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Outline

What about model transformation testing?
Triskell’s contributions
– Coverage criteria
– Model synthesis

Related work
Challenges
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Model Transformation 
Testing: Motivation

requirement 1.1 "Registering a book"
the "book" becomes "registered" 
after the "librarian" did "register«
the "book".
the "book" is "available" after
the "librarian" did "register«
the "book".

.... Book
state : StringUser

borrow

return

deliver

setDamaged

rese
rve

Code
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Model Transformation 
Testing: Motivation

A transformation is meant to be reused
– But also has to be adapted from one project to 

another
A transformation is meant to hide the 
complexity
– we woud like to trust the transformation as we

trust a compiler
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Dynamic testing process
Test data Program

Execution

Oracle

Result Specification

Verdict

Stopping criterion
true

Localization / 
Debbuging

false

non vérifié

Problems

Test data 
generation

Oracle

Diagnosis
Test data evaluation
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Dynamic transformtation
testing process

Test data / test model Model transformation

Execution

Oracle

Result / 
output model

Specification

Verdict

Stopping criterion
true

Localization / 
Debbuging

false

non vérifié

Problems

Test model 
generation

Oracle

Diagnosis
Test data evaluation
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Dynamic transformtation
testing process

Specific issues
Complex data
– Models are manipulated as sets of objects

Complex constraints
Lack of specific tools
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Model Transformation Testing

Currently in Triskell
– Coverage criteria
– Automatic synthesis of test models (in coll. With

Mc Gill) 
– Specific fault models
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Model transformation

Source metamodel
structure + constraints

Input model Transformation Output model

Target metamodel
structure + constraints

Transformation 
language

pre
condition

post 
condition
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Test data generation: criteria

Several model transformation languages
– Different features
– Different paradigms
– Different domains

We did not want to choose
We define black-box criteria
– Independent of the model transformation 

language
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Test data generation: criteria

Define test criteria based on the input 
metamodel
– Intuition: a set of models is adequate for testing 

if every class of the input metamodel is 
instantiated at least once and if the properties 
have relevant values

A model for testing is called a test model
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Test data generation: 
Example

event: String

Transition

label: Integer

AbstractState

isFinal: Boolean
isInitial: Boolean

State
Composite

container

0..1

ownedState

0..*

source

1

outgoingTransition

0..*

target

1

incomingTransition

0..*

11 2evt1
1 3evt1

2
evt2 evt3

4
1

32

evt2
evt3

What we expect from test models
•Every class to be instantiated
•Properties to take several relevant values
•Combine properties in a meaningful way

Possibly infinite set of models
=> Need stopping criteria
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Relevant values for 
properties

event: String

Transition

label: Integer

AbstractState

isFinal: Boolean
isInitial: Boolean

State
Composite

container

0..1

ownedState

0..*

source

1

outgoingTransition

0..*

target

1

incomingTransition

0..*

label = 0
label = 1
label > 1

0 incomingTransition
1 incomingTransition
>1 incominTransitions

Adapt category partition testing to 
define ranges of relevant values for 
properties of the metamodel
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Relevant values for 
properties

Define partitions for each property in the input 
metamodel
A partition defines a set of ranges on a domain
– choose one value in each range for the property

Example
– partition for AbstractState::label={[0],[1],[2..MaxInt]}
– A set of test models will need to have, at least three states with

three different values for label
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Relevant values for 
properties

event: String

Transition

label: Integer

AbstractState

isFinal: Boolean
isInitial: Boolean

State
Composite

container

0..1

ownedState

0..*

source

1

outgoingTransition

0..*

target

1

incomingTransition

0..*

{1}

{1}

{0}, {1}

Transition::event {''}, {'evt1'}, {'.+'}

Transition::#source

Transition::#target
AbstractState::label {0}, {1}, {2..MaxInt}

AbstractState::#container
AbstractState::#incomingTransition {0}, {1}, {2..MaxInt}

AbstractState::#outgoingTransition {0}, {1}, {2..MaxInt}

State:isInitial {true}, {false}

State::isFinal {true}, {false}

Composite::#ownedState {0}, {1}, {2..MaxInt}
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Relevant object structures
{1}

{1}

{0}, {1}

Transition::event {''}, {'evt1'}, {'.+'}

Transition::#source

Transition::#target
AbstractState::label {0}, {1}, {2..MaxInt}

AbstractState::#container
AbstractState::#incomingTransition {0}, {1}, {2..MaxInt}

AbstractState::#outgoingTransition {0}, {1}, {2..MaxInt}

State:isInitial {true}, {false}

State::isFinal {true}, {false}

Composite::#ownedState {0}, {1}, {2..MaxInt}

We would like to constrain the models to have a State with
one outgoing transition and more than one incoming
transitions
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Relevant object structures

false: 0

true: 1

BooleanValue
«enumeration»

PropertyConstraint

default: String

isComposite: Boolean

isDerived: Boolean

org::omg::mof2::emof::Property

ModelFragment

ObjectFragment

lower: Integer

upper: Integer

IntegerInterval

IntegerRange

values: BooleanValue

BooleanRange

regexp: String [1..1]

StringRange

Range

Partition

MultiplicityPartition

ValuePartition

isAbstract: Boolean

org::omg::mof2::emof::Class

1..*

range

1..*

range 1

property

1..* intervals

constraints

1..*
1..* object

* ownedAttribute

0..1 owningClass

property1

range1

false: 0

true: 1

BooleanValue
«enumeration»

PropertyConstraint

default: String

isComposite: Boolean

isDerived: Boolean

org::omg::mof2::emof::Property

ModelFragment

ObjectFragment

lower: Integer

upper: Integer

IntegerInterval

IntegerRange

values: BooleanValue

BooleanRange

regexp: String [1..1]

StringRange

Range

Partition

MultiplicityPartition

ValuePartition

isAbstract: Boolean

org::omg::mof2::emof::Class

1..*

range

1..*

range 1

property

1..* intervals

constraints

1..*
1..* object

* ownedAttribute

0..1 owningClass

property1

range1
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Relevant object structures

Criteria define structures that must be
covered by test models
These criteria combine partitions
One criterion = set of constraints
– one criterion declares the set of ranges that

should be covered by a set of test models
Example
– Range coverage: Each range of each partition for 

all properties of the meta-model must be used in 
at least one model.
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Test criteria

Six test criteria (different combinations of 
ranges)
– AllRanges
– AllPartitions
– + 4 class criteria

object fragments constrain each property of the object

Do not consider constraints on the 
metamodel
– Might generate insatisfiable fragments
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Evaluating a set of models

A prototype tool: MMCC
– Framework for partitions and fragments definitions

Computes a set of model fragments according to
– Input metamodel
– Test criterion

Checks the coverage of a set of test models
– With respect to the set of model fragments
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Automatic synthesis of test 
models

Automatic synthesis useful to
– Limit the effort for test generation
– Evaluate the test criteria

Challenges:
– Combine different sources of knowldege
– Expressed in different formalisms
– Complex constraints
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Automatic synthesis of test 
models

Meta-model

Model 
Transformation 
Pre-condition

Test Model Knowledge
1.Test Model Objectives
2.Model Fragments

Test Models

specifies
specifies

specifies
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The Solution(1): 
Combining Knowledge to Common 

Constraint Language

ECORE 
Model

ECORE 
Model

OCL
Constraints

OCL
Constraints

OCL
Constraint

OCL
Constraint

Requirements/
Natural Language
Requirements/

Natural Language
Objects and 

Property ranges
Objects and 

Property ranges

Meta-
model
Meta-
model

Pre-
condition

Pre-
condition

Test Model 
Objectives
Test Model 
Objectives

Model 
Fragments

Model 
Fragments

Common Constraint 
Language:

Alloy 

Common Constraint 
Language:

Alloy 

expressed as

expressed as expressed as

expressed as

transformed to
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Model synthesis 

The run command:

run test_requirement1 for 1 ClassModel,5 int, exactly 5 Class,
exactly 20 Attribute, exactly 4 PrimitiveDataType, exactly 5 Association

1. Specify a scope 
2. Specify an exact number of objects

Integer scope

Exact number of objects

Output: Alloy model instance that satisfies meta-model + 
pre-condition + test_requirement1 and has the specified size
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CARTIER: OVERALL FRAMEWORK
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Perspectives on model 
synthesis

Strenghten the tool
– Automate what can be

Experiments
Design experiments to test model 
transformations 
We want to numerically estimate via mutation 
analysis the efficiency of test models
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Mutation Analysis
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insert the   mutation        
operators

Evaluate the set of models
– Producing a Mutation Score

Mutant

P

Test
set

suppress the equivalent mutants
improve the test set

mutant
results

results
of P

sufficient

no

yes

mutants
killed

mutants
alive

oracle

Mutant 1  2  3  4  5  6  7  8    proportion
Killed 5/8

Mutation Analysis
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Mutation Analysis

Analysis based on fault models
Faults are based on syntax of programming
languages
– Most common errors
– For procedural languages, OO languages…
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Mutation analysis for model 
transformation

What errors occur in a model transformation?
Implementation language independency
– Too many different languages

Lack data on common errors
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Abstract transformation 
operations

Navigation, filtering, creation, modification 
– Example of one transformation

name : string
ID : int

A B "persistent"

name : string
ID : int

A B "persistent"

name : string
ID : int

A B "persistent" table  B

name : string
ID : int

A
IDname

table  B

name : string
ID : int

A B "persistent"

IDname

table  B

IDname

table  B

(a)

(b)

(c)

(d)

(e)

(f)

B“persistent”

navigation

filtering creation

navigation creation

navigation

filtering

modification
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Mutation operators
Navigation
– Relation to the same class
– Relation to another class
– Relation sequence modification with deletion
– Relation sequence modification with addition

Filtering
– Perturbation in the condition
– Delete a predicate
– Add a predicate

Creation
– Replace an object by a compatible one
– Miss association creation
– Add association creation
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One specific operator example

Navigation
– Relation to the Same Class Change - RSCC

Metamodel

ClassA ClassB

1

b1

1..n

b3

b2

1..n

g:ClassA a:ClassB

d:ClassB

b:ClassB

c:ClassB

b1

e:ClassBf:ClassB

b2

b2

b2

b3b3

Model

d:ClassB

b:ClassB

c:ClassB

b2

1..n

1..n

b3

1

b1

a:ClassB

e:ClassBf:ClassB
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Mutation Analysis

The proposed operator have been adapted to 
the Kermeta language
Experiments:
– To compare mutation operators
– To evaluate the coverage criteria
– To evaluate different knowledge for test 

generation
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Perspectives in Triskell

Experiment!
– We have spent a lot of time defining ideas and 

building the tools
White-box techniques for specific languages
– Specific adequacy criteria
– Fault localization

Oracle function definition


