Tihamér Levendovszky

SUPPORTING MODEL-BASED SOFTWARE
ENGINEERING WITH DOMAIN-SPECIFIC LANGUAGES

Outline

Introduction

SE on a higher abstraction level
Generative Programming

VMTS
Abstract and Concrete Syntax
Constraint optimization
Animation
Optimized Transformations
Validated transformations
Code-Model/Model-Code Synchronization
Domain-Specific Model Patterns

Raising the abstraction level

Evolution of programming languages
Assembly - C > C++/Java/ C#

The aims
Faster development
== compact way to express our aims
To avoid steps that can be automated

== abstraction level must be increased

To develop larger systems

== even complex functions must be easy to understand

Generative Programming

Overview
Aims at a narrow domain
Models the variability (all possible configurations)

Generator takes the desired configuration
Evaluation

Essentially the onle approach really supports
reuse

Pays off when the generator is used several times

DSMLs with Code generation is GP!

VMTS Basics

VMTS — Basics

The VMTS Framework

Visual Modeling and Transformation System
Metamodeling and model transformation framework

Microsoft .NET-based

Metamodels, DSL models, transformations are edited in
the same environment

Windows Presentation Foundation
N-layer metamodeling hierarchy
Constraint compiler

High-performance transformation engine
Animation framework

The VMTS Framework

Architecture
Four layers for flexibility

Metamodel-based, auto
generated components

Performance and
customizability

Custom Exim for Matlab,
and GXL

VME NXF Applications

Generator (SN .
_ 1 i
‘«u‘a’i‘\;“" = by
sk VMTS Studico Transfermation Framewor k Traversing Proc.

VMF (VMTS Modeling Framework)

Demain 1
Com ain 2
omain 3

os_perfarmance 0s_events

VXF (VMTS eXchange Framework)

The VMTS Framework

<!-——RadialGray!l
<RadialGradientBru iEey="radialBrushGreyGardient"
GradientOrigin="0.5,0.5"
Center="0,5,0.5" BadiusX="0.5" Radius¥="0.5">»
<RadialGradientBr GradientStops
<Gradient3top (or="Black"™ Cffzetc="0Q"
<Gradient3top (r="Elac Offzec="0.
<GradientStop
<GradientStop | Gray"™ Offsetc="1"
</RadialGradientBr
</RadialGradientBru

<!-—-Scarc—->
<ControlTemplate x:Eeyv="StartTemplate”™
<Grid> .
<«Ellipse Height="36.652" N;dth=”36.552”w tome

ek

VerticalAligmment="Top" Fill=" J

emplate’

ntrolTemplate x:Eey="EndTemplate"
<Grid>
<Ellipse Height="36.652" Width="36.652"
VerticalAlignment="Top" Fill="

<Ellip=se Height="16" Width="16" Hame="g|

T

VerticalAligmment="Top" Fill="

Grid>

L=
Concrete syntax(XAML)

The VMTS Framework

Supported domains

4 Adaptive Modeler, 0.98 - aaa Project
le Edit Wiew Project Tools ‘Window Help
Hew Open

Outlnokbar

Névieges teljesitmény [MVA]

Constraint compiler

Constraint compiler

OCL to C#

Primitive and compound literals

"string"; 1; 2.1; true
new List<int>(){1,2,3,1}; new List<int>(){1,2,3,1}.Distinct()

Unary and binary expressions

(1==1); -(5+6)
true/Malse; (1==1) || (true || false)
1+2.3; 10.div(4), where div is the following extension method:

public static int div(this int self, int other)
{int rem; return Math.DivRem(self, other, out rem); }

Incremental compilation

Incremental compilation uses previously
produced internal representation of the code
(AST, AST-code map)

semantic code

AnalyzedAST <—— C'#

/ ge.ntﬂration

. pars “ ‘tial]
C'hangeLog ——= OC'L e AST —— MergedAST s AnalyzedAST <——= C'#

%__—___f———ﬂ’? sem.anal.

ocL 28 AsT

analysis

_ DArs ’ “tial]
C'hangeLog — OC'L parse AST —— MergedA STH MEA?I,(LE yzedAST =———= C'#

~—~— sem.anal.

Incremental compilation

Incremental semantic analysis
Locates modified vertices in AST

Locates unmodified subparts

Merges ASTs i
Incremental code

+
Treerocr, oril

generation TN

AST-code mapping TEEVAEN

Animation Framework / Simulation

Animation Framework / Simulation

Specification of Visual Languages

Metamodel
What are the elements of the language?

Which nodes can be connected by which
connections?

+~Abstract Syntax”

Appearance model What about
the dynamic
behavior?

How are the elements visualized?
,Dressing up” the elements

,concrete Syntax” e e

Animation

Modeling
Part of the concrete syntax? Not general enough!
Separate model attached to the other two
Domain-specificity
Typically complex dynamic behavior comes from an

external system (,You don’t want to write a MATLAB if
you have one”)

We assume this system a ,black box"”

Loosely coupled: event handling
VMTS Animation Framework (VAF)

VAF Architecture

Event handler

; ; Event handler model
implementation

High level animation model Animator state machine

PNAnimator

.A

"
It

i
v

|
z
i
=
z
-
x
>
z
w

IREEEREERE

Domain knowledge and
simulation engines

Animation

engine Animated model

Separating animation and domain-specific knowledge with
event-based integration.

VMTS Animation Framework (VAF)

Event handler model
Models the events and the entities

Event handlers connect the simulation engines, 3rd
party components, and the VMTS U

Event driven state machines to describe
animation
Compose simple events or decompose complex events

High-level animation model
Integration of event handlers and state machines

Components passing events through ports (,fixed length
buffers”)

Optimized model transformations

Optimized model transformations

A naive compiled matcher

Pattern graph => matcher algorithm
Nested cycles:

forach (Node nl in nodes)
nl if (...) //condition examination
foreach (Node n2 in nodes)
if (...)
foreach (Edge el in edges)
if (...) {
. //rewriting
}

Can be highly optimized
Matching order

Navigation

The Idea”

Most graph-rewriting engines optimize rule
executions separately
Starts the matching from scratch every time

Parallel execution
What about exploiting similarity of patterns?

Incremental pattern matching
Overlapped Rewriting Algorithm (OLRA)

Overlap the matching phase of isomorph parts of similar
rules and perform the matching only once

Overlapped matching-problems

Sequential execution
Influencing the execution of the following rules
Enabling/disabling matches for them

Influencing the final result (attribute conditions)
Reordering the matching of the rules

Matching at once, without execution
Application conditions : OLRA susceptibility

The overlapped rules should be sequentially independent for each
match

Including the attribute conditions
The attribute transformations of the rules should be commutative
Not so rare as it sounds to be

Property analysis / transformation patterns

Property analysis /
transformation patterns

Property analysis

Property analysis of model transformations: formally proving
some properties of the transformations (e.g. termination),
the mapping between the input and output models
Properties of the models when the transformation finishes

Offline analysis: do not take concrete input models into
account, only the definition of the transformation itself is
used for analysis
advantages: performed only once, results hold for every model
Disadvantage: more difficult

State-of-the-art

General offline analysis methods cannot be provided
e.g. termination of a transformation is undecidable in general

Current approaches for offline analysis propose methods
that

can be applied for a concrete (type of) transformation,

or can be used to analyze a concrete type of property

Our research — goals

The future goal is to provide fully automated
methods for the analysis, this cannot be
reached at once

Our current goal is to automate more and
more elements of the analysis process and to
combine manual and automated methods

Our research — MTA patterns

Model Transformation Analysis (MTA) patterns are
design patterns for implementing transformations

An MTA pattern is well-defined sub transformation pattern that can
be reused when implementing a model transformation

The motivation (when to apply) and the structure (how to implement)
a pattern is documented

An MTA pattern (since it is sub transformation) can be pre-analyzed,
the result of the analysis will hold for the relevant part of a concrete
transformation where the pattern is applied

Our research — MTA patterns

Concrete MTA patterns have been defined for
traversing hierarchical models

Our research — automated reasoning

We have introduced the term assertion.

Assertions are automatically derived from the definitions of
model transformations or can be manually provided by model
transformation experts.

Assertions describe the main characteristics of different parts of
the transformations and contain the pieces of information that
are relevant for further analysis.

An appropriate automated reasoning system can derive the
proof of certain properties based on the initial assertions.

We have proposed a method to automatically generate
certain type of assertions and provide the deduction rules
for a reasoning system to prove some properties of
transformations.

Round-trip engineering

Round-trip engineering

[terative Model-Based Development

. Generated source code
.lFurm

iTextEditar

Domain-
. iRadioButtonList
First ltem
speCIflc iS\ith:
model

generation | manual
modification

Initial state

First iteration
User updated

source code
.iFnrm

iTextEditor
Updated | Faiemes bi-directional

Slider ———————————>
Model 1 « change propagation

rmin

‘Menu | |0k

Model and code are consistent
Second iteration

& iForm

iTextEditor

bi-directional change
Updated Ef::‘i::mnust « _-— .. - —pro?ag—ati(;? S - . - >
Model iSlider

ik User updated
‘Menu |
source code

Model-Code Round-Trip Concept

Domain-specific model Generated source code

(platform independent) i s ____________
Platform-specific AST r NEE

.iFurm (CodeDOM) model #incinde <iostram

m using namespace std;

iTextEditar class L {
int 1i;
public:
Alidnt 1 = 0) :1i(1i) {
Aiconst A& a) { cout

CMemhe

1’__—f°“-“ﬂ

iFadioButtonList
First ltem

iSlider —- (T }:

class B {
L oa;

pubblic:
Bi{) { cout << "BE" <<
Eiconst B& b) { cout

Eicon=st EBE& b) :aib.a)

Round-trip 1 Round-trip 2

@ iForm Platform-specific AST e

#include losStream
m (COdeDOM) model (PSl\/I) using namespace std;

iTextEditor

= class A {
eThes
SecomdDgt 5 . o \ int 1i;

iRadioButtonList vy ‘MQY public:

First ltem Liint 1 = 0) =i(i) {
= 7| Coniwpen A{const A& a) { cout
iSlider . .

CSeipe? |- | Cusippen

1 Esapiord
'.- > '\-A"..n._‘ » {Napper class B {
min . A a:
public:

Menu Ok B{) { cout << "Bk"

T Sevprpent _.‘

Biconst BE h) { cout
Domain-specific B(const B& b) :a(b.a)
model (PIM) Fisslods iowcseme Generated source code

class 4 {
int i:

public:
Afint 1 = 0) :1iii) {
Af{const A& a) { cout

b

class B {

Trace model e

Bi{) { cout << "Bk" <<q
B{const B& b) { cout
Biconst B& b) :a(b.a)

Original source code (last state)

Background of Synchronization

Incremental synchronization = merging the changes

Detect changes: differencing
Textual (diff tool, general text file)
Abstract Syntax Tree (AST) differencing (language dependent)

Edit script (the output of differencing, sequence of atomic edit
operations: (INS, UPD, DEL, MOV)

Change propagation: manually or tool-aided

Modeling the source code with an AST model (that has a
corresponding AST metamodel)

to describe the platform-specificimplementation

AST model is comparable to the parsed source code

Syntactic elements of the language as atomic modeling elements

VMTS Round-Trip Concept

Last synchronized code (CO)

Changed
code (C1)

Pretty-print

Edit operations
Resolving conflicts

A 4

Changed

AST
model (M1)

AST patch <
(rewrite)

A 4

Changed
DSM

Synchronized
AST

Reconciled state

model

A

Conclusions: Pros and Cons

» Statement-level incremental synchronization
» Syntactical correctness is ensured

» Free moving between different representations of the system (code
and model)

» Enables iterative and incremental development

» Low-level synchronization technique, the high-level intentions of the
developer should be found out

» Complicated transformation rules (DSL - AST)

» Not trivial, how to handle the semantic conflicts without user
intervention

» Preserving comments and formatting info (white spaces) depends on
the parser and the pretty-printer

Generalization of the Approach

Eliminate hand written language specific code

parser + glue code (3rd party parser)
pretty-printer (Microsoft's CodeDOM)
edit script executer (model and CodeDOM tree patching)

General, language independent algorithms
tree differencing
conflict resolution

Solution: modeling the specific objects (AST metamodel)
define elements of the AST model
specify the textual syntax of each model elements
generate the specific code from these models
pretty-printer and parser can be constructed

il « ?
5y

Namespace

Member

TypeMember j Parameters Parameter
A l Pamoedamﬁmmm,jo— ParameterDedlaration J

Statement

_J

Namespace: SImports "\nnamespace" #Name "{\n" SType "N\n"
TypeDeclaration: "class" #Name (SBase ? ":" SBase) "{\n" SMember "}\n"
EntryPointMethod: "static void Main(string[] args) {\n" SBody "\n"

Model synchronization

Model synchronization

Model-based software engineering

Developers are working on several models
simultaneously
E.g., developing mobile applications
User interface model (without behavior)
Application behavior model (source code)

The two models describe different aspects of the
same system

Entire system is realized by combining these
aspects

Generation process by model transformations

Motivation

The developer often wants to change the
target artifact

The target and the source artifact will not be
necessarily consistent, synchronization is
needed

The modifications have to be propagated
back to the source artifact

Procedure of the development

) =ource mocdel

Q:) create’modify

]Il'j Source model Target model

generas

C) Source modal Targal model
modify

O OO

d) Source model Fargel model

Incremental model synchronization

The synchronization is implemented as two
unidirectional transformations
Transformation saves trace information
during the execution

The reverse direction uses trace information

Model synchronization

Forward transformation
’/’/_T\‘HH
|
Source_1 ‘il? Target_1

~ lrace Modifications
information

o

Backward transﬂormatimn

Source_2 Target_2

Modifications

Forward transformation

Source_3 Target_3

- @ Sun
(Tl [

—f-0rward Transformation

Fabe: from JAVA platform

[TextField from JAVA platform

| 2008.08.11

ed w_l

Textreld from JAVA p";t'b'ri

.U::':e]

date editor

Saving matched nodes

aving created nodes=—— —

Case study — Mobile Ul synchronization

egwin

5 from JAVA ciar"v:rr"’
[Tabel] —Backward Transformation

rom JAVA p!atfc:r'rl

date editor
2008.08.11

egwin

pm Symbian p er‘cm"

o @ Sun @)
[T Rec

L
[Seinghem |

f.abe? from JAVA platiorm

TexaField

I TextField from JAVA platiorm
—_

 2008.08.11

[TexFied

I Edwin from Symbian platiorm

Saving matched nodes

aving created nodes=——

Design patterns in DSMLs

Domain-Specific Model Patterns

Domain-specific model patterns

Design patterns for DSLs
The knowledge of domain experts

Solution to well-known domain problems
Relaxing the instantiation: partial model

Incomplete attributes
Relaxed multiplicities/cardinalities
Transitive containment

Constraint profiles
Relaxing the metamodel

http://vmts.aut.ome.hu

