
Budapest University of Technology and Economics

Department of Automation and Applied Informatics

Visual Modeling Languages Research Group

Institute for Software-Integrated Systems, Vanderbilt University

 Introduction

 SE on a higher abstraction level

 Generative Programming

 VMTS

 Abstract and Concrete Syntax

 Constraint optimization

 Animation

 Optimized Transformations

 Validated transformations

 Code-Model/Model-Code Synchronization

 Domain-Specific Model Patterns

 Evolution of programming languages

 Assembly C C++/ Java/ C#

 The aims

 Faster development

▪ == compact way to express our aims

 To avoid steps that can be automated

▪ == abstraction level must be increased

 To develop larger systems

▪ == even complex functions must be easy to understand

 Overview

 Aims at a narrow domain

 Models the variability (all possible configurations)

 Generator takes the desired configuration

 Evaluation

 Essentially the onle approach really supports
reuse

 Pays off when the generator is used several times

 DSMLs with Code generation is GP!

VMTS – Basics

 Visual Modeling and Transformation System
 Metamodeling and model transformation framework

 Microsoft .NET-based

 Metamodels, DSL models, transformations are edited in
the same environment

 Windows Presentation Foundation

 N-layer metamodeling hierarchy

 Constraint compiler

 High-performance transformation engine

 Animation framework

 Architecture

 Four layers for flexibility

 Metamodel-based, auto
generated components

 Performance and
customizability

 Custom Exim for Matlab,
and GXL

D

S

L

Metamodel items + Constraints Vx / Exim templates+ attributes

Concrete syntax(XAML)

 Supported domains

Constraint compiler

 Primitive and compound literals
'string'; 1; 2.1; True
Sequence{1,2,3,1}; OrderedSet{1,2,3,1}

"string"; 1; 2.1; true
new List<int>(){1,2,3,1}; new List<int>(){1,2,3,1}.Distinct()

 Unary and binary expressions
not (1=1); -(5+6)
True xor False; (1=1) implies (True or False)
1+2.3; 10 div 4

!(1==1); -(5+6)
true^false; !(1==1) || (true || false)
1+2.3; 10.div(4), where div is the following extension method:

public static int div(this int self, int other)
{ int rem; return Math.DivRem(self, other, out rem); }

 Incremental compilation uses previously
produced internal representation of the code
(AST, AST-code map)

 Incremental semantic analysis

 Locates modified vertices in AST

 Locates unmodified subparts

 Merges ASTs

 Incremental code
generation

 AST-code mapping

Animation Framework / Simulation

 Metamodel

 What are the elements of the language?

 Which nodes can be connected by which
connections?

 „Abstract Syntax”

 Appearance model

 How are the elements visualized?

 „Dressing up” the elements

 „Concrete Syntax”

What about

the dynamic

behavior?

„Animation”

 Modeling

 Part of the concrete syntax? Not general enough!

 Separate model attached to the other two

 Domain-specificity

 Typically complex dynamic behavior comes from an
external system („You don’t want to write a MATLAB if
you have one”)

 We assume this system a „black box”

 Loosely coupled: event handling

 VMTS Animation Framework (VAF)

Separating animation and domain-specific knowledge with

event-based integration.

 Event handler model
▪ Models the events and the entities

▪ Event handlers connect the simulation engines, 3rd
party components, and the VMTS UI

 Event driven state machines to describe
animation
▪ Compose simple events or decompose complex events

 High-level animation model
▪ Integration of event handlers and state machines

▪ Components passing events through ports („fixed length
buffers”)

Optimized model transformations

 Pattern graph => matcher algorithm
 Nested cycles:

 Can be highly optimized

 Matching order

 Navigation

forach (Node n1 in nodes)
if (...) //condition examination
foreach (Node n2 in nodes)
if (...)
foreach (Edge e1 in edges)
if (...) {

... //rewriting
}

n1

n2

e1

 Most graph-rewriting engines optimize rule
executions separately

 Starts the matching from scratch every time

 Parallel execution

 What about exploiting similarity of patterns?

 Incremental pattern matching

 Overlapped Rewriting Algorithm (OLRA)

▪ Overlap the matching phase of isomorph parts of similar
rules and perform the matching only once

 Sequential execution
 Influencing the execution of the following rules

▪ Enabling/disabling matches for them

 Influencing the final result (attribute conditions)

 Reordering the matching of the rules
 Matching at once, without execution

 Application conditions : OLRA susceptibility
 The overlapped rules should be sequentially independent for each

match
▪ Including the attribute conditions

 The attribute transformations of the rules should be commutative

 Not so rare as it sounds to be

Property analysis /
transformation patterns

 Property analysis of model transformations: formally proving
 some properties of the transformations (e.g. termination),

 the mapping between the input and output models

 Properties of the models when the transformation finishes

 Offline analysis: do not take concrete input models into
account, only the definition of the transformation itself is
used for analysis
 advantages: performed only once, results hold for every model

 Disadvantage: more difficult

 General offline analysis methods cannot be provided
 e.g. termination of a transformation is undecidable in general

 Current approaches for offline analysis propose methods
that
 can be applied for a concrete (type of) transformation,

 or can be used to analyze a concrete type of property

 The future goal is to provide fully automated
methods for the analysis, this cannot be
reached at once

 Our current goal is to automate more and
more elements of the analysis process and to
combine manual and automated methods

 Model Transformation Analysis (MTA) patterns are
design patterns for implementing transformations

 An MTA pattern is well-defined sub transformation pattern that can
be reused when implementing a model transformation

 The motivation (when to apply) and the structure (how to implement)
a pattern is documented

 An MTA pattern (since it is sub transformation) can be pre-analyzed,
the result of the analysis will hold for the relevant part of a concrete
transformation where the pattern is applied

 Concrete MTA patterns have been defined for
traversing hierarchical models

 We have introduced the term assertion.
 Assertions are automatically derived from the definitions of

model transformations or can be manually provided by model
transformation experts.

 Assertions describe the main characteristics of different parts of
the transformations and contain the pieces of information that
are relevant for further analysis.

 An appropriate automated reasoning system can derive the
proof of certain properties based on the initial assertions.

 We have proposed a method to automatically generate
certain type of assertions and provide the deduction rules
for a reasoning system to prove some properties of
transformations.

Round-trip engineering

Updated
Model

User updated
source code

manual
modification

bi-directional
change propagation

code
generation

User updated
source code

Second iteration

Updated
Model

Model and code are consistent

bi-directional change
propagation

Generated source code

First iteration

Initial state

Domain-
specific
model

Round-trip 1 Round-trip 2

Domain-specific model
(platform independent)

Generated source code

Platform-specific AST
(CodeDOM) model

Trace model

1

2
3

Domain-specific
model (PIM) Generated source code

Platform-specific AST
(CodeDOM) model (PSM)

Original source code (last state)

 Incremental synchronization merging the changes

 Detect changes: differencing
 Textual (diff tool, general text file)

 Abstract Syntax Tree (AST) differencing (language dependent)

 Edit script (the output of differencing, sequence of atomic edit
operations: (INS, UPD, DEL, MOV)

 Change propagation: manually or tool-aided

 Modeling the source code with an AST model (that has a
corresponding AST metamodel)
 to describe the platform-specific implementation

 AST model is comparable to the parsed source code

 Syntactic elements of the language as atomic modeling elements

Changed
code (C1)

Pretty-print

Parse

Changed
DSM

Last synchronized code (C0)

Reconciled state

Diff

Edit operations
Resolving conflicts

Parse
Changed

AST
model (M1)

AST patch
(rewrite)

Synchronized
AST

model

+
 Statement-level incremental synchronization

 Syntactical correctness is ensured

 Free moving between different representations of the system (code
and model)

 Enables iterative and incremental development

-
 Low-level synchronization technique, the high-level intentions of the

developer should be found out

 Complicated transformation rules (DSL - AST)

 Not trivial, how to handle the semantic conflicts without user
intervention

 Preserving comments and formatting info (white spaces) depends on
the parser and the pretty-printer

• Eliminate hand written language specific code
• parser + glue code (3rd party parser)

• pretty-printer (Microsoft’s CodeDOM)

• edit script executer (model and CodeDOM tree patching)

• General, language independent algorithms
• tree differencing

• conflict resolution

• Solution: modeling the specific objects (AST metamodel)
• define elements of the AST model

• specify the textual syntax of each model elements

• generate the specific code from these models

• pretty-printer and parser can be constructed

Namespace: $Imports "\nnamespace" #Name "{\n" $Type "}\n"
TypeDeclaration: "class" #Name ($Base ? ":" $Base) "{\n" $Member "}\n"
EntryPointMethod: "static void Main(string[] args) {\n" $Body "}\n"

Model synchronization

 Developers are working on several models
simultaneously
 E.g., developing mobile applications

▪ User interface model (without behavior)

▪ Application behavior model (source code)

 The two models describe different aspects of the
same system

 Entire system is realized by combining these
aspects

 Generation process by model transformations

 The developer often wants to change the
target artifact

 The target and the source artifact will not be
necessarily consistent, synchronization is
needed

 The modifications have to be propagated
back to the source artifact

 The synchronization is implemented as two
unidirectional transformations

 Transformation saves trace information
during the execution

 The reverse direction uses trace information

Domain-Specific Model Patterns

 Design patterns for DSLs

 The knowledge of domain experts

 Solution to well-known domain problems

 Relaxing the instantiation: partial model

 Incomplete attributes

 Relaxed multiplicities/cardinalities

 Transitive containment

 Constraint profiles

 Relaxing the metamodel

