T ) =
1

N! h3N

Z

dr dp e−βH (r,p)

ZN(V,T ) =
1

N! h3N

Z

dr dp exp

(

−
N

∑
i=1

p2
i

2m

)

.
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Example: The Ideal Gas

ZN =
V N

N! h3N

(

Z ∞

−∞
d p e−β p2/2m

)3N

ZN =
V N

N! h3N

(

√

2πm/β
)3N

=
V N

N! h3N (2πmkB T )3N/2

ln ZN = N lnV +
3
2

N [ ln(2πm)− lnβ ] − lnN! − 3N ln h .
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The Ideal Gas

• Can calculate macroscopic thermodynamical quantities.

• Average (kinetic) energy of the gas:

E = −
∂ ln ZN

∂β

= −
∂(− 3

2 N lnβ)

∂β

=
3
2

N
β

E =
3
2

N kB T .

• Average (kinetic) energy per particle: E
N = 3

2 kB T.
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The Ideal Gas

ln ZN = N lnV +
3
2

N [ ln(2πm)− lnβ ] − lnN! − 3N ln h .

The Helmholtz free energy:

F = −kB T ln ZN .

The ideal gas equation of state:

P(V,T,N) = −
∂F
∂V

∣

∣

∣

∣

T,N
.
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The Ideal Gas

Equation of state:

P = −
∂(−kB T N lnV )

∂V

=
N kB T

V

PV = nNA kB T

PV = nRT
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The Partition Function

• The partition function approach is very important because of its

success.

• A whole range of equilibrium phenomena can be understood this way.

• Recipe: Write down the Hamiltonian - mostly interested in the

potential energy term:

V = Vext +Vint

• The Vint term includes all the interactions: two-body, three-body . . .

• Get the free energy from the partition function.

• Minimize the free energy: the equilibrium ‘ground state’ of the system.
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Extensions ?

• The Hamiltonian can be either discrete or continuous.

• Continuous systems: concept of fields (example: density field,

magnetization field, field of interactions).

• When dealing with fields, the Hamiltonian, and the free energy,

become functionals :

H = H [φ(r, t) ]

.

• Use field theory techniques and variational calculus.

• Non-equilibrium: time-dependent Hamiltonian, dissipation =⇒

transport properties; failure of equilibrium statistical mechanics.

• Deal with time-dependent probabilities: stochastic equations.
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Concluding Remarks

• What has all this to do with research at MSDL ?

• Look for universal features and quantify them: symmetry properties;

conservation laws ?

• Equivalent concepts to: generalized coordinates, energy, energy

minimization.

• Typical scales in a problem: length and time. Approximations based

on this.

• Map one problem onto another: reduce it to something you know

(SHO) .

• Apply the statistical mechanical approach to agents.
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