MSDL Research

FLANDERS

MAKE I [E] &o2x2n.

- I University of Antwerp
I | Antwerp Systems & Software Modelling

University of Antwerp

% MEGill UE:L‘::%:: E'EI:-Jrl.f.l'.i:":'.l: -’ r--'- _

School of Computer Science ;

Modelling, Simulation and Design Lab

Pieter Mosterman Hans Vangheluwe
Sadaf Mustafiz, Levi Lucio Bruno Barroca Bart Meyers Joachim Denil
Bentley Oakes, Maris Jukss Simon Van Mierlo, Yentl Van Tendeloo, Istvan David, Claudio Gomes Ken Vanherpen

Qe TMGilnNe(slS , MAKE @) [E2Ar0

School of Computer Science University of Antwerp

ING INNOVATION NETWORK

.,u ()fO()f]nlrﬁ Ie\/aj@ o)f :J')’*"; a
MOST «Looroejrl(l&,rorm SIM(S
1C|tly Orlell_&lg-ors)cgﬁ eS

Enablers(domain=spegific,
NEIUUINGIME

HRasg

o| ?’rrrrlJL)rrnaﬂ 0N

\ - Ot‘!'
y L

Pieter J. Mosterman and Hans Vangheluwe. Computer Automated Multi-Paradigm Modeling: An Introduction. Simulation: Transactions of the Society for
Modeling and Simulation International , 80(9):433- 450, September 2004. Special Issue: Grand Challenges for Modeling and Simulation.

- FLANDERS
MCGlll n e ('S‘I S MAK E 0 ﬁt[v]ersp SyEtTe]m(s)& Software Modelling

School of Computer Science University of Antwerp

Bookmarks

' (-)nom Flle Ecit Yiew History

Ny eslEnrREGE20C REEL ArMHuHE

http://dsm-tp.org/

7, 4B Paper Warfare v (& @&

o . FLANDER
(&2 MCGlll n e (_S_! S 4 M ASKE @ U" ﬁt[v]erspgyzpm?&Software Modelling

School of Computer Science University of Antwerp

MANUFACTURING INNOVATION NETWORK

newDestination{enemyTracker.
getEnemyPos()); aimAtl(...)

AttackStrate
g}r/ t attack /

| AttackPlanner F-emomm- >
==hehavio r==

explore

Follow
Enemy

enemyPosChanged /
newDestination{enemyTracker.getEnemyPos(}); aimAt(..)

readyToShoot / shoot

oL) (oo

after(timeToReload)

QE MGl ne(s!s . MAKE @[B40 .

School of Computer Science University of Antwerp

MANUFACTURING INNO

3

AToM
Mog‘;?,l\gfsl\g Cyber-Physical Systems
T-Core Mechatronics DSE
Motif g utomotive
i uilding Automation
Foundations Pyth <)Sr¥I¥I9IIE_\1; | Smart Cities
S Railroad Transportation
sccD Blended User Interfaces
MUEMI Modern Computer Games

muModelica Modellinlg:nLgamggﬁ%e

privacy-preserving el
W%NTP

Applications

‘mé T McGill ne(gjs i MAKE O [Ansyme

Antwerp Systems & Software Modelling
School of Computer Science University of Antwerp

Analysis, Validation,
Verification, Testing
and Accreditation

Analysis and
Verification of Model
Transformations,
Debugging,
Instrumentation,
Tracing, etc.

¥ McGill ne(

School of Computer Science

Research Topics

Language Engineering

Domain-Specific Languages, Model Transformation,
Design-Space Exploration(web-based) Visual and
Textual Modelling Environments, etc.

Simulation

Co-Simulation, Discrete-event, DEVS, continuous
time,
a-causal (e.g., Modelica), physics-based (e.g., Bond
Graph), etc.

Deployment & Resource-optimized Execution

Platforms (e.g. AUTOSAR, CAN, etc.), Deployment-
Space Exploration, Virtualization, Models@run-time,
Efficient execution of model transformations, etc.

Model Management
and Process

FTG+PM, Safety (ISO
26262, Railway,
etc,), Agile Modelling,
Consistency
management,
Experimental frames,
etc.

FLANDERS

7 MAKE

O

(S!S

Ans mo

Antwerp Systems & Software Modelling

University of Antwerp

Schedule

09:00: Coffee at Hans' office (M.G.116)

09:30: welcome and high-level overview (Hans Vangheluwe)

09:40 - 10:00: Keynote: Riding the Line Between the Formal and Non-
Rormal in Modeling (Rick Salay)

10:00 - 11:10: Session on Modeling Language Engineering

10:00: Modelverse (Yentl Van Tendeloo)

10:10: Semantic Languages for Developing Correct Language Translations
(Bruno Barroca)

10:20: Modular Language Composition (Claudio Gomes)

10:30: Verification of Domain-Specific Models with ProMoBox (Bart Meyers)
10:40: Dynamic Structure Modelling for Causal Block Diagrams (Yves Maris)

10:50: 20 min discussion
11:10: coffee
11:20 - 12:20: Session on Simulation Techniques

11:20: PythonPDEVS (Yentl Van Tendeloo)
11:30: SCCD: a Statecharts and Class Diagrams hybrid (Simon Van Mierlo)

11:40: Discontinuity Propagation in Hybrid System Simulation (Claudio Gomes)

11:50: Co-simulation: Simulator Coupling Approaches (Claudio Gomes)
12:00: Debugging (Simon Van Mierlo)

12:10: 20 min discussion

12:30: lunch (sandwiches)

& = McGill Ne (S!S

School of Computer Science

13:30 - 14:40: session on processes and optimization

13:30: FTG+PM (Hans Vangheluwe)

13:40: Engineering Process Transformation to Manage (In)Consistency (Istvan David)
13:50: Tool and Contracts for the Co-Design of Cyber-Physical Systems (Ken
Vanherpen)

14:00: Experimental Frames (Joachim Denil)

14:10: Agility in the MBSE Process (Joachim Denil)

14:20: 20 min discussion
14:40: coffee
15:00 - 15:30: session on deployment/resource optimized execution

15:00: Deployment for AUTOSAR (Joachim Denil)
15:10: Activity in PythonPDEVS (Yentl Van Tendeloo)

15:20: 10 min discussion
15:30 - 16:00: session on model transformation

15:30: Efficient and Usable Model Transformations (Maris Jukss - Skype)
15:40: Fully Verifying Graphical Contracts on Model Transformations (Bentley Oakes -

Skype)
15:50: 10 min discussion

16:00: social event: beer tasting

FLANDERS

N\
8 MAKE @ G ﬁt[v]erspgipm?& Software Modelling

University of Antwerp

http://msdl.cs.mcgill.ca/people/hv
http://www.cs.toronto.edu/~rsalay/
http://msdl.cs.mcgill.ca/people/yentl
http://msdl.cs.mcgill.ca/people/bruno
http://msdl.cs.mcgill.ca/people/claudio
http://msdl.cs.mcgill.ca/people/bart
http://msdl.cs.mcgill.ca/people/yves
http://msdl.cs.mcgill.ca/people/yentl
http://msdl.cs.mcgill.ca/people/simonvm
http://msdl.cs.mcgill.ca/people/claudio
http://msdl.cs.mcgill.ca/people/claudio
http://msdl.cs.mcgill.ca/people/simonvm
http://msdl.cs.mcgill.ca/people/hv
http://msdl.cs.mcgill.ca/people/istvan
http://msdl.cs.mcgill.ca/people/ken
http://msdl.cs.mcgill.ca/people/joachim
http://msdl.cs.mcgill.ca/people/joachim
http://msdl.cs.mcgill.ca/people/joachim
http://msdl.cs.mcgill.ca/people/yentl
http://msdl.cs.mcgill.ca/people/maris
http://msdl.cs.mcgill.ca/people/bentley

MODELS 2014 8th Workshop on

7assi2its Multi-Paradigm
‘“afﬁ’?éﬁggrg “ - Sun September 28 through Fri October 3, 2014 Model I i ng (M PM)

Home
Frogram Welcome to the home page of the 8th International Workshop on Multi-Paradigm Modeling (MPM'14)!
Callfor Papers Multi-Paradigm Modeling (MPW) is a research field focused on solving the challenge of combining, coupling, and integrating rigorous models of some reality, at different
o levels of abstraction and views, using adequate modeling formalisms and semantic domains, with the goal to simulate (for optimization) or realize systems that may be
Submission physical, software or a combination of both. The key challenges are finding adequate Mode! Abstractions, Multi-formalism modeling, Model Transformation and the
. application of MPM techniques and tools to Complex Systems. MPM theories/methodsitechnologies have heen successfully applied in the field of software
Committees architectures, control system design, model integrated computing, and tool interoperahility. The seventh Workshop on Multi-Paradigm Modeling (MPM) is aimed at
furthering the state-of-the-art as well as to define future directions of this emerging research area by bringing together world experts in the field for an intense one-day
Important
workshop.
Dates
Contacts Organizers:
Previous o Daniel Balasubramanian, Vanderbilt University, USA
events o Christophe Jacquet, Supélec Systems Sciences, France
MoDELS 2014 o Pieter Van Gorp, Information Systems Group, TW/e, Metherlands
e o Sahar Kokaly MECSIS, Canada
o Tamas Mészaros, Budapest University of Technology and Economics, Hungary

2016 Bellairs CAMPaM workshop

Home
Welcome to the home page of the thirteenth Bellairs CAMPaM workshop.
Participants
The workshop aims to further the state-of-the-art in Computer Automated Multi-Paradigm Modelling (CAMFaM) as well as to define future
Bellairs directions of this emerging research area by bringing together world experts in the field for an intense one-week workshop.
Schedule The workshop will be held Friday 29 April (arrival) - Friday 6 May (departure) 2016 at McGill University's Bellairs campus. The actual workshop
starts on Saturday morning and continues for 5 full days (until Wednesday evening). Although it is possible to depart on Thursday, most participants
Manage leave on Friday to do some sightseeing on Thursday (in particular, to visit Crane Beach).

The workshop takes the Dagstuhl seminar format --bring a critical mass of top researchers together in a relatively remote location and soon new
ideas will flow-- one step further: the Bellairs facilities are relatively primitive (and cheap) and there are no distractions such as typically found in hotels,

Organizers:

o Hans Vangheluwe, Department of Mathematics and Computer Science, University of Antwerp, Belgium, and
School of Computer Science, McGill University, Canada.

o Pieter Mosterman, Real-time and Modeling & Simulation Technologies, The MathWorks, USA and

é School of Computer Science, McGill University, Canada.,

delling

DSM TP 2016 7t International Summer School Geneve, Switzerland

Theory and Practice on Domain-Specific Modeling 22-26 August
DSM-TP 2016 Home AYEICOIMEs|
Summer School Program The DSM-TP International Summer School provides an opportunity for learning and discussion about
Domain Specific Modeling.
Speakers

The School takes place from the 22nd till the 26th of August 2016 at the Université de Genéve in
Switzerland. This year the Summer School is organized by the Software Modeling and Verification Group
< : (Genéve, Switzerland) (SMV) in close collaboration with the Modelling, Simulation and Design lab (Antwerp
Redgistration Belgium and Montreal, Canada) and the Departamento de Informatica (Portugal), who organized the
ECTS s previous editions of this Summer School.

accreditation

Call for Posters

Find us on
facebook

Over the last decades, the complexity of systems we study and design (such as Cyber-Physical Systems) has grown exponentially.
Contact Information To manage this complexity, industry and academia now explicitly model different aspects of the structure and behaviour of systems,
at the most appropriate level(s) of abstraction, using the most appropriate modelling formalism(s).

Location

Welcome to Genéve [The Topic |

Travel Information

Previous Editions

Dedicated modelling formalisms, also known as Domain Specific Languages, are used increasingly to maximally constrain the

http://dsm-tp.org

QE EMGill Ne(S!S ,, MAKE @[S40

School of Computer Science University of Antwerp

MANUFACTURING INNOVATION NETWORK

http://dsm-tp.org/

Www.mpm4cps.eu

Welcome to the COST Action IC1404 Multi-Paradigm Modelling for Cyber-Physical Systems

o1 ABOUT

Mission - Organization - Become a member!

o2 ICT COST Action 1C1404

Introduction - Memorandum of Understanding

03 DOCUMENTS
Newsletters - Dissemination Materials -
- Calls (STSMs, Schools, etc.) -
- Internal Reports and Minutes -

- Administrative Information

o4 NEWS AND UPCOMING EVENTS

os USEFUL LINKS
Contacts - Related Projects -
- COST Administration (E-COST) -

- Partner COST Actions - Related Events

o6 INTERNAL SERVICES
Management Commitee (MC) -

- Administrators (Zope management)

COST is supported by the EU Framework
Programme Horizon 2020

ANNOUNCEMENTS

Do you feel you can contribute to MPM4CPS?
Become a collaborator! Fill the form.

The reports of the 2015 STSMs can now be
consulted here.

EVENTS

MPMA4CPS 1st Training School at Tallinn
University on the 21-24 March, 2015. READ
MORE

MPM4CPS WG meeting will be co-located with
CPSWeek, and will take place at Vienna,
Austria, on the 15-16 April, 2016. More details
to be known soon!

http://www.mpm4cps.eu/

/l‘ /Open Innovation with Open Source MBE)
Papyrus IC DY

A e
Papyrus IndustrlaI.Consortlum Q@ DSML
Research/Academia | XEMF Compare
End user 0. E
EGit EGerrit
* Research &} € cor %
Promotion of research projects = eclipse =t
Better access to research funding Acadenic

Research collaborations
Better access to industrial problems
Possibility to interact with the industry on the development of relevant solutions
Facilitate tech transfer
Facilitate the recruitment of new students
o0 Students are motivated by industrial interactions/collaborations
* Teaching
+ Sharing of teaching material
o Itis very time consuming to develop quality teaching material
o Establish a critical mass that will ensure better quality and stability
+ Collaborate between universities and with the industry on course projects
+ Consortium provides “rover” for class projects

+ + + 4+ + + +

FLANDERS

€ T MGill ne(s!s . MAKE @) [0

School of Computer Science University of Antwerp

M—_AKE some Projects/Funding/Collaborators

MANUFACTURING INNOVATION NETWORK (academ|c CO”ab()rat(') rsS nOt ||Sted)
—)
MODEL WRITER http://www.cost.eu/COST Actions/ict/Actions/IC1404
~ http://www.mpm4cps.eu

http://www.modelwriter.eu/

ne¢s!s MBSE®

http://www.necsis.ca/ P — http://www.mbse4mechatronics.org/

LSMISEMENS “Math Orks® m
NSERC i T
P
Q== fwo BT wus.?)

FLANDERS AnS mo

‘mé "McGill N@(S!IS 1z MAKE @) [E] 50 e

School of Computer Science

/\ AUTODESK

http://www.necsis.ca/
http://www.cost.eu/COST_Actions/ict/Actions/IC1404
http://www.mbse4mechatronics.org/
http://www.modelwriter.eu/
http://www.mpm4cps.eu/

Session 1

MODELLING LANGUAGE
ENGINEERING

FLANDERS

Q€ T MGill ne(Sls . MAKE @) [5me ...

School of Computer Science e o wowon o S WSS University of Antwerp

Modelverse

Yentl Van Tendeloo
Universiteit Antwerpen
yentl.vantendeloo@uantwerpen.be

FLANDERS

Qe T MGill ne(S!S ;s MAKE @[22 e

School of Computer Science University of Antwerp

Modelverse: Motivation

Place [Jlf Transition Place Jpueee Transition
\\ 4
\\ /
N /7
/

. FLANDERS
té t‘h“;’ MCGlll n e (S! S 16 mu WAW!sNEE @ . ﬁt[v]ersp SyEtTe]m(s)& Software Modelling

School of Computer Science University of Antwerp

Modelverse: Explicit Type/lnstance
Relation

> Class

Place Transition

FLANDERS

‘ﬂ’é MCGlll n e C'S‘ S 17 MAKE @ AAt[v]s:JSyrtT]mo&S feware Modelling

School of Computer Science rsity of Antwerp

Modelverse: Multi-Conformance

—LEONT, >
—MMCL, MMCLg —
fLCONFa
LCONF}
lLconr, LT Mg
LTM,
V\LQNFL%
| L.T_M L Iconr, ™ / pconit | M
Linguistic Physic
tﬂé MCGIH nec&S 18 ﬁDXKE @

Sh ol of Computer Scie

Ansymo
A w pSy tems & Software Modelling
nnnnnnnn ity of Antwerp

Semantic Languages for Developing
Correct Language Translations

Bruno Barroca
McGill University
bbarroca@cs.mcgill.ca

FLANDERS

‘Wé "McGill N@(SIS s MAKE @[22 i

ShlmeptS nnnnnnnn ity of Antwer p

DSL + MDD

WM

=S
Textual
Requirements

7223

— DSLs restrict possibility of making

errors

Fncapsﬁlal
Petrinet:

‘“’1 fwm"sl :
— Model-Driven Development (MDD)

| l : G-é:w Petrinets 1 1
| i S {_J — Rapid Prototyping
| | e — Properties guaranteed by
| ldé-mula .
L | &f—J o construction
CheckGogtinuous
\ | | — Software and Systems Certification
I SCTW
*::f ﬁ;;; - the Push-Button?
il o _/
ﬁzm:mm,

FLANDERS

R
mé N MCGlll n e CS.‘ S 20 MMUPOIO(MLEo 0 é?fgisﬂﬁzf%%é rSpoftware Modelling

School of Computer Science

DSL Semantics in the Push button

[[]] PS5t 2 — How to define semantics for a

Model | DSL bsL?

[[Model]] PSt » [[t (Model)] BxP

Model t Coder
P

[[1]5

v
TraceExr

FLANDERS

té MCGlll n e CS\ S 21 MAKE 0 AAt[v]SpSyrtnmo&s feware Modelling

School of Computer Science

Other ways for Specifying Semantics?

Modular Design of Hybrid Languages by
Explicit Modeling of Semantic Adaptation

- Rea d th e pa pe r: “ M Od u I a r Sadafl Mustafiz Cliudio Gomes Bruno Barroca
sudaf @cs.megill.ca claudio, gomes@ uasigprnen he hhorres o @ cx ool
€S g ° yb d a g u ag es by l"\‘.‘k‘("‘l Towards Modular Language Design using
EXp||C|t MOdellng Of Semantlc) Language Er:\gmonts:s'fll;deyll_vbrld Systems Case

Adaptation”

— And: “Towards Modular
Language Design using
Language Fragments: The

Hybrid Systems Case Study”

1 Introduction

A by

— Use of State Charts to define

the simulator/interpreter of a

language in a modular way:
FSM, CBD, FSM+CBD

‘%g McGill N@(S!S ,, MAKE @) [T i

School of Computer Science University of Antwerp

DSL Semantics outside the Box?

L

[[1]°°a {axiom}

axiom a pre — Pos

— How to be sure that we got what

we really wanted?

Model t CodeP
P
[[1]Ps- [[1] =*P
V. oY
TracePst ~ TraceExP

‘Wé “McGill Ne (S!S

Sh ol of Computer Scie

FLANDERS
23 MAKE @ AAt[v]SpSymmo&S ftware Modelling

Already done..

— Read the paper: “Semantic Languages
for Developing Correct Language T TS S —
Translations”

— A tool was developed in EMF/Prolog

— https://qgithub.com/qgithubbrunob/DSL TransGl
-

/tree/master/SOSBuilder

[tree/master/dsltransAnalysis

RE TMGIl NE(SIS ,, MAKE @) [G4me

School of Computer Science

https://github.com/githubbrunob/DSLTransGIT

SOS Language for the rescue

DSLTrans

Metamodel

refers to

DSLTrans

conforms to

refers to

]

Target

Ansymo

Antwerp Systems & Software Modelling

Model Metamodel
conforms fo \ Symbolic state conforms to
arge
padlle
Produced by Produced by
Source Target
Pattern TS Pattern TS
Produced by Produced by
refers to refers to
conforms to NOM conforms to Tcrge‘l'
Metamodel SOS Model
M G. FLANDERS 7 N\
¥ McGill ne(s!s (5] &
\\5/
—— 25 MURINGANNDKNLE k J

School of Computer Science

University of Antwerp

Ability to detect errors on the translation...

occupies gca 1 hasCell
(L] Agent bottom1 [T ?x:Emt (01—] left &
T name : EString 0.1 S v Ent 01
top 1 D & - right
JARA 0.1 hasSceng
hasInventory 0.1) i
- occupies B worldMap
H Hostile A
H Inventory © Object
T name : EString
H Friendly

hasltems

1
opens

hasworldMap

b B8
Z =
¥

McGill ne (51 S

School of Computer Science

26

MAKE

H Hero
L hero(id1,{}) m({(id1,1), .. 0}) hero(id1,{}) m({(id1,1), .. 0})
€3 NonPlayableCharacter hashero g at ab id8 id7 at ab id8 id7
o = RPG hero(id2,{}) m({(id2,1), .. 0}) hero(id2,{}) m({(id2,1), .. 0})
hasAgents ak id9 ak id9
hero(id2, {idk}) m({(id2,1),(idk,1), .. 0}) hero(id2, {idk}) m({(id2,1),(idk,1), .. 0})
ab at (s id9 ab at 18 id9
hero(id1, {idk}) m({(id1,1),(idk,1), .. 0}) hero(id1, {idk}) m({(id1,1),(idk,1), .. 0})
al id6 al id6
hero(id3, {idk}) m({(id3,1),(idk,1), .. 03) hero(id3, {idk}) m({(id3,1),(idk,1), .. 0})
L ~~ 4
FLANDERS

Ansymo

Antwerp Systems & Software Modelling
University of Antwerp

Next steps on DSLTrans+S0OS

— Current notion of minimality

— Generate model sources based on the assumption that each
transformation rule was: (0) not executed, (1) executed once.

— We assume that ‘Executed once’ is no different from ‘Executed many
times’
— EXxplore/develop notion of minimality

— Restrict match/apply pair generation to conforming to the source
metamodel
— Restrict match/apply pair that:
— produce a non-empty transition system on SOS

— explore/triggers all axioms defined in source SOS

— Automatically Generate transformation rules, and transformation rules auto-

fix!
FLANDERS

@€ T MGill ne(sls , MAKE @[22

School of Computer Science University of Antwerp

Next steps on SOS

— Analyze finiteness of a SOS
semantics

or

— Ensure finiteness by
construction?

‘mé McGill ne(s!S

School of Computer Science

Assuming
Qoldmarking-—»Q@nameX-—»Qnewmarking in Transition_System,
in(Q@t,Model)=true,

positive(
subtract (
build (
pre (Qt)
)
@newmarking
)
)=true
Then
@newmarking-—»
buildString (Q@t.name) —»
add (
build (
pos (Qt)
)
subtract (
build(
pre (Qt)
)
@newmarking
)
) in Transition_System
Where
newmarking, oldmarking: markingsort;
t : class("petrinet","Transition");
nameX string;
FLANDERS

s MAKE

MANUFACTURING INNOVATION NETWORK

) Ansymo
\J & Antwerp Systems & Software Modelling

University of Antwerp

Modular Language Composition

Claudio Gomes
Universiteit Antwerpen
claudio.goncalvesgomes@uantwerpen.be

FLANDERS

Qe U MGl Ne(S!S » MAKE @) [

School of Computer Science ty fA tw p

Heterogeneouity in Languages

FreeFall

Initializing

v_0

x_0

o) @ID

Motor and
window
mechanics

X H——

Control Logic
(FSAS)

neutral

otor=0
[down £= 0.5]
[down s0.5]| \lup <0.5]

controller

up >=0.5] [motor,

force

up ac_motor

+

Y

[force =/100]

down
w > enter:
otor = -1 friction
emergency
FLANDERS
T McGill] &Y Ansymo
¥/ 30 Antwerp Systems & Software Modelling

School of Computer Science University of Antwerp

De-constructing an Hybrid Language

FreeFaII

(’7»@

kick

Initializing

O
O

[when x+-]

Collision Kmk |

S-m-a|3- @%r@

[currentCompldx = size{strongComponentList)] /
clock = clock + delta

[(currentCompldx<size(strongComponentList))]

/ currentCompldx
= currentCompldx + 1

Initialize

OnEnter:
clock =0

[currentComponentisCycle()]
/ cbdController-=computeNextAlgebraicLoop
(strongComponentList[currentCompldx], iteration

CheckNextComponent

CheckTerminationCendition

! currentCompldx = -1

[not maxlterationsReached()]

LS [maxlterationsRgached()]
[lcurrentComponentlsCycle()]

Vf cbdController-=computeNextBlock(strongComponentList[currentCompldx], iteration)

Initialize_Step

CBD_SimulationComplete

Check [not currentState fina

On Enter:
/ logicalTime =0, currentEvent = [selectedTransition = null] /
delta = delta i i logicalTime = logicalTime + delta
' getCurrEvent(logicalTime), g g ; Processin
cu;:i’:jflt?;ﬁs'tate selectedTransition = elapsed = elapsed +delta 9 @
getTrans(currentEvent, [selectedTransition = null] /
currentState = selectedTransifion.target,
emergency

elapsed =0
currentState, elapsed)

[currentState.final]

FLANDERS)
MCGlll n e (S_! S 31 M AK E @ G ?t[v]eﬁxygm?& Software Modelling
: " niversity of Antwerp

MANUFACT

School of Computer Science

Language Specification Fragments (LSF)

replace
Class <p— Class
— —
, |
Function M AC
R —

Class M Subclass
R — T
state |29 cBeD

Subclass

Class H
—
Statechart } {shce
"
Class extpnd

FSA

FSA

Subclass \

Class

Statechart \

State build

Z F McGill ne

School of Computer Science

—

LL

n

2
guard~a.. E

(J]

| Initial ‘ Event | Time g
v e"'e”tl 0.1 value:Float ©
State -
298 | Transition |trans T_FSA g)

name: String * 3
final: Boolean [sgurce— L_hame: String]
states| * =
©

-

L Check

On Enter:
/logicalTime =0, currentEvent = [selectedTransition = null] /
delta = delta, getCurrEvent(logicalTime), logicalTime = logicalTime + delta,
currentSt;tg = selectedTransition = elapsed = elapsed +d_eltj —
model.initState,
elapsed =0 getTrans(currentEvent,

[currentState final]

32

(Si1s

currentState, elapsed)

T
[not currentState. final

[selectedTransition != null] /
currentState = selectedTran
E

FLANDERS

MAKE

MANUFACTURING

Ansymo

Antwerp Systems & Software Modelling
University of Antwerp

INNOVATION NETWORK

Constructing an Hybrid Language

Expression Initializing
Block

v_0
ﬂ:{esslcnl \'L\ ®_’|E
name: String

FreeFall
x_0
(I: .
; When [“—| Event *——9429condition o 0 IE @
eventlﬂ..l
arget

CED _ State Transition [transitions o £y MhenHW Kick Q)
g name: String [ourCE = - Stri

name: String name: String

Collision Kick
final: Boolean >

=

:

(=

v v

[
states| * o RAIN + |,
mlsro B (x.y) :snapshotat macro x and micro y O<v
n . 0<=i
> : control transfer eN
5E (m'ym) 205k
bES (k,0) (k+1,0)
i macro m;cro
ML (glast) micr
(g+1,last) .
L (0,last)
~1
1
13
/
ots > cTs >
(+1.0) macro (0,0) macro
L -
Mwovn_chid_nisalzed = false Ifsa_curentstatofinal I S
| B { Torminated
i) H Qmor\\ \'_TQayoﬁeachul
& Je— o |
st P S o] D D voren.chid_ialced = tve []
riadoscatnal " I e @ icoms @

‘ s T
Wgsconl sa_selectedTransiion =

Y ebota e e

o secosTnston = o curenSi, CBDSut) : - _‘L-" g W) e resereres

sa 1 v U o 1 cbd_model = fsa_currentState.cbd 2 - 1 cbd_currentCompldx = 0,

vsuuﬂ rs,wmmn } fea_elapsed) |-l =fsa_ ;) o b depGrapt
L i) 2 m .ok = il oS oot w';%menepﬁmwwd,memm\
1 woven_child. m.uan;gg,yuk\)—*" — —7-, o - [nolwovm riialized) mo cheieraton = cod_eraton + 1 o ——6_strongComponentList =
. s = - createStrongComponents.
T @ oven_cHid_Ized] S = (cbd_depGraph, cbd_teration)

; L)

. it o6 cumanCompld >= szefc_stongCamponenist) —
selectedTransition target, / 0O\ OF @

s s sostrrson o0t I 1o Sttt TR T

pmsiEvﬁn\Njn cyrentEvent),
fsa_currentEvent = \
gmrunmmuw |ng§.an ime),
fsa_selectedTransilon =
‘geTrans{isa, curentEvent

i, e doses o W""""" > (WcroSiepPreparsd)
i o)
11 (fsa_s selociadTrans N -

triggeredTransChd =_—

»_currentState) f currentCompidx < size(cbd_strongComponentList]
£ block = cbd_strangComponentListigbd_currentCompidx]
‘computeBlock(block, self.cbd_iteraltion)
cbd_currentCompidx = cbd_curerkCompldx +1 /

o, saloctodTransilon = thggeredTransChd

& TMGill Ne(S!S 5 MAKE @0,

School of Computer Science University of Antwerp

MANUFACTURING INNOVATION NETWORK

The Big Picture

Check.
_./" onEnter:
7 curentevent =

| e
_currentState, elapsed)

U curenitate o]

Instrumented
Canonical OS 1

Instrumented
Canonical OS 2

Non-Modal
0S 2
: FLANDERS [/ ‘ Ans mo
{CDITID@&d OS] MAK E @ & Antwerp¥ystems & Software Modelling

University of Antwerp

Re-construction

& " McGill Y

School of Computer Science

MANUFACTURING INNOVATION NETWORK

Thank you!

- Ugaz, Rafael. Weaving of domain-specific languages: A literature review. 2014.
- Ugaz, Rafael. Weaving of domain-specific languages: Enabling technology. 2014.
- Ugaz, Rafael. Combination of Domain-Specific Languages. 2015.

- Amalio, N., de Lara, J., and Guerra, E. Fragmenta: A theory of fragmentation for MDE. In Model Driven Engineering
Languages and Systems (MODELS), 2015 ACM/IEEE 18th International Conference on (2015), 106—-115.

- Denil, J., Meyers, B., Denil, J., Meyers, B., Meulenaere, P. De, & Vangheluwe, H. (2015). Explicit Semantic Adaptation of
Hybrid Formalisms for FMI Co-Simulation. In Society for Computer Simulation International (Ed.), Proceedings of the
Symposium on Theory of Modeling & Simulation: DEVS Integrative M&S Symposium (pp. 99-106). Alexandria, Virginia.

- Mustafiz, S., Barroca, B., Gomes, C., & Vangheluwe, H. (2016). Towards Modular Language Design Using Language
Fragments: The Hybrid Systems Case Study. In Information Technology - New Generations (ITNG), 2016 13th
International Conference on (pp. 785-797). http://doi.org/10.1007/978-3-319-32467-8 68

- Mustafiz, S., Gomes, C., Barroca, B., & Vangheluwe, H. (2016) Explicit Modelling of Semantic Adaptation for Hybrid
Systems using Modular Language Design. In Proceedings of the Symposium on Theory of Modeling & Simulation: DEVS
Integrative M&S Symposium (p. to appear). Pasadena, CA, USA

‘iwé T McGill N@(SIS ;5 MAKE @) 820000

School of Computer Science University of Antwerp

http://doi.org/10.1007/978-3-319-32467-8_68

Verification of Domain-Specific Models
with ProMoBox

Bart Meyers
Universiteit Antwerpen

bart.meyers@uantwerpen.be

FLANDERS

‘mé "McGill N@(SIS 3 MAKE @) [5F 20000 e

School of Computer Science N oo momion wvon e WSS Universit y of Antwer, p

Properties for DSMLs: State of the Art

|]

O({{goDAup) v & floorOvidle)) — ((—(floor0)v—(floorOv

idle VU ({ floorDvidle)A(({ floor0)v—| floorOvidle) A((floorODv
idle) A ((—{ floorD) v = floorD v idle)) A{(floorD v idle) A

({(floor0)v—(floorOvidle) U ((floorOvidle)A(—(floorO}(floorOv
idle)) 1NN NVO [{gol Aupl Adown)V Q[floorl vidle)) —
([={floorl) =i floor1vidle) W[(floorlvidle) A{{(floorl)v

=(floor 1 vidle)) U((floor1vidle) A(({—(floorl) v —(floor1v
idle) \U({ floor1vidle)n(((floor 1)v=(floor Ividle) | (floor1v
idle)A(—(floor1 U(floor1vidle)))))))))))vO({((go2Adown2)v

O floor2vidle)) = ((—(floor2)v—(floor2vidle) U((floor2v
idle)A(((floor2)v—(floor2vidle) ([floor2vidle)n((—(floor2)v
= floor2 v idle) 4 ((floor2 v idle) A (({ floor2) v —(floor2 v
idle))U({ floor2vidle) A —(floor2)U(floor2vidle)))))))))))

‘w FLANDERS
%é N MCGlll n e CS! S 37 Mu PDIO(NLEO 0 ﬁt[v]ersp SyEtTe]m(s)& Software Modelling

School of Computer Science University of Antwerp

Properties for DSMLs: Property DSML

reachesFloor

forall E after (1_62 eventuallyl 3é

FLANDERS

‘mé "McGill N@(S!IS 5 MAKE @) B8 5000

School of Computer Science

Properties for DSMLs: Five Languages

Multi-Paradigm Modelling of DSMLs

| ¥ eefEnARhkv2 0
| _
reachesFloor

e n AP MunE
T - ‘
E 1 i eventually L = -—\.,
, P e e

ﬂf ——[x r

f

DSM

Formal Methods 1

vrﬁ-

.trail

& ¥ McGill Ne (S!S MAKE @

Ans mo
39
School of Computer Science

Atw pSytm&SftW e Modelling
rsity of Antwerp

Properties for DSMLs: Consistency

Annotations

*
|
|
|

reachesFloor

forall after eventually
DSM

Formal Methods q F
.Ext
.1tl .pml Spin

.trail
R TMGil NE(SIS . MAKE @[S

School of Computer Science

Ans mo

Antwerp Systems & Software Modelling
University of Antwerp

Properties for DSMLs: Testing

FLANDERS

‘”’é MCGlll n e ('S'w S 41 MAKE 0 AAt[v]SpSyrtnmo&s ftware Modelling

School of Computer Science

Properties for DSMLs: Testing (Approach)

user-defined metamodel
[generated metamodel
[__] generated instance model
user-defined instance model
¢ > generated transformation
<> user-defined transformation
&— transformation (language level)
——3p= inputioutput (language level)

€_genTesting) nProMoB

—— input/output
====* conforms to

OpeningDoors

| B

e

" McGill Ne (S!S

School of Computer Science

42

(F ngrnuTuK‘:m D

FLANDERS

MANUFACTURING INNOVATION NETWORK

Vm‘
N/

Ansymo

Antwerp Systems & Software Modelling
University of Antwerp

Conclusion and future

ProMoBox

- Annotations
- DSML generation
- Generic semantics

Model Checkingjiild Testing

[SYN] Property Template [SYN] Test Template

+ +

[SEM] Generic Promela compiler [SEM] Generated operational
semantics

FLANDERS

e T MGill nNe(S!S . MAKE @[22m0 e

School of Computer Science rsity of Antwerp

Publications

— Bart Meyers, Joachim Denil, Istvan David and Hans Vangheluwe. Automated Testing Support for Reactive
Domain-Specific Modelling Languages. Submitted to International Conference on Software Language
Engineering (SLE '16), 2016.

— Bart Meyers and Hans Vangheluwe. Modelling Language Engineering to Include Temporal Properties in
Domain-Specific Modelling. Submitted to Transactions on Software Engineering, 2015.

— Romuald Deshayes, Bart Meyers, Tom Mens and Hans Vangheluwe. ProMoBox in Practice : A Case Study on
the GISMO Domain-Specific Modelling Language. In "Proceedings of the 8th Workshop on Multi-Paradigm
Modeling (MPM 2014)", CEUR Workshop Proceedings, vol. 1237, p. 21-30, 2014.

— Bart Meyers and Hans Vangheluwe. A Multi-Paradigm Modelling Approach for the Engineering of Modelling
Languages. In "Proceedings of the Doctoral Symposium of the ACM/IEEE 17th International Conference on
Model Driven Engineering Languages and Systems"”, CEUR Workshop Proceedings, vol. 1321, p. 1-8, 2014.

— Bart Meyers, Romuald Deshayes, Levi Lucio, Eugene Syriani, Manuel Wimmer and Hans Vangheluwe.
ProMoBox: A Framework for Generating Domain-Specific Property Languages. In "Proceedings of the 7th
International Conference on Software Languages Engineering (SLE 2014)", Lecture Notes on Computer
Science, vol. 8706, p. 1-20, 2014.

— Bart Meyers, Manuel Wimmer, and Hans Vangheluwe. Towards Domain-specific Property Languages: The
ProMoBox Approach. In "Proceedings of the 2013 ACM Workshop on Domain-specific Modeling”, p. 39-44,
ACM New York, NY, USA, 2013.

tﬂg T McGill N@(SIS . MAKE @) [T8200m0 e

School of Computer Science University of Antwerp

Dynamic structure modelling for Causal
Block Diagrams

Yves Maris
Universiteit Antwerpen / McGill University
yves.maris@student.uantwerpen.be

FLANDERS

@€ U MGl Ne(s!S s MAKE @) [

School of Computer Science

Problem

— EXxpressiveness limited by fixed structure
— Changing model during simulation

— Staying consistent with CBD constructs

FLANDERS

@ T MGill nNe(S!S s MAKE @[22 e

School of Computer Science ty fA tW P

Solution

— Addition of structure block
— Instantiation of new components
— Operations for removal
— Reinitialisation

— Triggered by event

FLANDERS

@ T MGill ne(s!s ,; MAKE @[22

School of Computer Science University of Antwerp

Examples

Removal
Reinitialisation
B
+
NG
B C
B
c L
ouTt 1
E
L
1
E i
> o L I; i ConstantCBD
F
s F
ConstantCBD
- s
— ot fle—w
Ny — Rt

Q& MGl ne(s!s ., MAKE B[4

Antwerp Systems & Software Modelling
School of Computer Science University of Antwerp

Case Study

— Balls in elevator
— Doors open when elevator reaches floor

— Balls can enter and leave elevator trough door

FLANDERS

@ MGl nNe(S!S ., MAKE @[22m0 e

School of Computer Science University of Antwerp

Session 2

SIMULATION TECHNIQUES

FLANDERS

‘mé "McGill N@(SIS s MAKE @[22 i

ShlmeptS nnnnnnnn ity of Antwer p

PythonPDEVS

Yentl Van Tendeloo
Universiteit Antwerpen
yentl.vantendeloo@uantwerpen.be

FLANDERS

@ T MGill ne(S!S 5 MAKE @[22m0 e

School of Computer Science rsity of Antwerp

PythonPDEVS: Positioning

User-friendlingss

A
-

Performance

FLANDERS

té MCGlll n e CS‘I S 52 MAKE 0 AAt[v]s:JSyrtT]mo&S foware Modelling

School of Computer Science rsity of Antwerp

PythonPDEVS: Performance

Traffic Traffic
1000 T T T T T
100
adevs el
10 CD++
—_ . DEVS-Suite
> e MS4Me
£ 4 2 PyPDEVS (CPython)
35 3 PyPDEVS (PyPy) @
5} S vle I
X-S-Y (CPython)
0.1 X-S-Y (PyPy) mliom
PowerDEVS wsps
0.01
0.001 e
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Road segments

Road segments

o
MANUFACTURING INNOVATION NETWORK

School of Computer Science

. FLANDERS /7 ‘
mé ‘:;‘“ MCGlll n e (S_‘I S 53 M AK E @ G GAnF[v]erigyEme?& Software Modelling
. niversity of Antwerp

PythonPDEVS: Features

Mg Resp,
a) [\
e %IIO” SFgone®

s, a/,,,g “\“ \““

& MGl Ne(sIS

of Computer Scie

PythonPDEVS: Future Work

1
1 1 1 1
House Road Traffic light Road Commerce
Generat Queue i m Queue fad Queue
Ll

_

= Processq — Process = Collecto

g

—

=1 Queue N

— Queue

. FLANDERS /7 ‘
t’é ‘t‘!&;‘f’ MCGlll I | e ‘(S! S 5 5 M A K E @ G GAnt[v]erSp¥y%]m?& Software Modelling
MANUFACTURING INNOVATION NETWORK niversity of Antwerp

School of Computer Science

SCCD: a Statecharts and Class Diagrams
Hybrid

Simon Van Mierlo
Universiteit Antwerpen

simon.vanmierlo@uantwerpen.be

FLANDERS

‘mé "McGill N@(S!IS s MAKE @) [B8 2000

School of Computer Science

Complex Timed Autonomous Reactive
Systems

Behavior
 Timed
o Autonomous

e |nteractive

* Hierarchical

Structure

» Dynamic

* Hierarchical

Design? Statecharts + Class Diagrams = SCCD(XML)

€ MGl nNe(s!s 5 MAKE @) [

School of Computer Science

CcD

SC

nght-chck

bal.'—created

Cl

" running
reate_ball

H . i window-close /
MainApp Window delete(balls) stopped
f Ball
Button -
. -color: String
-text: String -pos: list
-vel: list
SC Sc left-click ~cli
P eft-clicl left-click drag
.. bouncing selected dragging
unselected selected
release
hd
'. oD
\ b2: Ball
wl: Window PR -color: "yellow"
<<instance-of>» . ; . -pos: [71,60]
A -color: "black -vel: [0.0, 0.0]
-pos: [10,51] 5 ‘
-vel: [0.74, -0.23]
Erpm—— [pe——— 7% BouncingBalls - Cr X ! la .
= Create Wendow B SCR left-click left-click
O drag
] ° . release
® P 'SCR

left=click left-click

bouncing selected dragging

release

FMcGill Nees!s

School of Computer Science

FARY I S III\)

Antwerp Systems & Software Modelling
University of Antwerp

MAKE) 1S4

58

SCCD Compiler

Language Javascript |
Threads
c#] Stateshart § T TRTTTTTtmomttoos :
R B —
>
|Compiler OptionsHPlathfm S Gameloopl time
Eventloop UI Event Loop
Semantics rraaasaaraaaas [P wrrrmearraaaaaaas
Statechart | AR LEEEEREEE LR o event
event : H : : . : :
Big Step Intelir;all. Event D .:I I:I _ . :I
Maximality freline .
7S time
Game Loop
Take Many |Queue‘ |Next Small 5tep| f e e gemmepememmm - .
Take Dnel Statechart ,delayed | . .
|Next Combo Stepl event lpf,o.‘f?ss'ng JOR S '
S N T Tl ¥ 1
Input Event A event A A A ¥ 3 . >
Lifeline s processing time
| First Small Step | |Whole| | Source-Parent |
|First Combo Step| | Source-Child |

MCGlll n e (S‘I S 59 WDEKKE @ U’ ﬁtoeﬁg)s/ymm?&%ftware Modelling

School of Computer Science University of Antwerp

MANUFACTURING INNOVATION NETW

SCCD in and for Unity, a Commercial

Game Engine

Sensors
Analyzers A
____________ 2
Memorizers s
____________ g
Strategic Deciders g
____________ I|D
Ak
Tactical Deciders 7|5
____________ °
Executors ®
____________ -

Actuators

[¢]
o
o
°
g
=1
o
-
[=]
5
(7]
<“01

Tank Wars

parallel_container

-
fixed-update/rotateLeft

rotating

arrow-left-released

arrow-left-pressed arrow-right-pressed

arrow-|eft-released

arrow-right-released

TR arrow-left-pressed

N
fixed-update/rotateRight

. J
shooting ammo)
arrow-up-pressed/shoot shoot/launchBullet
- <>
arrow-up-released ‘ AFTER(this .reload_time)/loaded
loaded/shoot
o J

B

ol

Glenn De Jonghe. A visual modelling environment for Statecharts and Class Diagrams
in Unity. Master Thesis, University of Antwerp, 2015.

]

¥ McGill ne(s!S

School of Computer Science

60

FLANDERS

MAKE

NETWORK

MANUFACTURING INN

(| o

Ansymo

Antwerp Systems & Software Modelling
University of Antwerp

SCCD: The Future

— Conformance

— Initialization/Destruction
— Exceptions
— Dynamic Loading of SCCD Models
— Interfaces/Contracts: Protocol Machine

— Subtyping

— Events as Objects

havi C. Hansen, E. Syriani, and L. Lucio. Towards Controlling Refinements of Statecharts.
— Behavior = = = = = = = Software Language Engineering Posters. SLE 13

— Object Referencing

— (Domain-specific) languages built on top of SCCD
— Hierarchical Interactions

— Process Languages

— De-/re-constructing hybrid languages

Sadaf Mustafiz, Bruno Barroca, Claudio Gomes, Hans Vangheluwe. Towards Modular Language Desig7n Using Language
Fragments: The Hybrid Systems Case Study. Information Technology: New Generations, 2015, 785-79

‘iwé T McGill N@(SIS & MAKE @[22

School of Computer Science University of Antwerp

Discontinuity Propagation in Hybrid
System Simulation

Claudio Gomes
Universiteit Antwerpen

claudio.goncalvesgomes@uantwerpen.be

FLANDERS

€ U MGl Ne(S!S . MAKE @) [

School of Computer Science

Discontinuities

FLANDERS

‘Wé "McGill N@(S!IS & MAKE @) B8 20000

School of Computer Science

Impulses
\(E,)

r >
A A \
T [\ 1) T f(t) |
71 t;_ r t1 o) |
t1 1o e
A A
e = At
d
| ‘—1— 7 / > I,-E o [m(u(e,)) fe (—’Ma%]
t /! 5(vto)dv:{1 <t | b oL Cott) - = j “r ety o)
o 0 otherwise £

FLANDERS

té @ MCGlll n e (S'! S 64 MAKE 0 AAt[v]SpSyrtT]mo&S ftware Modelling

School of Computer Science rsity of Antwerp

S(T)

Generalized Signal

ift<1

t2 ,
S(t) = {_(2 _ t)2 4 2 1 + Gglg(t — 7'1) +a115 (t— ’T2)

sy 2}

SG(t) =

5(2) (T) Z'T 53 (T)

-
N 4
Y

]

_{2t ift<1

—25(t—1 o (t — 5 (t —
soo g1 2UT D0 (E=n) +andT(E -)

2 ift <1 ,
= —28'(t — 1) + ap1 6@ (t — 1) + a1 6@ (t — 7
{2 > 1 () + aop10™(1) +a110"(t — 72)

—45(t —1) = 26@(t — 1) 4+ a1 0@ (t — 11) + a116 D (t —)

S(t) —I—ZZOJW It — 7))

T 1=0 57=0

McGill N@(SIS o MAKE @)

School of Computer Science

University of Antwerp

Results - Bouncing Ball

BouncingBall

ImpulseCaIculator

[m col H ImpGen

CENEN

v(O)

V

ImpulseCalculator J
in_v .

/|\

Ball

30

20

10

10

CollisionDetector Ball m

\ sigrgtal

CollisionDetector
o]
F

—> | _\L !
> J J {out_x}
/l\

ot
in_vO | in_x

—vi(t
- I(t

| At | MSE Hybrid CBDs | MSE Normal CBDs |

10~2 0.188382 x 103 2.012778 x 102

1073 1.476189 x 10~ 2.93385 x 10~ 2

¥ McGill ne

t

10~4 1.185938 x 10~ 2.474646 x 10~°

MSE

Exec Time Hybrid CBDs

Exec Time Normal CBDs

9.128132 x 10

=3 2.887s (238%)

1.212s (100%)

]

School of Computer Science

FLANDERS

(S"! S 66 M A K E @ ﬁt[v]eﬁo Syl;tTJm?& Software Modelling

University of Antwerp

Co-simulation: Simulator Coupling
Approaches

Claudio Gomes
Universiteit Antwerpen

claudio.goncalvesgomes@uantwerpen.be

FLANDERS

e MGl nNe(s!s & MAKE @) [

School of Computer Science

The modern car

— Complexity
— 40+ subsystems
— Competitive Market

— Concurrent Development

— Late Integration Problems

— Distributed Development

— Specialized suppliers

— Late Integration (due to IP)

Qe MGl Ne(S!S & MAKE @) [

School of Computer Science University of Antwerp

Simulators

S
. U uﬂ[“m
Simulator = Solver + Model o .
Simulator External Input ;
Model i N . >
my-ah = —ecp-xp —dy -2y + F C{ t tdL) t
21(0) =p1; #1(0) = 5 _/\{\/\/——
\ N 0 @
| i é-(: ¢U,’ » Qﬁ;t‘ ® o &
Solver N\ —'[f'_'—_ ! Internal Input . 'M o
I
F(t+ h) = E () + F(E(t), ult) - h — # . - >
7(0) := x(0) Z N t £+ kh £+ H 't
X . -
. - , Internal State . ¢ (el W2 (8), v (8)
‘5?'- — (X'ée L"i'.v 1/:1 ‘5'.!1:)"l'il: L (ﬂ) @L‘}) 01 (Exk, b 2,00, o 0)
_ # ' : >
it RXRXxX; xU; =+ X; C 0 km
ANi RxX;xU; =Y, orRx X; =Y,
A~
xT; (0) e X; A CAD)
‘i‘Urz RxU; x ... xU; = Uj External Output , Al (ke)
, 2
{;qu {;¢) €
FLANDERS AnS mo

McGill ne(s!s

School of Computer Science

]

69

MAKE

0

Antwerp Systems & Software Modelling
University of Antwerp

Co-simulation
Co-sim. Scenario = Simulators + Coupling Conditions

Co-Simulator = Co-sim. Scenario + Orch. Algorithm

Cosimulator S — {S L)
Cosim Scenario S = (31 goee S-n.}
L:Yi1x...xY, xU; x...xU, =» R"
St Sz L(yl,- veslns ULy .o ey un) =0

Orch. Alg.
7 7

6/(@ > D
@ UL(Q:Z At('l}(”) @ U(((’):: kz_(rxz(‘))

& U MGl nNe(sis ii‘ii“KKE (o] o -

School of Computer Science University of Antwerp

Orchestration Algorithm Concerns

Capabilities of

Simulators
Step
O-...‘__\
Linearized Model Information ~ . T|me_
Exposed IP Protection Constraints
A

Fixed step Dynamic
——— Availability
Varlﬁnles Step size 9 _
-~ ~ - Interaction Partial Naone
~ /XO Dependency .
State Jacobian Rollback /‘\

t Local Remote Full
Varlables/ / /‘\ Support Uncons trained Scaled Real-time
\ 9,
C/ Lumped Model . Passive Active i Mandatory AAIternative
. / Static Dynamic
Time A
Derivatives U

Single Multiple .
/O Propagat Optional Or
Delays

Heterogeneous Capabilities of Simulators
— Accuracy

— Algebraic Loops

— Distribution

— Modularity

t’é MCGill n e (S‘I S 71 ﬁm&KE @ . ﬁt[v]eﬁo SyEtTJm?& Software Modelling

School of Computer Science University of Antwerp

Separation of Concerns via MDE

Cosim Scenario

— Objective: Deal with Complex 2 Distribution

Orchestration Alg. Cosim Scenaio

2 Accuracy
— How?
Cosim Scenario
— Transform Co-sim scenario to address each
concern separately; 2
— Reduce to a trivial form; Trivial Cosim

— Add standard Orchestration Alg;

.f-

Standard Orch.
Algorithm

‘Wé @ MCGlll n e (S"! S 72 FhmdN[ﬁl(E @ AAt[v]SpSymmo&S ftware Modelling

School of Computer Science rsity of Antwerp

Example: Distribution Concern

— Across computers, small H incurs Computer A Computer B
network communication cost.

il.'Ir Y J *
i S ' > < 1 s i
'1\ { E ,\ & %__ 3 J‘I'

— Large H leads to accuracy problem. P -
. . . Complex
— Extrapolation made by simulators is Orch. Alg.
])) Step: H Distribution
Inappropriate to the scenario.
— Complex orchestration mechanism |[s 5g
- . - . . " <~—
required to deal with distribution - x I, s
¢ || - S¢ :l 2 | el S3
correctly. N R
Orch. Alg. Orch. Alg.
Step: H,-mi Step: Hsm
4=
Orch. Alg.
St':p: H g9 el < H

bé @ MCGill n e (S! S 73 MA'\: w u Antwerp Systems & Software Modelling

School of Computer Science University of Antwerp

Debugging

Simon Van Mierlo
Universiteit Antwerpen
simon.vanmierlo@uantwerpen.be

FLANDERS

@ T MGill ne(s!s . MAKE @) [25m0

School of Computer Science University of Antwerp

WINNER OF JOLT PRODUCTIVITY AWARD

WHY PROGRAMS FAIL

A GUIDE TO SYSTEMATIC DEBUGGING

SECOND EDITION

5 ' analytical time o 57 1 =
r_-. . (as fast as possible) - . ’s =1
iy ;
L N
] . . -
£ ; (scaled) real-time:
- . ST =s5*WCT
=3 P . .
. .
4 . .
T 2
S stop event
E . K. . scale factor change_ . - [
e . .- s<1
wn . o .8 pause event e
: e R o
P ee ' resume event
0 1 2 3 4 5
PAUSE

Wallclock Time (WCT)

DY wElEBn~RG a0 REE P B IMMH « D0 =

Root

GeneratorState.

p_out [Jo(0. 1]}

@ return NFINTY O
u

oo T8 W] p_n (01}

@ return inF!

pary 11
I

ProcessorState
“lobm Job02)

e @ retun Ty 0
[}

et (R WU N T(0])

"
i
g

E

i
1§
*
o

i

|

i

|
e

v 8] &
D

\g; D

McGill ne

School of Computer Science

ProcessorState
b= ul

(S!S

CollectorState
oot ooae 40

75

ProcessorState
it = null

FLANDERS

MAKE

MANUFACTURING INNOVATION NETWORK

Simon Van Mierlo, Yentl Van Tendeloo, Sadaf
Mustaz, Bruno Barroca, and Hans Vangheluwe.
Explicit modelling of a Parallel DEVS
experimentation environment. In Spring Simulation
Multi-Conference, pages 860 - 867. SCSI, April 2015.

Ansymo

Antwerp Systems & Software Modelling
University of Antwerp

(o

. FLANDERS
mé fik MCGlll n e (S_‘I S 76 M AKE 0 ﬁt[v]ersp Syzpm(s)& Software Modelling

School of Computer Science University of Antwerp

Debugging Toolbar (Operations)

Debugging Concepts

ATQMPM

DEVS Toolbar

RealTime

> Il I Ml

Scaled: AsFastAsPossible

Generator

Processor

generating

b out idle

ta=1
out = p_out: Job(0.

p_in ta = INFINITY

T
S job = inputsp.i *
Y job = inputs[p_in . N
~

processing

ta = job.jobSize
out = p_out: job N

CoupledProcessor

. = Skt
Breakpoint € gt | AtomicDEVS

|CnupledDEVS| |
Job
=)
nr_of_jobs == 100
Collector

.\

Processor

Processor

p_out

waiting

' job = inpgts[p_in_
nr_of_jabs += 1

idle processing idle processing
p_inf p_out p_oulA“"
‘\).0 .w. > -y job = inputs(p_i . - | --->9 ta=INFINITY
in
p_in| ta = INFINITY ta = job.jobSize poin| ta = INFINITY ta = job.jobSize P
out = p_out: job out = p_out: job
HTTP |
Requests

|

|

|
Python PDEVS

v Server PyPDEVS

¢OpNa me T[CRUD-Reqs]
Tombe’l Tuieis”] =tmog
%\ message
» Discrete-Event: Statecharts, DEVS essage S ‘ =)
> Continuous: Causal Block Diagrams —
8 g 7
> Dynamic Structure: DSDEVS 3 v
. | . [v] Y . [T
> Rule-Based Model Transformation (see Maris' presentation) L L
HUTN - - -
- TODO: multi-formalism: co-simulation vs. semantic adaptation — S YIRS f" ﬁ
= cemed :

> TODO: non-determinism, action language

FLANDERS

Ansymo

Z F McGill ne

School of Computer Science

77

(Si1s

MAKE

MANUFACTURING INNOVATION NETWORK

Antwerp Systems & Software Modelling
University of Antwerp

Session 3

PROCESSES AND
OPTIMISATION

FLANDERS

Q€ S MGill ne(SIS MAKE @) [5me ..

School of Computer Science e o womon o e WSS University of Antwerp

FTG+PM

Hans Vangheluwe
Universiteit Antwerpen / McGill University
hv@cs.mcqill.ca

FLANDERS

Qe MGl nNe(S!IS 1 MAKE @ [E2000 e

School of Computer Science University of Antwerp

28 different modelling
formalisms
50 transformations

FTG+PM: An Integrated Framework for Investigating Model Transformation Chains,
Levi Lucio, Sadaf Mustafiz, Joachim Denil, Hans Vangheluwe, Maris Jukss.
Proceedings of the System Design Languages Forum (SDL) 2013, Montreal, Quebec.
Lecture Notes in Computer Science (LNCS), Volume 7916, pp 182-202, 2013.

‘tﬂé MCG'ill n e (S.! S 80 ﬁm&KE @ U" ﬁt[v]eﬁ,)s/ymm?& Software Modelling

School of Computer Science University of Antwerp

FTG+PM (model mgmt. ... consistency)

: Use Case
Model TaRlualReg | I Diagram i
Textual i Model > { Ase Cases ||
Requirements ' Requirements| § —l
Rfi
1 fral
SysML Use Use - 5
Case Diagram| | Cases E“"'I']“S”[“e”‘ Plant DSL Control DSL |
En Z
“"ﬂ“"‘ Plad{ToPn n | :Network
: Formalism
SysML Reg i Network Causal Block | [Encapsulated :
i i i Petrinets Statecharts i
i (EnvToPN) (PlantToPN) (:ScToPn |
CoriibigeP i §]
» | [Encapsilated
Petrinets : EN
TaDynami ! S
Hybrid 1 | [Encapsulaled
Formalism PN

SimulgteHybrid Reachability
HybridSimula-
tion Trace

C inuous

Ti iramani

- 26262
Q& F McGill ne(s!s MAKE (@) [

School of Computer Science University of Antwerp

MANUFACTURING INNOVATION NETWORK

Engineering Process Transformation
to Manage (In)Consistency

Istvan David
Universiteit Antwerpen

Istvan.david@uantwerpen.be

FLANDERS

‘mé "McGill NE@(SIS & MAKE @[22 i

ShlmeptS nnnnnnnn ity of Antwer p

Why Inconsistencies?

Complex engineered systems
— Increased complexity, interplay between disparate domains
— Multi-paradigm, multi-domain, collaborative modeling settings

— Inconsistencies between models: due to semantic overlaps

— Inconsistencies — $$%

— Late (or no) detection, numerous re-iterations.. Control

Systems

Mechanical
Systems

Ans mo

Antwerp Systems & Software Modelling
University of Antwerp

Q€ T MGil nNe(sls . MAKE

School of Computer Science

What to do?

— Rather than thinking about removing inconsistency we need
to think about "managing consistency” — Finkelstein

— Tolerate, analyze, prevent...

Goal:
manage potential
inconsistencies

— Processes!

— Understand the lifecycle of models

— ...and their relation with (semantic) properties Weave in
management
— ...and consequently: inconsistencies (origin, impack patterns into the

process

Identify
potential
inconsistencies

Model the
process

Transform the
process

Ansymo

Antwerp Systems & Software Modelling
University of Antwerp

Q& T MGl nNe(slS o MAKE

School of Computer Science

O

Process modeling and transformation

Model the
process

— Appropriate process modeling formalism?
— Extended FTG+PM

' Mechanical design

$ 10

o Simulate electrical model

$ oo

e U MGl Ne(S!S & MAKE @) [

School of Computer Science University of Antwerp

Process modeling and transformation

Identify

potential
inconsistencies

— Appropriate process modeling formalism?
— Extended FTG+PM

' Mechanical design

$ 0

o Simulate electrical model

$ oo

‘%é McGill N@(S!S & MAKE @) 22500 e

School of Computer Science University of Antwerp

Process modeling and transformation

Transform the
process

— Appropriate process modeling formalism?
— Extended FTG+PM

. Mechanical design

N —

$ 0
I
o Simulate electrical model
$ o0 Inconsistencies Management

techniques
— It's an optimization problem

— Matching ICs with ICMs while keeping transit costs at minimum

— Challenge: impact of ICM techniques on the process

t’é MCGill n e (S-! S 87 WDEKKE @ ﬁt[v]eﬁo SyEDm(s)&Software Modelling

School of Computer Science University of Antwerp

Process modeling and transformation

Transform the
process

Quantification of the optimality

— Loops and decisions in the process

—> requires stochastic simulation

— Multiple simulation strategies

— Mapping to queueing networks

— Custom strategies can be

SimEvents implemented and plugged in

— It's an optimization problem

— Matching ICs with ICMs while keeping transit costs at minimum

— Challenge: impact of ICM techniques on the process

t’é MCGill n e (S-! S 88 WDEKKE @ . ﬁt[v]eﬁo SyEDm(s)&Software Modelling

School of Computer Science University of Antwerp

Results

— Formalism for modeling processes along with properties

— Optimization for consistency

— ...and eventually transit time of the process!

— Implementation
— Process modeler (visual)

— Characterization and management of inconsistencies via graph
patterns and M2M transformations

FLANDERS

‘wé % McGill ne (S! S 89 MAKE @ ANSYMO et

School of Computer Science University of Antwerp

Perspectives

— Enhancing the process model

— Resources, ontological reasoning, enhanced cost model

— Tolerance
— “Management” is more than just prevention
— Temporal, parameter and design tolerance

— Link with tool chains and tool integration scenarios
— OSLC

— Prototype

— Process enactment, interfacing with engineering tools

FLANDERS

‘wé % McGill ne (Sj S 90 MAKE @ ANSYMO et

School of Computer Science University of Antwerp

Tool and Contracts for the Co-Design of
Cyber-Physical Systems

Ken Vanherpen
Universiteit Antwerpen

ken.vanherpen@uantwerpen.be

FLANDERS

‘mé "McGill N@(SIS o MAKE @) 227200 i

ShlmeptS nnnnnnnn ity of Antwer p

Problem Statement

Control Engineer . Mechanical Engineer

Embedded Engineer

FLANDERS

: e\
&é :i:;/ MCGlll n e C'Sil S 92 MAKE @ U’ ﬁt?eﬁoXyEEm?& Software Modelling

School of Computer Science University of Antwerp

Current solution: Contract-Based Design

Contract for the control

(CBD)

Assumptions

Guarantees

engineer

Sample time <= 0,8 ms

A

Negotiation

'

Contract for the
embedded engineer

&é McGill ne (S!S

School of Computer Science

Safety <= 0,2 mm
Reaction time <=1 ms

CompcontroL <= 0,05 ms

uarantees

TcontroL <= 0,8 ms

Loadgc, <= 69 %

ReSgorce = 0,012 VIN

Res,oror = 0,047 V/IRPM

FLANDERS A
nsymo
93 M A K E 0 . Antwerp Systems & Software Modelling

University of Antwerp

Ontological Reasoning to enable CBD —
Example

< 0
performance valuel (PVI) —/—————
[L] “
Linguistic World |
Ontological World
Propi=f(pvi)
\s
\\\~
Real World (RW)
= = =P Holds — — — > Linguistically conforms to ——® Checks satisfaction
----------- » Represents Transforms —-—-—-- Conforms to

B. Barroca, T. Kiihne, and H. Vangheluwe. Integrating language and ontology engineering. In MPM ’14, volume 1237
of CEUR, pages 77-86, September 2014. _
K. Vanherpen et al., “Ontological Reasoning for Consistency in the Design of Cyber-Physical Systems”, CPPS, 2016.

. FLANDERS /7 ‘
&é RO, MCGlll n e (S_! S 94 MAKE @ & ﬁt[v]eﬁogymm?& Software Modelling

School of Computer Science University of Antwerp

Round-Trip Engineering (RTE) Method

Sensing Plant model
2
/
i - A\ Y
—> Control model

R e R e >
: a4
BRES
blocks .*?/ | %
T = | 1N
: | 5
! oy 13 Control Software
| @ 1O . .
| (g: SN i§ Engineer Engineer
= <y
=
! = SWC SwWC
i 7 Dcéplqyment
S | ngineer
L2 > e g
! = |
: =1 g
| i i3
| g g
: =18
! Lol
! <Y
: L CAN N
[—— IECUlI IECUZI v
___1 ___1

K. Vanherpen, J. Denil, H. Vangheluwe, P. De Meulenaere, Model Transformations for Round-Trip Engineering in
Control-Deployment Co-Design. Mod4Sim, 2015.

. FLANDERS /7 ‘
&é RO, MCGlll n e (S_! S 95 M AKE @ & ﬁt[v]eﬁogymm?& Software Modelling

School of Computer Science University of Antwerp

Experimental Frames

Joachim Denil
Universiteit Antwerpen
joachim.denil@uantwerpen.be

‘é MCGlll n e (_S'! S 96 WDXKE 0 AAt[v]SpSyrtT]mo&S ftware Modelling

School of Computer Science rsity of Antwerp

Industrial Size Example...

Qe T MGill nNe(S!S 5 MAKE @[22m0 e

School of Computer Science ty fA tw p

Experimental Frames

Generato

Zeigler, Bernard P., Herbert Praehofer, and Tag Gon Kim. Theory of modeling and simulation: integrating discrete event and continuous complex dynamic systems.
Academic press, 2000.

&

FLANDERS

3 . 7 N
t;: MCGlll n e (-S! S 98 Mu PUIO(NLE & B’ ﬁt[v]eﬁogyzt?m?& Software Modelling

School of Computer Science University of Antwerp

A. Experiment Model

— Repeatable scientific

—B‘ * experiments

CALIBRATION 1. Define the
S - _
i 1 == | — \NQrkflow-like language!

(2. Specify the ' ﬁ/
! Experimental Setup

r e : ExperimentalSetup]

(3. 1dentily the solver(s) Ye—

’ that will simulate the
model

Y T s : Solvers ’

\ 4, Determine
parameters, IC, ‘
constants

‘ " 5. Configure the f'/’J

!
p : ParamValues |

solver(s)
\L -)1 c: SolverConfiguration |
}‘ 6. Run the r/
| simulation/experiment
T——

/—j r: Results ’

| 7.Analyze the results ,<

Decide new | /_,‘;(_,3
parameters K_—“L

®

. FLANDERS /7 ‘
mé ‘:;: MCGlll n e (S_! S 99 MHAIO(EN @ U’ ﬁt[v]erspgy[tTe]m?&Software Modelling

School of Computer Science University of Antwerp

B. Validity Frame

— Calibration:

— We have real world data.

— — —

,'—I(
—
—
—
,'_l':
—
—
—
—
—
—
—
—

= = =

— Parameter calibration of our model
— Validity

— Under which assumptions is our
model valid?

Mot
=

— EF is not sufficient:

Spring-like behaviour only possible
in combination with Mass

— Dependency on solver!
— Initial conditions and Parameters?

— etcl.

‘iwé McGill N@(SIS 10 MAKE (i] - P A—

School of Computer Science University of Antwerp

Observation Experimeant |— e Olbsanvation Experimeant
— | Snbsar

Obeervation Model L] Oivaarvation Model
Experiment Satup Collector

f[.‘.l::l =0 b

Solver
Configuration
Dbsarvation Model] _@
O_mé Ohbearvaton Model
- 1
System_to_validate Csarvation mn;;ﬂ;:,

e S—

Sohver
e
Esxperimant Satup
S i
W e P
—
o s: l slPs s ‘ I e I_m 0. m
on NSor o
Pslﬁnk
Converter
W\
Transiational Spring

1

R
J J
Observation Machanical
Translational
S S Relerencel e
FLANDERS 7 2 \| A
nsymo
M AK E @ & Antwerp¥ystems & Software Modelling
" . N\ /] University of Antwerp

QMG NEES!S 1 MAKE

% Create result file:

dir= datestr{datetime{ now')};
mikdir{dir);

htmlfilename=sprintf{ '%s/calibrationresult.html’,dir};

theHtmlfile = fopen(htmlfilename, ‘'w+');
fprintf(theHtmlfile, '=!DOCTYPE html=\n');
fprintf(theHtmlfile, ‘'shtml=%n'};
fprintf(theHtmlfile, ‘'=body=%n'};

%Turn of warnings
warning off;

mindatapoints = 4;

%Read the measured data:
M = csvread('spring_measure.csv');
%M = csvread('non_lin_spring.csv');

% Load the spring calibration fTrame:
open_system('spring_calibration');
force_original = M{:,1);
measured_position_original = M(:,2);

% Find linear regions:
for window=(mindatapoints):size{force_original)
for 1=1:{size(force_original)—-window)
% Do a linear regression on the data:
force = force_original(l: l+window);

measured_position = measured_position_originalll:l+window);

Llin = measured_positionhforce;
%1lin = force(2)/measured_position(2);

% Decide on K-value
k = lin;

% Cnfigure the solver:
set_param('spring_calibration', 'StopTime®,

% now do a simualticn

sv = [1;

for i = 1:size(force)
m = force(i);
Sim0ut = sim{‘*spring_calibration');
sv = [sv max(position.Datall;

end

%calculate an error

% Here it is linear so r*2 is a good value.

% In case of non—-linear, we could generate

L R

- e School of Computer Science TN

'3

> MAKE

% plots with values, and let user decide?

error2 = [1;
ymean = mean{measured_position);

yvmean2 = [];

for i = li:size(force)
theError = svw(i) — measured_position(i);
theError2 = theError™2;
error2 = [error2 theError2];
ydistm = measured_position(i) - ymean;
ydistm2 = ydistm™2Z;
yvmean? = [yvmean2 ydistm2];

end

sume? = sumlerror2);
sumym2 = sumf{ywmean2);
r2 = 1-{sume2/sumym2) ;

%0utput this results:
fprintf{theHtmlfile, '=h1=Results for linear regression #dp:%d — win

fprintf{theHtmlfile, '=br=r*2 = %dyn',r2);
fprintf{theHtmlfile, '=br=k = %d\n', k};

fprintf{theHtmlfile, '=br=Ω_in_force=[%d, %d]l%n', min{force), m
fprintf{theHtmlfile, '<br=Ω out_displacement = [%d, %d]l%n', min
filename = sprintf{'%s/plot_window S%d-%d.png',dir, int32{window), int:
plot{force,measured_position, 'r',force,sv, 'b');
fprintf{theHtmlfile, ‘'<br==img src="../%s"=\n', filename);
forintf{theHtmlfile, '=br= wntl:
print{filename, ‘-dpng');

end
end

fprintf(theHtmlfile, '=/body= ‘“n=/html=\n%');
fclose(theHtm1file);

FLANDERS

) Ansymo
\J & Antwerp Systems & Software Modelling

University of Antwerp

MANUFACTURING INNOVATION NETWORK

3 = 59084131

k = 4. 7509003 +00

0 in_force=[10, %]

£ out_displacement = [2.101241c+00, 1.891116e+01]

20 I I | I I !

16 - -

14 -

10

2 ! | ! ! | |
10 20 30 40 50 60 70 BO 90

@ E MGl Ne(S!S 1 MAKE @[890

School of Computer Science University of Antwerp

MANUFACTURING INNOVATION NETWORK

What is next?

— Property Frame:

— Design-by-Contract:
— What model can | use?
— Substitutability!
— However: what about emergent properties from composition?

— Do we need a notion of Function before going to behaviour?
— Spring can act as a mass as well!

mé ‘E‘?j MCGill n e (S! S 104 WDEKKE @ . ﬁt[v]ersp Syl;tTgm?& Software Modelling

School of Computer Science University of Antwerp

Agility in the MBSE Process

Joachim Denil
Universiteit Antwerpen
joachim.denil@uantwerpen.be

FLANDERS

‘mé "McGill N@(SIS 15 MAKE @) [5F 20000 e

School of Computer Science rsity of Antwerp

AGILE MANIFESTO

We are uncovering better ways of developing software by doing it and helping others do it. B ut oo

Through this work we have come to value:

15 over processes and tools
-e over comprehensive documentation
ion over contract negotiation

e over following a plan

That is, while there is value in the items on the right, we value the items on the left more.

Our highest
through earl
valuable SO§

ority is to satisfy the customer

mmm... Executable
models? Demonstrations?

?ii‘:i‘-ii:iii;:ifrz‘.'f-‘:’;::;s“‘ (% . Frequent... A change to my
th (‘usl()nu'r's (‘()m] ite ’.' CA d I t k k l
; u:humm/> mo e a es Wee S-

Deliver working sc
couple of weeks to a

preference to the shortcN#Mescale.
Sirfiplicity — the art of maximizing the amount

ypers must work of work not done — is essential.

: project.

Business people and
together daily throughot
ments, and

jzing teams.

The best architectures, requiy
Hibjects around motivated individuals. designs emerge from self-

ervals, the team reflects on how to
:ffective, then tunes and adjusts its

w&iclt and effective method @ behavior actordingly. FLANDERS [/ ‘ A
conveying info ion to and within n Syl | IO
development team is face-to-face converffation. http://agilemanifesto.org k Y, Antwerp Systems & Software Modelling

University of Antwerp

Agility in MBSE...

— What is agility about? cost of change
— Changing requirements n:echanfcs
— Rapid customer/system feedback eeclgtlf}s'
— Holistic instead of silos) aeé 5 10 15 20 25
— Etc. @sa‘ew«%

— We need to take CPS/SIS/mechatronic SI L ‘/
context into account:

IEC 61508 / IEC 61511

— Cost of change
— Safety!
— Etc.

t’é MCGill n e (S-! S 107 ﬁm&KE @ ﬁt[v]eﬁo SyEtTJm?& Software Modelling

School of Computer Science University of Antwerp

Solutions...

— Front-loading:
— Make design decisions as early as possible in the process

— Explore multiple solutions at the same time
— Early integration:
— Use correct co-simulation to integrate as early as possible

— Explicit reasoning over processes

— Short iteration cycles (with property support)

mé ‘E‘?j MCGill n e (S! S 108 WDEKKE @ . ﬁt[v]erSpSyEtTe]m?& Software Modelling

School of Computer Science University of Antwerp

Session 4

DEPLOYMENT AND
RESOURCE OPTIMISED

EXECUTION
€ U MGl Ne(SIS 1 MAKE @) [0

nnnnnnnnnnnnnnnnnnn

Deployment for AUTOSAR

Joachim Denil
Universiteit Antwerpen
joachim.denil@uantwerpen.be

FLANDERS

‘mé "McGill N@(SIS 1o MAKE @) [5F 20000 e

School of Computer Science rsity of Antwerp

—

Lib
Crc
Bfx
E2E
Efx
Ifl, Ifx
Mfl,Mfx

AUTCSAR

i

]

;

i
i

I
i

Applicatior‘ﬂ

e & s 3 b ¢ o

RamTst,
CoreTst

gmé

Spi, Gpt, Mcu

Wdg, lcu, Port _
Dio Fis, FIsTst

" McGill ne(s!s

School of Computer Science

> 2
TCP/IP

FlexRay

SoAd
EthSM
UdpNm

FrSM
FrNm
FrTp

J1939Tp

Tteanlf

CanTrev | FrTrev LinTrev | EthTrev :
Ca"
FLANDERS @
N\ /|

MANUFACTURING INNOVATION NETWORK

Ansymo

Antwerp Systems & Software Modelling
University of Antwerp

111

Deployment Simulation

Application Layer

Task 1

Message Transmitted
o = BUSY Message NOTIFY

|ouoDIeAIQUNY

Application Layer

Task 1 Task 2

peoji0suaguNy
Joloyoquny

Jonuoniebusssequny

......

CAN Driver

pController

CAN - Bus

NoMessage
VNV
T T T
I [} [}
. 1
idle AUTOSARRTE | i =
interrupt busy systemcall
CAN Driver
NoSignals pController
InternalSignal
PendingProperty
AppSignal ComSignal TriggeredPropert Message CANMessage
Runnable RTE COM PDUR CANIF/CAN Dummy
RunnableNotFinished

Joachim Denil, Hans Valr\l/lqheluwe, Pieter Ramaekers, Paul De Meulenaere, Serge Demeyer, “DEVS for AUTOSAR platform modeling”

Proceedings SPRINGSIM'2011 : 2011 Spring Simulation Multi- Conference, Boston, 2011

‘wé McGill ne (_S! S w

School of Computer Science

MANUFACTURING INNOVATION NETWORK

FLANDERS 7 s N\
MAKE @ & ﬁt?eﬁo&ipm?& Software Modelling

University of Antwerp

Even More...

1.0 0.06
o5 0.04
Application Layer Application Layer Application Layer . g 002
& -0.02
-0.5
-0.04
_1'00 1000 2000 3000 4000 5000 6000 7000 8000 -0 050 1000 2000 3000 4000 5000 6000 7000 8000
. . : . 1.0 t [ms] 10 t[msl]
Communication Communication o8
Services Services - L
C 04 a
0.2 =05
Abstract Platform 005 To00 2000 3000 4000 5000 6000 7000 8000 -UG 1600 2000 3000 4000 5000 6000 7000 BA0C
10 t [ms] t[ms]
35 .
30 \
g
20
&£15
10
Abstract Platform Abstract Platform 5

0 1000 2000 3000 4000 5000 6000 7000 8000
t[ms]

i ¢ o

= N_ACTIVE N_PASSIVE o

I I acceleration velocity

©

: ;ﬁ o P
) IN ! 1IN

3 ! -

@

@

:) ta= parameter :
—>| ACTIVE ' > PASSIVE
/
ta= parameter -

Joachim Denil, Paul De Meulenaere, Serge Demeyer,, Hans Vangheluwe: DEVS for AUTOSAR-based System Deployment Modelling and
Simulation: Submitted to Simulation, Transactions of the SCS, 2016

‘tﬂ E.?j MCGill n e {S! S 113 WDEKKE m U“ ﬁt[v]ersp)slymm?&%ftwareModelling

School of Computer Science University of Antwerp

Design-Space Exploration

(1) Passenger
I 11 LoadConversion ‘ |
n L -
: e ED) Passenger 3
In2 ProductofElements outd ButtonGonversions Passenger ‘

WindowLogic

Passenger
DcMotorConversion |

| \
In3 _
ProductofElements2 ol] Driver :
ButtonsConversions g ‘
In4 IntegratorgainconstGain IntegratorDelay Scope DriverWindowLogic DD .
DcMotorConversion)

Variation:
- Type of ECU
- Number of ECUs
- Tasks, Priorities, ...

Constraints:
- Real-time Behavior

Optimality:
- Cost
- Extedibility
Gain (db)
0
1 1m 5m 10m
YL YL YYD YYD
1u 1u 5u 10u

Fpass Fstop f(Hz)

FLANDERS

' McGill ne (S! S 1w MAKE

School of Computer Science

Antwerp Systems & Software Modelling
University of Antwerp

o Ansymo

Multi-Abstraction in DSE

Full design space Refinement
Transformations
<€

Horizontal
Transformation ® ¢ 06 0 O

Simulate/Analyse A\ A\

- NN N

Simulate/Analyse o0 060 600 00 00 o6

=/ Simulate/Analyse ‘|:

Joachim Denil, Antonio Cicchetti, Matthias Biehl, Paul De Meulenaere, Romina Eramo and Serge Demeyer; “Automatic Deployment Space Exploration
Using Reﬁnfment Transformatlons Electronic Communications of the EASST, vol. 50, 2011

MCG'lll n e ('S‘ S 115 WDEKKE 0 . ﬁt[v}SpSyEDm?&Software Modelling

School of Computer Science Unives sity of Antwerp

Explore at the model level!

m im 5m 10m
1u 1u 5u 10u
1 1 5 10

Gain (db) s
" e 0
-\ c
» F’-\,% N
<

* Joachim Denil, Maris Jukss, Clark \erbrugge, Hans Vangheluwe, “Search-Based Model Optimization Using Model Transformation”, 8th
System Analysis and Modelling Conference , 2014

*Ken Vanherpen, Joachim Denil, Paul De Meulenaere, Hans VVangheluwe: Design-Space Exploration in MDE: An Initial Pattern Catalogue.
CMSEBA@MOoDELS 2014: 42-51

w . . FLANDERS
‘i»é T McGill N@(SIS 16 MAKE @) [BR 2000 o

School of Computer Science University of Antwerp

What is next?

Model Model

Solver Solver

Which constraints? (see consistency work)
Same Solver type vs. different solvers?
Incrementality? _ o

Add (domain information (sensitivity, etc.)

FLANDERS

‘mé "McGill N@(SIS ;7 MAKE @) [BF 20000 e

School of Computer Science rsity of Antwerp

Activity in PythonPDEVS

Yentl Van Tendeloo
Universiteit Antwerpen
yentl.vantendeloo@uantwerpen.be

FLANDERS

‘mé "McGill N@(SIS s MAKE @) [BF 20000 v

School of Computer Science rsity of Antwerp

Activity: Motivation

FLANDERS

Qe MGl Ne(S!IS ny MAKE @[22 e

School of Computer Science rsity of Antwerp

Activity: Data Gathering

past present future

x o R
1T 13 o

A

‘é MCGlll n e (_S'! S 120 WDXKE 0 AAt[v]SpSyrtT]mo&S ftware Modelling

School of Computer Science rsity of Antwerp

Time (s)

" McGill Ne (S!S

3500

3000

2500

2000

1500

1000

Activity: Results

Citylayout model for different migrators (5 nodes)

No migration =—f—
Activity tracking ---)(---‘

Custom activity tracking -
Custom activity Prediction EI -----

1 1 | | 1 1

A

School of Computer Science

300 400 500 600
Microseconds artificial load

FLANDERS

MAKE

MANUFACTURING

121

NETWORK

700

800

Ansymo

Antwerp Systems & Software Modelling
University of Antwerp

Session 5

MODEL TRANSFORMATION

FLANDERS

€ U MGl Ne(S!S ., MAKE @) 40

School of Computer Science e o wowonwon S WSS University of Antwerp

Efficient and Usable Model
Transformations

Maris Jukss
McGill University
maris.jukss@mail.mcgill.ca

FLANDERS

‘Wé MCG111 ne(& S 13 MAKE @ f‘[)spsymmo&wa -

ShlmeptS nnnnnnnn ity of Antwer p

Efficiency and Usabillity Issues

« Pattern matching is the most expensive operation

- Based on subgraph isomorphism problem

. Debugging MT support lags behind code debugging

 Industrial application of MT may be hindered

7e)
% 4

Input Model Output Model

FLANDERS

‘mé McG111 ne(& S 14« MAKE @ ﬁ?spsymmo&sﬂw

Sh ol of Computer Scie

Static Scope

« Static scope Is created by transformation engineer

« Unified hierarchical scope formalism

« Scoped transformation rules, reduced search space

[1] Jukss M., Verbrugge C., Elaasar M., Vangheluwe H. : “Scope in Model Transformations”. Accepted to SoSyM.

t’é MCGill n e QS‘I S 125 FL‘MNDEKKE @ ﬁt[v]ersr.) SyEEm?& Software Modelling

School of Computer Science University of Antwerp

Dynamic Scope p

« Discover scopes automatically (first match, optimistic)

« MT is observed, matches predicted (machine learning)

Heat-Map

,1
o
(0]
w
T
L
s
(0]

Filtered Model LHS Pattern

> Filter
A
Statistics
Y

Train |[€— Pattern Matcher —)X

Warm Nodes Match
Warm/Cool [« 2
y

v

L 1 O
Green Fire Dead Cold

E] Jukss M., Verbru%ge C., Varro D., Vangheluwe H. : Dynamic Scope Discovery for Model Transformations, 71" International Conference on
oftware Language nglneerlng 2014

FLANDERS

Qe MGl Ne(S!IS 1 MAKE @) [E20000 e

School of Computer Science University of Antwerp

‘Deep” Debugging of MTs

DM eefEBEnnEGEGr0 ArMunn i ol

Transformation 1
Schedule Level
Rule:
Transformation 2 [Formalisms/mutex/R_giveRule.model_LHS
Rule Operation:
{label": 2", 'id": '3', 'piv": '4', 'op": 'trg’}
Hide Debug
(:) Candidates:
® Rule Level "an wates
@ Matches:
0: Process4: nexd]
ifX.id==5 Pattern Level
return true 4
Hide Debug
Search Plan:
Engine Level
logout

LKP(X)
ATTRIBUTE(X,ID,5) O Label
- Arbute Type Root
Input Model 2 4
------ Um0

Show TextDebug
Show Debug

. FLANDERS /7 ‘
mé MCGlll n e (S_! S 127 MAKE @ & é:gisﬁézf?;ngaérspoﬂware Modelling

School of Computer Science NUFACTURN

Fully Verifying Graphical Contracts on
Model Transformations

Bentley James Oakes
McGill University
bentley.oakes@mail.mcqill.ca

FLANDERS

‘Wé MCG111 ne(& S 1 MAKE @ f‘[)spsymmo&wa -

ShlmeptS nnnnnnnn ity of Antwer p

Problem Statement

Model transformations are at the heart and soul of model-based engineering

Given a model transformation...

McGill e

|

School of Computer Science

(Si1s

129

Does this contract hold
on all input and output models?

Contract
Pre-condition
i - 9 i
PhysicalNode »Scheduler brovided Service

Post-conditjon

CompositionType W PPortPrototype

FLANDERS

Ans mo

MANUFACTURING INNOVATION NETWORK

O

Antwerp Systems & Software Modelling
University of Antwerp

. Symbolic execution - how PrGGEEE g R e g Hy L,
rles interact and overlap Lo O O O é @ O O @
. Represent all possible
transformation executions Process O
Layer 2 @ O

« Contracts proved over all
transformation executions

Path Conditions

“If pre-condition elements
" exist in input model, then Contract
post-condition elements exist
In output model”

Pre-condition

: [§5% essntreiac :
PhysicalNode »iScheduler Srovided Service

Post-conditjon

L. Lucio, B. Barroca, V. Amaral.
“‘A Techmque for the Verification of CompositionType [——==3 PPortPrototype
Model Transformations” PO

Proceedings of MODELS, 2010.

L. Lucio, B. Oakes, H. Vangheluwe
‘A Techmque for Symbollcally Verif y|r|1\% Properties of Graph-Based Model Transformations”
Technical Report SOCS-TR-2014.1, McGill Unlver3|ty, 2014,

FLANDERS
mé \:“k MCGlll n e CS_‘ S 130 MAKE @ . ﬁt[v]ersp SyEDm?&Software Modelling

School of Computer Science University of Antwerp

Many collaborations with (%ueens University (Canada)
Selim, Lucio, Cordy, Dingel, Oakes. “Specification and Verification of Graph-Based
Model Transformation Properties” ICGT 2014.

— Verification of industrial transformation
Selim, Cordy, Dingel, Lucio, Oakes. “Finding and Fixing Bugs in Model
Transformations with Formal Verification: An Experience Report” MODELS 2015.

Collaboration with Claudio Gomes
EUn_lversny of Antwer_||o) et al. on SyVOLT
clipse plug-in to build transformation and
per Orm Verlflcatlon meotherFatherProp.syvolt_diagram 52 — :

[motherFather
;o . . heap-
Ldcio, Oakes, Gomes, Selim, Dln?el, Cordy, & Otjecs -
Vangheluwe. “S{//VQI__T: Full Mode © Concatonation
Transformation Verification Using Contracts” e o

M O D E LS 2 O 15 . Post-Attribute
E% Post-Element
1% PestCondition
Pre-Attribute
EO- Pre-Element
PreConditicn
4 Same Value
[specification
L —
(= Connections 4

@ AttributeRef
et Post-Association
& Pre-Asscciation

Same Post-Elements

Same Pre-Elements

%, Trace Link

. FLANDERS /7 a N\
mé ‘:;: MCGlll n e (S_! S 131 MAK E @ & CAnt[V]erSpgyEme?& Software Modelling
. PP ———————— niversity of Antwerp

School of Computer Science

mbeddr to C

Also collaborating with Claudio on the
verification of mbeddr, which is a set of
languages designed to aid the
development of embedded software.

‘E? MCGill n e (S! S 132 ﬁDEKKE m U“ ﬁt[v]ersp)slymm?&%ftwareModelling

School of Computer Science University of Antwerp

| G

DSEﬁans

Translation (ATL HOT) >

Collaboration with Javier Troya (Universidad de Sevilla) and
Manuel Wimmer (TU Wien)

Translate ATL transformations using a higher-order transformation
Into our language DSLTrans for contract proving

Multiple transformations translated, including industrial ATL
transformation

Oakes, Troya, Lucio, Wimmer. “Fully Verifying Transformation
Contracts for Declarative ATL” MODELS 2015.

SoSyM journal version in preperation

FLANDERS

‘Wé @ MCGlll n e (S"! S 133 MAKE @ AAtQiSyrtnmo&s ftware Modelling

School of Computer Science rsity of Antwerp

