
Model-Driven Design using
I-Logix Rhapsody

Riandi Wiguna
MSDL

August 5, 2005

Overview

1.Introduction to Rhapsody
2.Basic Usage of Rhapsody
3.Important Points
4.ROPES
5.Example: Answering Machine
6.Personal Experiences using Rhapsody
7.Conclusion

Introduction to Rhapsody

● Rhapsody is software for UML-based design
and simulation
 Activity Diagrams
 Collaboration Diagrams
 Component Diagrams
 Deployment Diagrams
 Sequence Diagrams
 Statecharts
 Structure Diagrams
 Object Model Diagrams
 Use Case Diagrams

Introduction to Rhapsody

● Generates C, C++, Ada, or Java code

● Allows for reactivity, multiple threads, real-
time environments

● Allows user to “roundtrip”, i.e. alter code
directly and then update visual model

● For this presentation, “Rhapsody in J”
version 6.0 for Windows used (“Rhapsody in
C++” examined)

Diagrams Toolbar

OMD Drawing Toolbar

Drawing AreaBrowser

Shows models, model items
Used to edit features and

create/delete model items

Create/Open StatechartCreate Class

Statechart Drawing Toolbar

Class with
Statechart icon

Active Code Viewer

Choose Sequential
or Active for each class

Type choices include
language-agnostic and
user-defined types

Operation choices include
Primitive (manually coded),
Event Reception, and
Triggered Operations

Features can vary greatly
for different model items

Choose classes to be
instantiated at runtime

Code Toolbar

Basic Usage of Rhapsody

1.Create classes (in Browser, OMD, Sequence
Diagram, etc.)

2.Create Statechart or Activity Diagram of one
or more classes

3.Set up default Component and active
Configuration

4.Generate code for active configuration

5.Compile and run active configuration

Important Points

● Model-Based Design
– Sequence Diagrams are created in Analysis or

Design Mode
 Design: Messages, classes realized on insertion into

diagram. Messages deleted from diagram on deletion
from model

– “Roundtripping” is only allowed at code locations
between special comment markers

 “--+[<Type> <Name>” and “--+]” in Ada
 “/*#[<Type> <Name> */” and “/*#]*/” in C
 “//#[<Type> <Name>” and “//#]” in C++, Java

– Rhapsody's Internal Reporter and ReporterPLUS
can generate reports in RTF, DOC, HTML, PPT,
etc. (examples on slides)

Important Points

● Object/Instance Behavior
– Each class may have one “state” diagram

 Activity Diagram
 Statechart

– Classes can have one of two thread behaviors
 Sequential, running in main thread
 Active, running in own thread

– Code added to states/actions must be written in
the language of the active program (“Rhapsody
in C”, “C++”, “Ada”, “Java”)

– Configurations determine which classes will be
instantiated into objects at runtime (at least one
class required).

Important Points

● Simulation
– Runs can be viewed through any number and

combination of the following animated diagrams
 Activity Diagrams
 Sequence Diagrams
 Statecharts

– User can use Rhapsody's built-in, text-only
tracer to advance through runs

– During runs, user can manually send events to
system through Event Generator

● Third-Party Software
– Rational Rose models can be imported
– Rhapsody models can be exported to DOORS

ROPES Development Process

● ROPES = “Rapid Object-oriented Process for
Embedded Systems”
by Bruce Powel Douglass (of I-Logix)
– Iterative development process
– Works for both elaborative and translative

development, better with translative

● Outline
1.Analysis
2.Design
3.Translation
4.Testing

ROPES: Analysis

● Requirements Analysis
– Create use cases, scenarios
– Discover necessary constraints
– Discover external factors that affect system
– Discover possible system hazards, risks
 Sequence Diagrams
 Statecharts
 Use Case Diagrams

● Systems Analysis
– Separate system into functional segments
– Design high-level algorithms for these segments

ROPES: Analysis

– Categorize system functions as software,
electronics, or mechanics

– Test the segments
 Activity Diagrams
 Component Diagrams
 Sequence Diagrams
 Statecharts

● Object Analysis
– Design required classes and objects for system
– Test the classes and objects
 Activity Diagrams
 Collaboration Diagrams

ROPES: Analysis
 Component Diagrams
 Object Model Diagrams
 Sequence Diagrams
 Statecharts

ROPES: Design

● Architectural Design
– Determine number and usage of threads
– Utilize design patterns for error handling, safety,

fault tolerance
 Activity Diagrams
 Collaboration Diagrams
 Component Diagrams
 Object Model Diagrams
 Sequence Diagrams
 Statecharts

● Mechanistic Design
– Utilize design patterns to facilitate collaboration

ROPES: Design
 Collaboration Diagrams
 Component Diagrams
 Object Model Diagrams
 Sequence Diagrams

● Detailed Design
– Specifically design internals of classes,

associations with other classes
 Activity Diagrams
 Object Model Diagrams
 Statecharts

ROPES: Translation & Testing

● Translation
– Transform model information into source code
 Rhapsody Code Generation

● Testing
– Follow a planned testing document
– Add one component at a time during integration

testing
– Run validation tests (black box)
– Run safety tests (white box)

Example: Answering Machine

● Requirements Analysis
– Use cases

 Recording/Playing back messages
 Recording outgoing message
 Displaying number of recorded messages
 Recording incoming messages
 (2nd Iter.) Keep track of message lengths, blank tape

– External factors
 Length of tape/Amount of memory in answering

machine

Example: Answering Machine

● Systems Analysis
– Split Answering Machine components into

groups
 AnsMachine (Software)
 Hardware
 (2nd Iter.) Caller & Owner Agents

● Object Analysis
– Design classes and objects, interactions

between them
 (Collaboration Diagram on next slide)

Example: Answering Machine

● Architectural Design
– Design threads

1 Main system thread
2 (2nd Iter.) Caller agent thread
3 (2nd Iter.) Owner agent thread

– Use Design Patterns for error handling, safety,
fault tolerance

 No safety or fault tolerance concerns
 Found patterns generally not applicable to example

● Mechanistic Design
– Use Design Patterns to aid in collaboration

 Found patterns generally not applicable to example

Example: Answering Machine

● Detailed Design (OMD in two slides)
– AnsMachine

 Contains one instance each of Chronometer,
Microphone, Recorder, Speaker

 Takes events from Caller and Owner
– Microphone

 Receives incoming messages from Caller and
outgoing message from Owner

– Recorder
 Saves message data
 Discards data if “blankTape” is less than message

length
– Speaker

 Plays outgoing message to Caller
 Plays incoming messages to Owner

Example: Answering Machine
 Plays informational messages

– (2nd Iter.) Caller
 Makes calls and leaves incoming messages by

sending events to AnsMachine
– (2nd Iter.) Owner

 Sets outgoing message
 Hears, deletes incoming messages by sending events

to AnsMachine
– (2nd Iter.) Chronometer

 Tracks lengths of messages as Caller “speaks” into
microphone

– (3rd Iter.) MsgTuple
 Contains string data “msg”
 Contains integer data “msgLength”

Example: Answering Machine

Demonstration

Personal Experiences
using Rhapsody

● Ease of Use
– Appears intuitive, but surprises can confuse new

users
 Some models and model items generate code while

others do not
 Setting up a Default Configuration incorrectly can

cause compilation errors
– New user will probably consult Rhapsody

manual often, but it is often lacking
 Manual is C++-centric
 Manual does not discuss model to code translation

– Few Java example projects, many C++
examples; but very few use Activity Diagrams

– Auto-realization of operations, events very useful

Personal Experiences
using Rhapsody

● Extent of Model-Driven Design
– Depends on user

 Statecharts cannot have sub-activity diagrams and
vice versa. This limits extent of model-driven design

 Round-tripping may allow user to greatly ignore model

● Stability of Rhapsody
– Glitches

 Animated Sequence Charts must be opened from
menu to animate properly

 Collaboration Diagrams can improperly number
messages if new messages are inserted

– Occasionally, .rpy files corrupted while saving
– Occasional, inexplicable crashes occur

Conclusion

● I-Logix Rhapsody
– has

 simple model-drawing, model-defining tools
 useful thread control mechanisms
 a variety of report generation styles
 powerful animation/simulation and debugging tools
 the ability to generate code in several programming

languages
– but lacks

 a language-agnostic User Guide that answers the
questions new users will have

 the stability it should have (at least, in my experience)
 language-agnosticism as its focus, a little idealism(?).

Rhapsody is strictly utilitarian

References

Douglass, Bruce Powel. “ROPES: Rapid Object-oriented
Process for Embedded Systems”. 1999.

I-Logix. “Getting Started with Rhapsody”.

I-Logix. “Rhapsody Tutorial in C++”. Release 5.2. 2004.

I-Logix. “Rhapsody Tutorial in Java”. Release 4.1 MR2. 2003.

I-Logix. “Rhapsody User Guide”.

I-Logix. “Properties Reference Guide”.

I-Logix. “Rhapsody List of Books”.

I-Logix. “Using Third-Party Tools with Rhapsody”.

