

 Silvia Mur Blanch

I joined the MSDL in January ‘08, took the
course COMP763 and was introduced to
statecharts and the wonderful world of
AToM3.

All in all I had a great time there, especially
after I managed to make the robot move
around while whistling the Imperial March.

 iRobot Create

It’s full of possibilities, it can do practically
anything, but vacuuming. It has 32 built-in

sensors.

I communicate with it using a Class I
BlueTooth dongle and an adapted version of a

high-level Python interface called PyRobot.

2

This project is based on:
“Model-based design of a computer-controlled game character behavior”

Jörg Kienzle, Alexandre Denault, Hans Vangheluwe

 Modeling game AI at an appropriate abstraction level, using an
appropriate modeling language

 Event-based approach: modularity, efficiency, implementation
independent

 Rhapsody Statecharts:
› State/event-based
› Autonomous/reactive behavior
› Notion of (real) time

3

 Class project for COMP763

 Same statecharts, different philosophy: in the original designs, the statecharts are
purely event-based; in the new designs, time is used to force guards checks for
transition triggering

 Necessity to use a controller class to link tank’s components/statecharts and allow
communication between them: narrow cast

 Implementation of a very simple simulation environment using Python Tkinter

 The description of the simulation process is implemented with a statechart too

VS.

4

5

 Found high-level Python interface for iRobot Create called PyRobot and
adapted it, adding some new functions

 Communication with the robot through a BlueTooth Serial Port (using a
BlueSoleil Class I BlueTooth dongle)

 First experiments consisted on simply making the robot move around,
directly calling PyRobot functions

port = raw_input("++ enter port: ")

C = Create(tty=port)

C.Control() #puts robot in full mode

vel = raw_input(“++ enter velocity: ")

C.Drive(vel, RADIUS_STRAIGHT) #makes the robot move forward

packet_id = 6, #requests all sensor packets

C.RequestSensorData(packet_id) #requests sensor data

C.PrintSensorData() #prints sensor data on the console screen

6

7

 Next step was to implement robot’s behavior with statecharts that use the
PyRobot class as a controller

 Latest simulation introduces reading and reacting to robot’s sensor data. For
example: after bumping against an obstacle, turn 180 degrees and keep
moving forward

ctl.Stop()
ctl.DriveStraight(ctl.vel)

ctl.Stop()
ctl.TurnInPlace(ctl.vel,

ctl.TURN_LEFT)

ctl.Stop()
ctl.TurnInPlace(ctl.vel,

ctl.TURN_RIGHT)

ctl=[PARAMS]
#instance of PyRobot class

8

 Design and development of the CreateRemote project, based on the
DigitalWatch

Play Song
Plays Imperial
March

Change Speed
Increases robot’s
speed

Move forward
Move robot
straight forward

Turn left
Turn in place,
counter clockwise

Request Sensors
Gets sensor data
from the robot

Turn Right
Turn in place,
clockwise

Stop
Stops the robot

9

 So many possibilities, very little time. We wanted to work with the command
module but it’s out of the range of this project

 The project is now oriented to exploring and mapping out the world by
moving around a room and bumping against its walls/furniture/obstacles

 Every time the robot bumps into an obstacle, new data is added to the robot’s
own map of the world (at the beginning of the execution it will be like a blank
canvas)

 After some time, the robot should have a very approximate representation of
the world/room and its walls/obstacles

 When the world is mapped, it should be possible to automatically avoid its
obstacles when tracing a path from one point of the map to another

 Still updating project information on MSDL personal webpage!
http://moncs.cs.mcgill.ca/people/silvia

10

