
Testing Model Transformations
in Model Driven Engineering

Benoit Baudry
INRIA – IRISA
(currently visiting CSU)

2

Outline

What about model transformation testing?
Triskell’s contributions
– Coverage criteria
– Model synthesis

Related work
Challenges

3

Model Transformation
Testing: Motivation

requirement 1.1 "Registering a book"
the "book" becomes "registered"
after the "librarian" did "register«
the "book".
the "book" is "available" after
the "librarian" did "register«
the "book".

.... Book
state : StringUser

borrow

return

deliver

setDamaged

rese
rve

Code

4

Model Transformation
Testing: Motivation

A transformation is meant to be reused
– But also has to be adapted from one project to

another
A transformation is meant to hide the
complexity
– we woud like to trust the transformation as we

trust a compiler

5

Dynamic testing process
Test data Program

Execution

Oracle

Result Specification

Verdict

Stopping criterion
true

Localization /
Debbuging

false

non vérifié

Problems

Test data
generation

Oracle

Diagnosis
Test data evaluation

6

Dynamic transformtation
testing process

Test data / test model Model transformation

Execution

Oracle

Result /
output model

Specification

Verdict

Stopping criterion
true

Localization /
Debbuging

false

non vérifié

Problems

Test model
generation

Oracle

Diagnosis
Test data evaluation

7

Dynamic transformtation
testing process

Specific issues
Complex data
– Models are manipulated as sets of objects

Complex constraints
Lack of specific tools

8

Model Transformation Testing

Currently in Triskell
– Coverage criteria
– Automatic synthesis of test models (in coll. With

Mc Gill)
– Specific fault models

9

Model transformation

Source metamodel
structure + constraints

Input model Transformation Output model

Target metamodel
structure + constraints

Transformation
language

pre
condition

post
condition

10

Test data generation: criteria

Several model transformation languages
– Different features
– Different paradigms
– Different domains

We did not want to choose
We define black-box criteria
– Independent of the model transformation

language

11

Test data generation: criteria

Define test criteria based on the input
metamodel
– Intuition: a set of models is adequate for testing

if every class of the input metamodel is
instantiated at least once and if the properties
have relevant values

A model for testing is called a test model

12

Test data generation:
Example

event: String

Transition

label: Integer

AbstractState

isFinal: Boolean
isInitial: Boolean

State
Composite

container

0..1

ownedState

0..*

source

1

outgoingTransition

0..*

target

1

incomingTransition

0..*

11 2evt1
1 3evt1

2
evt2 evt3

4
1

32

evt2
evt3

What we expect from test models
•Every class to be instantiated
•Properties to take several relevant values
•Combine properties in a meaningful way

Possibly infinite set of models
=> Need stopping criteria

13

Relevant values for
properties

event: String

Transition

label: Integer

AbstractState

isFinal: Boolean
isInitial: Boolean

State
Composite

container

0..1

ownedState

0..*

source

1

outgoingTransition

0..*

target

1

incomingTransition

0..*

label = 0
label = 1
label > 1

0 incomingTransition
1 incomingTransition
>1 incominTransitions

Adapt category partition testing to
define ranges of relevant values for
properties of the metamodel

14

Relevant values for
properties

Define partitions for each property in the input
metamodel
A partition defines a set of ranges on a domain
– choose one value in each range for the property

Example
– partition for AbstractState::label={[0],[1],[2..MaxInt]}
– A set of test models will need to have, at least three states with

three different values for label

15

Relevant values for
properties

event: String

Transition

label: Integer

AbstractState

isFinal: Boolean
isInitial: Boolean

State
Composite

container

0..1

ownedState

0..*

source

1

outgoingTransition

0..*

target

1

incomingTransition

0..*

{1}

{1}

{0}, {1}

Transition::event {''}, {'evt1'}, {'.+'}

Transition::#source

Transition::#target
AbstractState::label {0}, {1}, {2..MaxInt}

AbstractState::#container
AbstractState::#incomingTransition {0}, {1}, {2..MaxInt}

AbstractState::#outgoingTransition {0}, {1}, {2..MaxInt}

State:isInitial {true}, {false}

State::isFinal {true}, {false}

Composite::#ownedState {0}, {1}, {2..MaxInt}

16

Relevant object structures
{1}

{1}

{0}, {1}

Transition::event {''}, {'evt1'}, {'.+'}

Transition::#source

Transition::#target
AbstractState::label {0}, {1}, {2..MaxInt}

AbstractState::#container
AbstractState::#incomingTransition {0}, {1}, {2..MaxInt}

AbstractState::#outgoingTransition {0}, {1}, {2..MaxInt}

State:isInitial {true}, {false}

State::isFinal {true}, {false}

Composite::#ownedState {0}, {1}, {2..MaxInt}

We would like to constrain the models to have a State with
one outgoing transition and more than one incoming
transitions

17

Relevant object structures

false: 0

true: 1

BooleanValue
«enumeration»

PropertyConstraint

default: String

isComposite: Boolean

isDerived: Boolean

org::omg::mof2::emof::Property

ModelFragment

ObjectFragment

lower: Integer

upper: Integer

IntegerInterval

IntegerRange

values: BooleanValue

BooleanRange

regexp: String [1..1]

StringRange

Range

Partition

MultiplicityPartition

ValuePartition

isAbstract: Boolean

org::omg::mof2::emof::Class

1..*

range

1..*

range 1

property

1..* intervals

constraints

1..*
1..* object

* ownedAttribute

0..1 owningClass

property1

range1

false: 0

true: 1

BooleanValue
«enumeration»

PropertyConstraint

default: String

isComposite: Boolean

isDerived: Boolean

org::omg::mof2::emof::Property

ModelFragment

ObjectFragment

lower: Integer

upper: Integer

IntegerInterval

IntegerRange

values: BooleanValue

BooleanRange

regexp: String [1..1]

StringRange

Range

Partition

MultiplicityPartition

ValuePartition

isAbstract: Boolean

org::omg::mof2::emof::Class

1..*

range

1..*

range 1

property

1..* intervals

constraints

1..*
1..* object

* ownedAttribute

0..1 owningClass

property1

range1

18

Relevant object structures

Criteria define structures that must be
covered by test models
These criteria combine partitions
One criterion = set of constraints
– one criterion declares the set of ranges that

should be covered by a set of test models
Example
– Range coverage: Each range of each partition for

all properties of the meta-model must be used in
at least one model.

19

Test criteria

Six test criteria (different combinations of
ranges)
– AllRanges
– AllPartitions
– + 4 class criteria

object fragments constrain each property of the object

Do not consider constraints on the
metamodel
– Might generate insatisfiable fragments

20

Evaluating a set of models

A prototype tool: MMCC
– Framework for partitions and fragments definitions

Computes a set of model fragments according to
– Input metamodel
– Test criterion

Checks the coverage of a set of test models
– With respect to the set of model fragments

21

Automatic synthesis of test
models

Automatic synthesis useful to
– Limit the effort for test generation
– Evaluate the test criteria

Challenges:
– Combine different sources of knowldege
– Expressed in different formalisms
– Complex constraints

22

Automatic synthesis of test
models

Meta-model

Model
Transformation
Pre-condition

Test Model Knowledge
1.Test Model Objectives
2.Model Fragments

Test Models

specifies
specifies

specifies

23

The Solution(1):
Combining Knowledge to Common

Constraint Language

ECORE
Model

ECORE
Model

OCL
Constraints

OCL
Constraints

OCL
Constraint

OCL
Constraint

Requirements/
Natural Language
Requirements/

Natural Language
Objects and

Property ranges
Objects and

Property ranges

Meta-
model
Meta-
model

Pre-
condition

Pre-
condition

Test Model
Objectives
Test Model
Objectives

Model
Fragments

Model
Fragments

Common Constraint
Language:

Alloy

Common Constraint
Language:

Alloy

expressed as

expressed as expressed as

expressed as

transformed to

24

Model synthesis

The run command:

run test_requirement1 for 1 ClassModel,5 int, exactly 5 Class,
exactly 20 Attribute, exactly 4 PrimitiveDataType, exactly 5 Association

1. Specify a scope
2. Specify an exact number of objects

Integer scope

Exact number of objects

Output: Alloy model instance that satisfies meta-model +
pre-condition + test_requirement1 and has the specified size

25

CARTIER: OVERALL FRAMEWORK

26

Perspectives on model
synthesis

Strenghten the tool
– Automate what can be

Experiments
Design experiments to test model
transformations
We want to numerically estimate via mutation
analysis the efficiency of test models

27

Mutation Analysis

28

insert the mutation
operators

Evaluate the set of models
– Producing a Mutation Score

Mutant

P

Test
set

suppress the equivalent mutants
improve the test set

mutant
results

results
of P

sufficient

no

yes

mutants
killed

mutants
alive

oracle

Mutant 1 2 3 4 5 6 7 8 proportion
Killed 5/8

Mutation Analysis

29

Mutation Analysis

Analysis based on fault models
Faults are based on syntax of programming
languages
– Most common errors
– For procedural languages, OO languages…

30

Mutation analysis for model
transformation

What errors occur in a model transformation?
Implementation language independency
– Too many different languages

Lack data on common errors

31

Abstract transformation
operations

Navigation, filtering, creation, modification
– Example of one transformation

name : string
ID : int

A B "persistent"

name : string
ID : int

A B "persistent"

name : string
ID : int

A B "persistent" table B

name : string
ID : int

A
IDname

table B

name : string
ID : int

A B "persistent"

IDname

table B

IDname

table B

(a)

(b)

(c)

(d)

(e)

(f)

B“persistent”

navigation

filtering creation

navigation creation

navigation

filtering

modification

32

Mutation operators
Navigation
– Relation to the same class
– Relation to another class
– Relation sequence modification with deletion
– Relation sequence modification with addition

Filtering
– Perturbation in the condition
– Delete a predicate
– Add a predicate

Creation
– Replace an object by a compatible one
– Miss association creation
– Add association creation

33

One specific operator example

Navigation
– Relation to the Same Class Change - RSCC

Metamodel

ClassA ClassB

1

b1

1..n

b3

b2

1..n

g:ClassA a:ClassB

d:ClassB

b:ClassB

c:ClassB

b1

e:ClassBf:ClassB

b2

b2

b2

b3b3

Model

d:ClassB

b:ClassB

c:ClassB

b2

1..n

1..n

b3

1

b1

a:ClassB

e:ClassBf:ClassB

34

Mutation Analysis

The proposed operator have been adapted to
the Kermeta language
Experiments:
– To compare mutation operators
– To evaluate the coverage criteria
– To evaluate different knowledge for test

generation

35

Perspectives in Triskell

Experiment!
– We have spent a lot of time defining ideas and

building the tools
White-box techniques for specific languages
– Specific adequacy criteria
– Fault localization

Oracle function definition

