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 Introduction

 SE on a higher abstraction level

 Generative Programming

 VMTS

 Abstract and Concrete Syntax

 Constraint optimization

 Animation

 Optimized Transformations

 Validated transformations

 Code-Model/Model-Code Synchronization

 Domain-Specific Model Patterns



 Evolution of programming languages

 Assembly C C++/ Java/ C#

 The aims

 Faster development 

▪ == compact way to express our aims

 To avoid steps that can be automated

▪ == abstraction level must be increased

 To develop larger systems

▪ == even complex functions must be easy to understand



 Overview

 Aims at a narrow domain

 Models the variability (all possible configurations)

 Generator takes the desired configuration

 Evaluation

 Essentially the onle approach really supports 
reuse

 Pays off when the generator is used several times

 DSMLs with Code generation is GP!



VMTS – Basics



 Visual Modeling and Transformation System
 Metamodeling and model transformation framework

 Microsoft .NET-based 

 Metamodels, DSL models, transformations are edited in 
the same environment

 Windows Presentation Foundation

 N-layer metamodeling hierarchy

 Constraint compiler

 High-performance transformation engine

 Animation framework



 Architecture

 Four layers for flexibility

 Metamodel-based, auto 
generated components

 Performance and 
customizability

 Custom Exim for Matlab, 
and GXL
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Metamodel items + Constraints Vx / Exim templates+ attributes

Concrete syntax(XAML)



 Supported domains



Constraint compiler



 Primitive and compound literals
'string'; 1; 2.1; True
Sequence{1,2,3,1}; OrderedSet{1,2,3,1}

"string"; 1; 2.1; true
new List<int>(){1,2,3,1}; new List<int>(){1,2,3,1}.Distinct()

 Unary and binary expressions
not (1=1); -(5+6)
True xor False; (1=1) implies (True or False)
1+2.3; 10 div 4

!(1==1); -(5+6)
true^false; !(1==1) || (true || false)
1+2.3; 10.div(4), where div is the following extension method:

public static int div(this int self, int other)
{ int rem; return Math.DivRem(self, other, out rem); }



 Incremental compilation uses previously
produced internal representation of the code
(AST, AST-code map)



 Incremental semantic analysis

 Locates modified vertices in AST

 Locates unmodified subparts

 Merges ASTs

 Incremental code 
generation

 AST-code mapping



Animation Framework / Simulation



 Metamodel

 What are the elements of the language?

 Which nodes can be connected by which 
connections?

 „Abstract Syntax”

 Appearance model

 How are the elements visualized?

 „Dressing up” the elements

 „Concrete Syntax”

What about 

the dynamic

behavior?

„Animation”



 Modeling

 Part of the concrete syntax? Not general enough!

 Separate model attached to the other two

 Domain-specificity

 Typically complex dynamic behavior comes from an 
external system  („You don’t want to write a MATLAB if 
you have one”)

 We assume this system a „black box”

 Loosely coupled: event handling

 VMTS Animation Framework (VAF)



Separating animation and domain-specific knowledge with

event-based integration.



 Event handler model
▪ Models the events and the entities

▪ Event handlers connect the simulation engines, 3rd 
party components, and the VMTS UI

 Event driven state machines to describe 
animation
▪ Compose simple events or decompose complex events

 High-level animation model
▪ Integration of event handlers and state machines

▪ Components passing events through ports („fixed length 
buffers”)



Optimized model transformations



 Pattern graph => matcher algorithm
 Nested cycles:

 Can be highly optimized

 Matching order

 Navigation

forach (Node n1 in nodes)
if (...) //condition examination
foreach (Node n2 in nodes)
if (...)
foreach (Edge e1 in edges)
if (...) {

... //rewriting
}

n1

n2

e1



 Most graph-rewriting engines optimize rule
executions separately

 Starts the matching from scratch every time

 Parallel execution

 What about exploiting similarity of patterns?

 Incremental pattern matching

 Overlapped Rewriting Algorithm (OLRA)

▪ Overlap the matching phase of isomorph parts of similar
rules and perform the matching only once



 Sequential execution
 Influencing the execution of the following rules

▪ Enabling/disabling matches for them

 Influencing the final result (attribute conditions)

 Reordering the matching of the rules
 Matching at once, without execution

 Application conditions : OLRA susceptibility
 The overlapped rules should be sequentially independent for each 

match
▪ Including the attribute conditions

 The attribute transformations of the rules should be commutative

 Not so rare as it sounds to be



Property analysis / 
transformation patterns



 Property analysis of model transformations: formally proving 
 some properties of the transformations (e.g. termination),

 the mapping between the input and output models

 Properties of the models when the transformation finishes

 Offline analysis: do not take concrete input models into 
account, only the definition of the transformation itself is 
used for analysis
 advantages: performed only once, results hold for every model

 Disadvantage: more difficult



 General offline analysis methods cannot be provided
 e.g. termination of a transformation is undecidable in general

 Current approaches for offline analysis propose methods 
that
 can be applied for a concrete (type of) transformation, 

 or can be used to analyze a concrete type of property



 The future goal is to provide fully automated 
methods for the analysis, this cannot be 
reached at once

 Our current goal is to automate more and 
more elements of the analysis process and to 
combine manual and automated methods



 Model Transformation Analysis (MTA) patterns are 
design patterns for implementing transformations

 An MTA pattern is well-defined sub transformation pattern that can 
be reused when implementing a model transformation

 The motivation (when to apply) and the structure (how to implement) 
a pattern is documented

 An MTA pattern (since it is sub transformation) can be pre-analyzed, 
the result of the analysis will hold for the relevant part of a concrete 
transformation where the pattern is applied



 Concrete MTA patterns have been defined for 
traversing hierarchical models



 We have introduced the term assertion. 
 Assertions are automatically derived from the definitions of 

model transformations or can be manually provided by model 
transformation experts. 

 Assertions describe the main characteristics of different parts of 
the transformations and contain the pieces of information that 
are relevant for further analysis. 

 An appropriate automated reasoning system can derive the 
proof of certain properties based on the initial assertions. 

 We have proposed a method to automatically generate 
certain type of assertions and provide the deduction rules 
for a reasoning system to prove some properties of 
transformations. 



Round-trip engineering



Updated 
Model

User updated 
source code

manual 
modification

bi-directional 
change propagation

code 
generation

User updated 
source code

Second iteration

Updated 
Model

Model and code are consistent

bi-directional change
propagation

Generated source code

First iteration

Initial state

Domain-
specific 
model



Round-trip 1 Round-trip 2

Domain-specific model
(platform independent)

Generated source code

Platform-specific AST 
(CodeDOM) model



Trace model

1

2
3

Domain-specific 
model (PIM) Generated source code

Platform-specific AST 
(CodeDOM) model (PSM)

Original source code (last state)



 Incremental synchronization merging the changes

 Detect changes: differencing
 Textual (diff tool, general text file)

 Abstract Syntax Tree (AST) differencing (language dependent)

 Edit script (the output of differencing, sequence of atomic edit 
operations: (INS, UPD, DEL, MOV)

 Change propagation: manually or tool-aided

 Modeling the source code with an AST model (that has a 
corresponding AST metamodel)
 to describe the platform-specific implementation

 AST model is comparable to the parsed source code

 Syntactic elements of the language as atomic modeling elements



Changed
code (C1)

Pretty-print

Parse

Changed
DSM

Last synchronized code (C0)

Reconciled state

Diff

Edit operations
Resolving conflicts

Parse
Changed

AST
model (M1)

AST patch
(rewrite)

Synchronized
AST

model



+
 Statement-level incremental synchronization

 Syntactical correctness is ensured

 Free moving between different representations of the system (code 
and model)

 Enables iterative and incremental development

-
 Low-level synchronization technique, the high-level intentions of the 

developer should be found out

 Complicated transformation rules (DSL - AST)

 Not trivial, how to handle the semantic conflicts without user 
intervention

 Preserving comments and formatting info (white spaces) depends on 
the parser and the pretty-printer



• Eliminate hand written language specific code
• parser + glue code (3rd party parser)

• pretty-printer (Microsoft’s CodeDOM)

• edit script executer (model and CodeDOM tree patching)

• General, language independent algorithms
• tree differencing

• conflict resolution

• Solution: modeling the specific objects (AST metamodel)
• define elements of the AST model

• specify the textual syntax of each model elements

• generate the specific code from these models

• pretty-printer and parser can be constructed



Namespace:        $Imports "\nnamespace" #Name "{\n" $Type "}\n"
TypeDeclaration:  "class" #Name ($Base ? ":" $Base) "{\n" $Member "}\n"
EntryPointMethod: "static void Main(string[] args) {\n" $Body "}\n"



Model synchronization



 Developers are working on several models 
simultaneously
 E.g., developing mobile applications

▪ User interface model (without behavior)

▪ Application behavior model (source code)

 The two models describe different aspects of the 
same system

 Entire system is realized by combining these 
aspects

 Generation process by model transformations



 The developer often wants to change the 
target artifact

 The target and the source artifact will not be 
necessarily consistent, synchronization is 
needed

 The modifications have to be propagated 
back to the source artifact





 The synchronization is implemented as two 
unidirectional transformations

 Transformation saves trace information 
during the execution

 The reverse direction uses trace information









Domain-Specific Model Patterns



 Design patterns for DSLs

 The knowledge of domain experts

 Solution to well-known domain problems

 Relaxing the instantiation: partial model

 Incomplete attributes

 Relaxed multiplicities/cardinalities

 Transitive containment

 Constraint profiles

 Relaxing the metamodel




