FLANDERS
M A K E G CNybeer-ﬁlgicral Systems

University of Antwerp

Ansymo
Antwerp Systems & Software Modelling
University of Antwerp

@ ML"G“.I UE::«::I;:: Department of Maihematics

School of Computer Science

Modelling, Simulation and Design Lab

Pieter Mosterman

A N “~ 1 o FLANDERS P
mé %“‘h MC(Ill‘i n e@_s‘l S 1 MAKE & & éfgt};sﬁég?ggi;ftvut Wiazlzlling

School of Computer Science MANUFACTURING INNOVATION. NETWORK

http://msdl.cs.mcgill.ca/
http://msdl.cs.mcgill.ca/

SYSTEMS COMMISSIONED
ENGINEERING B &
MANAGEMENT

SUBSYSTEM
VERIFICATIO
Verification
COMPONENT
VERIFICATIO!

IMPLEMENTATION

HARDWARE & SOFTWARE
(CODING & TEST)

Simulation in Europe

ESPRIT Basic Research Working Group 8467
Simulation for the Future: New Concepts, Tools and Aj

-~ FLANDERS

Keywords:
simulation technologies, multi-paradigm modelling, solvers, standards, interoperability, industrial ,
deployment, demonstrators, user-simulator interfa

MANUF N NETWORK

Validation,
Verification,
Testing and
Accreditation

Analysis and
Verification of Model
Transformations,
Debugging,
Instrumentation,
Tracing, etc.

Language Engineering

Domain-Specific Languages, Model
Transformation, (web-based) Visual and
Textual Modelling Environments, etc.

Simulation

Co-Simulation, Discrete-event, DEVS,
continuous time, acausal, Modelica, etc.

Deployment & Resource-optimized

Execution

Platforms (e. g AUTOSAR, CAN, etc.),
Design-Space Exploration, Virtualization
Models@run-time, Efficient execution o

model transformations, etc.

Model
Management &
Process

FTG+PM, Safety
(ISO 26262,
Railway, etc,),
Agile Modelling,
Consistency
management,
Experimental
frames, etc.

McGill ne(S!S MAKE (@) [T AnXm0, s

School of Computer Science

University of Antwerp

The Modelverse:

A Foundation for Multi-Paradigm Modelling

Yentl Van Tendeloo

Yentl. VanTendeloo@uantwerpen. be

QE EMGill Ne(S!S |, MAKE @[S40 .

School of Computer Science University of Antwerp

Summary

— What? Multi-Paradigm Modelling kernel and repository
— Why? Support the use of Multi—-Paradigm Modelling
— How? Using Multi-Paradigm Modelling techniques

~ Maturity? Academic tool

[1] Y. Van Tendeloo and H. Vangheluwe. The Modelverse: a Tool for Multi-Paradigm Modelling and Simulation. In Proceedings of
the 2017 Winter Simulation Conference, 2017 (accepted).

(2] Y. Van Tendeloo. Foundations of a Multi-Paradigm Modelling Tool. In ACM Student Research Competition at MoDELS, 2015

. FLANDERS
cé fi: MCGlll n e (S‘I S 5 MAKE @ ﬁt[v]ersp Syrspm?& Software Modelling

School of Computer Science University of Antwerp

What?

Multi—Paradigm Modelling

FTG | PM
initial

revise
req

Encapsuiated

Marked
PetriNets \
; [! I !

revise (revise] revise
plant env ctri

PetriNets + + +
plant env ctr! revise

toPN toPN toPN arch

—

Architecture
Safety
Query

Reachability

revise
query

t,
®&—

[3] L. Lucio, S. Mustafiz, J. Denil, H. Vangheluwe, and M. Jukss. FTG+PM: An Integrated Framework for Investigating Model
Transformation Chains. In SDL 2013: Model-Driven Dependability Engineering, Volume 7916 of Lecture Notes in Computer
SaichceMos88rddd, agd 1. Vangheluwe. Computer Automated Multi-Paradigm Modeling: An Introduction. SIMULATION 80(9): 433-450,

2004.

. FLANDERS 7\
cé %“‘ MCGlll n e (S‘I S 6 MAK E @ & GAnt[v]eﬁo)S(JritT;m?& Software Modelling
- ATION. NETWORK niversity of Antwerp

School of Computer Science MANUFACTURNG, INNOY,

What?

kernel

Block) Connection

Ldg -

> Modelverse

~
ATOMPM>

[5] E. Syriani, H. Vangheluwe, R. Mannadiar, C. Hansen, S. Van Mierlo, and H. Ergin. AToMPM: A Web—based Modeling
Environment. In Proceedings of MODELS’ 13 Demonstration Session, 21-25, 2013
[6] K. Schmidt. LoLA: a low level analyser. In Proceedings of the 21st international conference on Application and

theory of petri nets, 465-474, 2000.

. FLANDERS 7\
cé %“‘ MCGlll n e (S‘I S 7 MAK E @ & GAnt[v]eﬁo)S(JrsftT;m?& Software Modelling
- MANUFACTURING INNGVATION NETWORK niversity of Antwerp

School of Computer Science

What?

repository

7) 7) EU
O = O3y
ol ol

1

Modelverse

Errorstate] [Normaistate| [_0nUp | [onneutrat] [onDown

Metamodels @

t»é ? McGill ne

SchoolofConunﬂerSc@noe

.]
TramsSformationse

Integer functlon fib (n : Intleger):
if (n <=2
return 1!

else:
return fib(n-1) + fib(n—3>i\\\

Operations &'

FLANDERS 7 2 N\
(S‘I S 8 MAKE @ & ﬁt[v]eﬁo)sgrspm?& Software Modelling

MANUFACTUR

University of Antwerp

Why?

)

Flexibility

e T MGill ne(sls

PetriNets PetriNets?2

‘ﬂ’é MCGlll n e CS'! S 10 FLAMN[KK E @ ﬁt[v]ersp Syge]m?& Software Modelling

School of Computer Science University of Antwerp

Why?

ClassDiagrams Bottom

—

PetriNets PetriNets?2

—

my pn

FLANDERS

- o)
cé \tg;‘" MCGlll n e @! S 11 MUMAW!”(WNEE @ G ﬁt[v]ersp¥yg]m?& Software Modelling

School of Computer Science University of Antwerp

FLANDERS

e ENMGIlne(s!s . MAKE @[T

School of Computer Science rsity of Antwerp

Why?

=3
T Dl G

Algorithm 1 Strongly Connected Component Algorithm.

topSort(graph)

rev_graph < reverse_edges(graph)

for all node € rev_graph do
node.visited < False

end for

while rev_graph # () do
start_node <— highest_orderNumber(rev_graph)
component «— dfsCollect(start_node, rev_graph)
strong_components.append(component)
rev_graph.remove(component)

end while

QE MGl ne(s!s |, MAKE @) 24000 .

School of Computer Science University of Antwerp

MANUFACTURING ON NETWORK

Why?

(X
ATQMPM

e ENMGIlne(s!s . MAKE @[T

School of Computer Science University of Antwerp

Why?

e VIDE Forge

Manipulation

Storage

[7] R. France, J. Biemand, and B. H. C. Cheng. Repository for Model Driven Development. I[n Proceedings of the
on Model Driven Engineering Languages and Systems (MoDELS), 311-317, 2006.

[8] . Basciani, J. Di Rocco, D. Di Ruscio, A. Di Salle, L. lovino, and A. Pierantonio. MDEForge: an extensible web-
based modeling platform. In Proceedings of the Workshop on Model-Driven Engineering on and for the Cloud (CloudMDE), 66—

75, 2014.
. FLANDERS 7 » \|
cé ‘:‘:‘ MCGlll n e (S‘I S 15 M AK E m & éfger;sﬁ%gi?:qg&e rSpoftware Modelling

International Conference

MANUFACTURING INNOVATION NETWORK

School of Computer Science

How?

Complex systems are

best modelled using
Multi—Paradigm
Modelling!

FLANDERS

T McGill nec__sjs T YV ()] o i —

-

School of Computer Science rsity of Antwerp

How?

should code the
MPM kernel and

repository, which
1s a complex
system!

FLANDERS

MGl nNe(SIS ;' MAKE) &2 A0 s

-

School of Computer Science rsity of Antwerp

should code the
IPM kerr and

4 ‘1ch

FLANDERS

‘ﬂé = McGill n e CS_‘ S 13 MAKE 0 AAt[v]SpSyrtT]mo&S ftware Modelling

School of Computer Science ~ Smss ARG MOV WO rsity of Antwerp

How?

MODEL

EVERYTHING!

e Protocols e Action Language ¢ Concrete syntax
e Performance e (Conformance e Data
« Task management ¢ Services e Transformations

QZ EMGill Ne(S!S , MAKE @[S40 .

School of Computer Science University of Antwerp

Roadmap

 Performance

e Client—side code

, « Conformance bottom (applications)
UIEICHBBRI .)] +i—conformance (applications)

e Interfaces (graphical?)
e Services

Coupling

* Performance
« Action language syntax
e Compiler

€ U MGl ne(s!s 5, MAKE @) [

School of Computer Science University of Antwerp

NNNNNNNNNNNNNNNNNNNNNNNNNNNN

SCCD: A Statecharts and Class Diagrams Hybrid

Simon Van Mierlo
Universiteit Antwerpen

simon. vanmierlo@uantwerpen. be

cé MCG'ill n e QS! S 51 WDEKKE 0 . ﬁt[v]eﬁoSyrst?&Software Modelling

School of Computer Science University of Antwerp

Javascript |

Summary Language |5

CD + SC sC
right-click
. Compiler Options Platform |5
" running ball-created
) create_ball
i re i window-close /
MainApp (& Window R] Siopped
Big Step Intel_rirf\zllirllie\/ent
Ball Maxiality T
Button lor: St
-color: String
- Take M
-text: String -pos: list [Queue] |[Next small Step |
" Take O
-vel: lst ke one]
sC SC left-click -
Jeft-click eft-clici left-click ‘ drag
. First Small Step Source-Parent
elease bouncing selected dragging
unselected selected e [First Combo Step| [Source-Child]
74 Untitled - CLASS BEHAVIOUR - o lEN
|
OD + SCR D ﬂl\ e 17 @ I Toolbar
./ bi: Ball —_—— — - B
wil: Window - -color: "black"
b2: Ball i
—_— -pos: [10,51] :
-color: "yellow" -vel: [0.74, -0.23]
00 -pos: [71,60] - = mm[conu:/{m“
: -vel: [0.0, 0.0] : : A i Soncstte2 :
.................................... ' Clise A I Vs : BasicStatel
g N ' <Bebaviour>> event{conds<Tr)/[self.act] ‘ : 1
. L 1] d . H
- . : ' ' g Q e wchnngz‘(sell::]/
7é BouncingBalls - 0 X SCR § o — il shlcsuater
Creste Window : ' left-click Jeft-click . . i i
| . O -
: ' \) i Y
H . bouncing selected dragging i /\ i
.] release nenl[[w@seﬂ.a(l]
. Canvas / :
: ' H
g] : BasicState
® o O : SCR ik ierciick . i
- O P
bouncing selected dragging TG H
Telease FarallelStne
Compositestate =
< | ol

Simon Van Mierlo, Yentl Van Tendeloo, Bart Meyers, Joeri Exelmans, and Hans Vangheluwe.
SCCD: SCXML extended with class diagrams. In 3rd Workshop on Engineering
Interactive Systems with SCXML, part of EICS 2016, 2016

McGill N@(SIS ,, MAKE @) [C8 2000

School of Computer Science University of Antwerp

MANUFACTURING INNOVATION NETWORK

Motivation

Behavior

e Timed

e Autonomous

e [nteractive

. e Hierarchical

Structure

e Dynamic

e Hierarchical

Design? Statecharts + Class Diagrams = SCCD(XML)

QE EMGill Ne(S!S ., MAKE @[S40

School of Computer Science University of Antwerp

Modelling Complex, Timed, Autonomous,

Dynamic-Structure Systems

CD + SC
SC
right-click
running
. create_ball
H i indow-close /
MainApp Window :élere?balls) stopped
Ball
Button -
- -color: String
-text: String -pos: list
-vel: list
SC SC)
Ieﬁ~click left-click left-click A drag
.. bouncing selected dragging
unselected selected
release
OD + SCR
bl: Ball
wil: Window T —color: "black"
—_— -pos: [10,51]
-color: "yellow" -vel: [0.74, -0.23]
""" -pos: [71,60] T r
-vel: [0.0, 0.0]
'
o eaalaman e pEEOEPOCCAROOoAaEa5AIAas
74 BouncingBal ;— ED X :
Coome Window - + SCR e left-click
: - drag
: bouncing selected dragging
. release
@] : P SCR ik eranck
o |
bouncing selected dragging
release

¥ McGill ne

e

School of

Computer Science

(SIS

&

Object Manager

{\
e
R —
" . BROADCAST ..~
|00 SR NARROW
wil: Window
> | b2: Ball
-color: "yellow"
""" -pos: [71,60]
-vel: [0.0, 0.0]
e Create Window _ :CI § : SCR
. : bouncing
® ® : ' SCR
O .

<2UTPUT
bi: Ball N
-color: "black" -7

-pos: [10,51]

23]

left-click

left-click

-vel: [0.74, -0.

left-click

selected
release

left-click

selected dragging

release

FLANDERS

24

MAKE

Ansymo

Antwerp Systems & Software Modelling
University of Antwerp

Visual Modelling Interface Behaviour: Concrete Syntax

'i" BACK-END FRONT-END
MHEL
s h .
o E A4 Graph Graph implements E[ﬁ'm]
HMPIS "..II MMRE'”':'EF M MH‘E“‘EIEF e 1 FI
A A i e :
5 : ’ E i |
':-:_":_:_-;1: |E|I|_;:_- . : : o |
M _ :MGraph transfer \, Gragh render _ | ! l
I:ﬂ-S \:‘J Render =+ lRender recognize |~
l__.. I'., I}I.al_'rn-n'nl_
Wend . =<AS operations== __________.A-""'
ﬁﬁ'x'{':'-\.l
s
A Pn;.t Plat 2
G MMHend&r II"'I"""'IFl:lun'lu:lm LT-P-'l-E-TF.r!I?"—.' !
A !
F"'lFlﬂé trans'I‘EFMPl.;é render (\/\,
render Render = acognize -
platfarm,;
FLANDERS Ans mo

McGill ne

School of Computer Science

25

e (s!s

Antwerp Systems & Software Modelling
University of Antwerp

MANUFACTURING INNOVATION NETWORK

O

Visual Modelling Interface Behaviour: User Interaction

Ent
ClassReferenceCanvg

'
.
|

'

<<Behayiour>>

creating_edge_among_instances

R R D RN R R A AR EEERSRSRAR R AR RN R AR R AR AR RSN,

[self.chi]/del ‘ ~ilglement

K

generaf[self.s3

AN/ .
creatin _ed]ge .

ing_class_diagrams :_rec[self.chi

stances on canvas

clearing_canvas

- gﬁr;‘a'frging_edge_u eat)

Z F McGill 0 e(s!S i MAKE @[5

School of Computer Science University of Antwerp

MANUFACTURING INNOVATION NETWORK

Roadmap

SCCD Language: Syntax and Semantics

— Conformance
— Initialization/Destruction

- Exceptions
— Dynamic Loading of SCCD Models
~ Interfaces/Contracts: Protocol Machine
— Subtyping

- Events as Objects

- Behavior

- Object Creation Decoupled from Associations

Model user interaction in DSL

— (see Vasco Sousa’s work)

Concrete Syntax: separation of AS/CS modification operations

‘wé McGill ne (_Ssl S 27

School of Computer Science

FLANDERS

MANUFACTURING INNOVATION NETWORK

Ansymo

Antwerp Systems & Software Modelling
University of Antwerp

Verification of Domain-Specific Models with ProMoBox

Bart Meyers
Universiteit Antwerpen

bart. meyers@uantwerpen. be

QE “MGill Ne(S!S , MAKE @[S40

School of Computer Science University of Antwerp

Summary

- DSML definition ProMoBox - Verification language
) (for language

- Annotations engineer) - Tool support

- System at initial state ProMoBox o

- Property (for domain - Verification result

- Annotated DSML definition user)

E= — specification of properties at DS level

— fully automatic generation of languages
from annotated metamodel
reachesFloor

E 3 — fully automatic verification of properties
orall after eventual 4
f " Eﬁ o B — application to model checking, testing,

DSE,

e Bart Meyers, Romuald Deshayes, Levi Lucio, Eugene Syriani, Manuel Wimmer and Hans Vangheluwe. ProMoBox: A
Framework for Generating Domain-Specific Property Languages. In "Proceedings of the 7th International
Conference on Software Languages Engineering (SLE 2014)", Lecture Notes on Computer Science, vol. 8706, p.
1-20, 2014.

e Bart Meyers, Joachim Denil, Istvan D&avid, and Hans Vangheluwe. Automated Testing Support for Reactive

Domain—Specific Modelling Languages. In "Proceedings of the 2016 ACM SIGPLAN International Conference on
Software Language Engineering . ACM digital library, p. 181-194, 2016.

. FLANDERS 7 » \|
cé ‘:‘: MCGlll n e (S! S 29 MVAIO(E @ & ﬁtgeﬁo)s’yrspm?&%ftware Modelling

School of Computer Science University of Antwerp

Properties for DSMLs: State of the Art

[)

O(({ go0Aup0) v G (floorOvidle)) — ((—(floor0)v—(floorOv

idle VU ({ floorDvidle)A(({ floor0)v—| floorOvidle) ((floorOv
idle) A ((—(floorD) v = floorD W idle)) U ([floorD v idle) A

({(floor0)v—(floorOvidle) U ((floorOvidle)n(—(floorO)A(floorOv
idle)))NV O({({gol Aupl Adounl) v §(floorl vidle)) —

([(={ floorl)w =i floorlvidle) [floorlvidle) A{({ floorl)v

=(floor1vidle)) U(({ floor1vidle) A((—(floorl) v —(floor1v
idle))U({ floor1vidle)A(((floor 1)v—(floor Ividle) A((floor 1V
idle)A(—(floor 1 A{ floor 1vidle)))) 1)) WO ([go2 Adown2 v

O floor2vidle)) = ((—(floor2)v—(floor2vidle) [(floor2v
idle)A(((floor2)v—(floor2vidle) L((floor2vidle)A((—(floor2)v
=i floor2 v idle)) ((floor2 v idle) A (({ floor2) v —(floor2 v

idle DU ({ floor2vidle) sl —{ floor2)U [floor2wvidle))00

. FLANDERS
%é MCGlll n e (S! S 30 MU ADIO(LEO 0 ﬁt[v]ersp SyrstTe]m(s)& Software Modelling

School of Computer Science University of Antwerp

Properties for DSMLs: Property DSML

reacheskFloor

forall after 1 i!!z eventually 3é

e Bart Meyers, Romuald Deshayes, Levi Lucio, Eugene Syriani, Manuel Wimmer and Hans Vangheluwe. ProMoBox: A
Framework for Generating Domain—Specific Property Languages. In "Proceedings of the 7th International
Conference on Software Languages Engineering (SLE 2014)", Lecture Notes on Computer Science, vol. 8706, p.

1?0 2014.

o B FLANDERS /7 ‘
MCGlll n e CS! S 31 MAKE @ & ﬁt[v]ersp)slyrspm?& Software Modelling

School of Computer Science University of Antwerp

Properties for DSMLs: Consistency

Consistency by
construction

Annotations Annotations

DY EEFMEAARGY® 0
Ap MR

*

reachesFloor

El - . o

Formal Methods 1

-
—~ =7
|

i
th_

DSM

. .trail
RF TMGil ne(s!ls ., MAKE @[22

SchoolofConunﬂerScenoe

Ansymo

Antwerp Systems & Software Modelling
University of Antwerp

Evaluation (TSE paper)
— Modelling effort

— comparison LOC and complexity

— Correctness + Usability study

— 6 participants, qualitative study + SUS

— Model checking performance

— better than adapted Elevator example from literature

— Expressiveness

— Exhaustive comparison with Promela language constructs

— Customisability

— added patterns to property language and replaced Spin backbone

with Groove

bé E‘? MCGill n e (_S! S 33 mDE&K\E 0 . ﬁt[v]erSpSyEtTE]m?& Software Modelling

School of Computer Science University of Antwerp

Properties for DSMLs: Testing

e Bart Meyers, Joachim Denil, Istvan D&vid, and Hans Vangheluwe. Automated Testing Support for Reactive
Domain—-Specific Modelling Languages. In "Proceedings of the 2016 ACM SIGPLAN International Conference on
Software Language Engineering . ACM digital library, p. 181-194, 2016.

. FLANDERS /7 ‘
&é %: MCGlll n e C'S‘I S 34 MAKE @ & ﬁt[v]ersp)slyrspm?& Software Modelling

School of Computer Science University of Antwerp

Roadmap

ProMoBox

— Annotations
— DSML generation
— Generic semantics

Model Checking [Testing DSE

Property Template Test Template Rules Template
+ ' : + +

Generic Promela compiler Gerieric operational semantics Generic solver

O

Ansymo

Antwerp Systems & Software Modelling
University of Antwerp

Q& MGl ne(sls ., MAKE

School of Computer Science

Semantic Adaptation for FMI Co-simulation™

Claudio Gomes, Bart Meyers, Joachim Denil,
Casper Thule, Kenneth Lausdahl,

Hans Vangheluwe, Paul De Meulenaere

* Journal paper submitted to SIMULATION

QE EMGill Ne(S!S ,, MAKE)[40 .

School of Computer Science University of Antwerp

Summary

— Why? There is a need for quick (but sound) changes to

the behavior of simulators.
— What? We developed a DSL for that..
— How? ..using hierarchical co—simulation principles.

—~ Maturity: Set of techniques and tool, applied to

academic cases.

FLANDERS

e ENMGIlne(s!s . MAKE @[50 e

School of Computer Science University of Antwerp

Motivation

— Quick and sound way of adapting the behaviour of an interconnected
set of FMUs
— Unit conversion

— Interaction protocol modification

- Enhance accuracy and performance

obstacle
, ‘ disp (m)
obj_detected (Bool) ﬁ?\ armature_current (A)
L o/ J reaction_force (N
height (cm)
passenger_up (Bool) up (Bool) u (Real) power displacement (rad)
environment/passenger_down {Bool),; controller speed (rad/s) window ‘
i
passenger_stop (Bool) down (Bool) —-.') reaction_torque (N.m
U o, |driver_down (Bool) d (Real ~—(7) E
® driver_up (Bool) stop (Bool) tau (N.m) _ '\(;
w driver_stop (Bool) e

. FLANDERS /7 ‘
cé RO MCGlll n e (S‘I S 38 MAKE @ & ﬁt[v]eﬁo)slyrspm?& Software Modelling

School of Computer Science University of Antwerp

Semantic Adaptation

obj_detected (Boaol)

— Actions by which the behavior of an

passenger_up (Bool)

passenger_down (Bool) |~gntroller
passenger_stop (Bool)

original set of interconnected FMUs is lup (Bool)

altered, following the transparency : down (Bool)
driver_down (Bool)
and modularity principles. driver_up (Bool) .% stop (Bool)

driver_stop (Bool)

External FMU *

Internal FMUs controller_sa
FMU 1 FMU N
. obj_detected (Bool) armature_current (A)
Fl(t,H,...) Fn(f‘:Hr“) | (Bool)
' u 00
Gn(t,...) . passenger_up (Bool) m— u (Real)
——————=

controller

passenger_down (Bool)

| stop (Bool)

passenger_stop (Bool)

driver_down (Bool) d (Real)
driver_up (Bool) [down (Bool)

driver_stop (Bool)

Coupling

up =ci(...)

Up = (.. .)

—*4'<Semantic Adaptation)—»—*

. FLANDERS /7 ‘
cé fi: MCGlll n ec-s‘l S 39 MAKE @ & ﬁt[v]ersp)slyrspm?&SoftwareMOdEHing

School of Computer Science University of Antwerp

Semantic Adaptation

e

“ McGill ne (S!S

School of Computer Science

obstacle
Actions by which the behavior of an ‘ disp (M)
. . . cti fi N
original set of interconnected FMUs is reaction_force (height (cm)
. displacement (rad)
altered, following the transparency speed (rad/s) | window
and modularity principles. eaction_torque (N.m
External FMU I
rate_sa
fntt?maf FMUs loop_sa
FMU 1 FMU N obstacle
Fi(t,H,...) F,(t, H,..)
Galt,...)) [
" reaction_florce (N disp (m)

Coupling _ 1 ?

ug = i) displacement (rad) —l heighth(cin)

w — () speed (radfs)=

tau (N.m) window
4'<Semantic Adaptation)—»—* - 4‘)
window_sa
FLANDERS

Ans mo

Antwerp Systems & Software Modelling
University of Antwerp

w MAKE

O

A DSL for Semantic Adaptation

semantic adaptation reactive moore ControllerSA controller sa
at "./path/to/ControllerSh.fm"”
obj_detected (Boaol)

for imner fmm Controller ctrl
at "./path/to/Lazy54. fmu"

passenger_up (Bool)

with input ports obj_ detected, passenger up, passenger de up (Bool)
with outpunt ports up, down, stop passenger_down (BOO'),controller"’
passenger_stop (Bool) down (Bool)
input ports armature current -»> ctrl.obj detected, dﬂven_domnl(BOOD =

passenger up -»> ctrl.passenger up,
passenger down -> ctrl.passenger down,
passenger stop -» ctrl.passenger stop, driver_stop (Bool)
driver up -> ctrl.driver up,

driver down -> ctrl.driver down,

driver stop -» ctrl.driver stop

driver_up (Bool) stop (Bool)
-

ontpunt ports u, d

controller_sa

obj_detected (Bool) armature_current (A)
(Bool) L |, up (Bool)
passenger_up (Boo
controller u (Rea))

passenger_down (Bool)

stop (Bool)
passenger_stop (Bool) —

driver_down (Bool) d (Real)

driver_up (Bool) " down (Bool)
driver_stop (Bool)

& TMcGill Ne(S!S , MAKE @) [0

School of Computer Science University of Antwerp

MANUFACTURING INNOVATION NETWORK

A DSL for Semantic Adaptation

obj_detected (Boaol)

in var £ v := INIT V: assenger_up (Boo
) les 1 - P ger_up () up (Bool)
in rules passenger_down (Bool) |~ontroller—=
trone -> { -
f v := controller sa.armature Current; passenger_stop (Bool) _ down (Bool)
} o> | driver_down (Bool) >
ctrl.obj detected := c; driver_up (Bool) stop (Bool)
. =
o driver_stop (Bool)
ont rnles {
ctrl.up -> { } --> {controller sa.u := 1.0; }:
not ctrl.up -> { } --> {controller sa.u := 0.0; };
controller_sa
ctrl.down -> { } --»> {controller =a.d := 1.0; };
not ctrl.down -> { } --» {controller =a.d := 0.0; H
ctrl.stop -> { } --» {controller sa.u := 0.0 ; controller sa.d := 0.0; }; obj_detected (Bool) armature_current (A)
| up (Bool)
passenger_up (Bool) > u (Real)
passenger_down (Bool) controller
stop (Bool)
passenger_stop (Bool) >
d (Real)
———

driver_down (Bool)
driver_up (Bool) " down (Bool)

driver_stop (Bool)

& TMcGill Ne(S!S , MAKE @) [0

School of Computer Science University of Antwerp

MANUFACTURING INNOVATION NETWORK

A DSL for Semantic Adaptation

control ruales {
var step size := H;
var aux obj detected := false;
var crossedlooFar = false;

if ((not is clese(p_v, T, RTOL, ATOL) and p v < T)
and (not i= close(f v, T, RTOL, ATCL)

crossedTooFar := truoe;
var negative wvalue = p v - T;
var positive wvalue (= £ v - T;

step _size := (H * (- negative_wvalue)) 7
} else {
if ((not is _closeip v, T, RTCL, ATOL) and p v < T)
and i= close(f v, T, RICL, ATOL)} {
c = true:

if (not crossedloocFar){

step size := do_step(ctrl, t, H):

if (i=_cleose(step_size, H, RTCL, ATOL)) {
B v = L w;

return step size;

& ' McGill ne(s!s

School of Computer Science

(positive walue - negative wvalue):

obj_detected (Boaol)

passenger_up (Bool)

passenger_down (Bool)
passenger_stop (Bool)

driver_down (Bool)

driver_up (Bool)

driver_stop (Bool)

and £ v > T)) {

up (Bool)
controller[™

down (Bool)
-

stop (Bool)
-

controller_sa

obj_detected (Bool)

armature_current (A)

L

passenger_up (Bool)

passenger_down (Bool)

passenger_stop (Bool)

driver_down (Bool)

driver_up (Bool)

driver_stop (Bool)

FLANDERS

MAKE

MANUFACTURING INNOVATION NETWORK

43

|, up (Bool)
controller u (Rea)
| stop (Bool)
d (Rea)
_*down (Bool)
Ansymo

Antwerp Systems & Software Modelling
University of Antwerp

Hierarchical Co-simulation

((t+H), H) = F(t, H,@(t) uen(t + H))

y(t) = G(t, 2 (t), ex (1))
x(0) = Init(wer (0))

Function Mmit(tey)

fori=1,...,ndo
|:t:,;:= up; = yi = 0;
end
forjc(1,...,n) do
UPo(j) =
Co() (Wet, Y1, -+ s Yo () =1 Yo () 41> - - - Yn)i

To(j) 1= ity (upy(jy) or Inity(;() ;
Yo(h) = Go(3)(0, Ta(j). uP 4 (j))
or Go(j(0,Za(j));

end

T

return [up,, ..., up,,T1,..., x| ;

end

Function

F(t, H, [Tin, Tetrts T outs T1,] s Uext)
Tin = Iﬂ'([x‘maﬂ:ciﬂsxaui] um)

(Zetm Toue, [B1, ... T] " H) =
Ctrl(t, H, [&in, Eetrt, Tout] , [T1,- -,

veturn ([&in, Fet Fout F1, - Fn]"

end

"

"McGill ne Qgg S

School of Computer Science

* 5 T
Function G(t [wiﬂi Loprls Louts L1y - - rwn] ruext}
- T
Tijp = fﬂl{[:ﬂm, ELetrl, mout] :uethi
if o is defined then
fori=1,....ndo

‘ uc; = 1y; = y; = 0;

end
forjc(1,...,n) do
[@y.... i) =

ﬁfﬂ'ﬂf'n [:}-—:ins T etrl :Baui.]T 1 Oa 0);

’a‘l.t“a(j)

o'(_;r)(u'c:r(j)*. Yi,... yycrl:j)—lvya'(j]—i—ly sy yn}i
Yo (i) = Go(j)(t To(j): UCq(j))
or Go((t, To(s));i
Tout 1=
- T T
MapOut([Zin, Tetrts Tout)” [Y1s---2Yn]” ,0,0);

end

else
| jémnf. = Tout:
end

- ~ T
Y= O’El-t([ﬂﬁm, L otrl mout] };

return y;
(&)
N /|

end

FLANDERS

MAKE

MANUFACTURING INNOVA'

Ansymo

University of Antwerp

ON NETWORK

Antwerp Systems & Software Modelling

Roadmap

import PowerWindowModel
- I ndu S t ria 1 Ca S€ S t Udy semantic adaptation reactive moore RateloopSA rate loop
at ". /path/to/Ratel.oopSA.Tmu"
\val ‘t h A gro :[n t e 1 1 1 for fmu .WlndeA.mnc'inA, Obstacle c')bstac.le
successive substitution starts at height with absolute tolerance = 1le-8 and
relative tolerance = 0.0001

o R ai se 1 eve 1 Of multiply rate 10 times with first order interpolation

semantic adaptation reactive moore RateSA rate =a
at "./path/to/RaceSA.fmu"

abstraction

for inner fmu LoopSk loop_sa
at "./path/to/LoopSA4. fmu™
with input ports displacement (rad), speed (rad/s)
with ontpnt ports tau (N.m)

input ports speed
output ports taw <- loop_sa.taw

param RATE := 10
control var previous_speed := 0;
control rules {
var micro step := H/RATE:
var inner_time := t;
for (var iter in O .. RATE) {
do step(loop_sa,inner time,micro_step):
inner time := inner time + micro step:
H
previous_speed = current_speed;
return H;

}

in var current speed := 0;
in rules {

troe -> {
current_speed := speed:
Poe-x
loop_sa.speed := previous_speed + (current_speed - previous_speed) * (dt + h);

Fi

McGill N@(SIS ,; MAKE @) [C8 2000 e

School of Computer Science University of Antwerp

MANUFACTURING INNOVATION NETWORK

Stability Analysis for Adaptive Co-simulation™

Cladudio Gomes, Benoit Legat,

Rapha&él M. Jungers, Hans Vangheluwe

* Paper accepted in IUTAM Symposium on Co-simulation
and solver coupling — Recent developments in theory and
application, September, Darmstadt

‘ié McGill ne Qg,l S MAKE (A1) - R —

School of Computer Science University of Antwerp

Summary

— Stability of adaptive master algorithms is seldom
taken into account, but can increase

performance/accuracy tradeoff.

— We apply the Joint Spectral Radius theory to study
the stability of such orchestration algorithms for

linear co—simulation scenarios.

FLANDERS

e ENMGIlne(s!s . MAKE @[T

School of Computer Science University of Antwerp

Stability — Non-Adaptive Numerical Solver

Tr = Ar

Original System Behavior

D.B—-
0.6—-
0.4—_
0.2—_
0]

: ; : .

2 4

time [s]

‘mé McGill ne (S!S

School of Computer Science

= Ty = Ax;

0 2 4 6 8 10

—imZ}hid.x2
— {m1Lil.x1

Stability:

lm ||AA--- Azl =0
k—ro0 || S——
k times

FLANDERS

s MAKE @[5

Ans mo

Antwerp Systems & Software Modelling
University of Antwerp

Stability — Adaptive Numerical Solver

4’111.'1'31' if gl(Ii)
iyl = Ag.’ﬂi if gg(;ffl‘) — Tit1 € {f‘l;l‘fi A€ E}

Example in co-simulation: adapt the step size
H € {0.001,0.002,...,0.01}

Stability:
Jm |AsAs—1) -+ Asoyto]| =0 for all Ay, Asw), -+ Asr) € 2

QZ EMGill Ne(S!S ,, MAKE @[S40

School of Computer Science University of Antwerp

Stability Analysis

Non adaptive solver (spectral radius):

A lim max || A*z|"* A)<ls 11111 AA---Axgll =0
p() k=00 |laf|= lH H ﬂ() hvoe k times :
Adaptive solver (joint spectral radius):
ﬁru(z) = sup {|I|11”‘ED{ || '_13”, ’_1:”:, L 'ill;EH . 4’1111 SRR 443'1; € E}

p(X) = limsup ﬁm(E)””"

T —F o0

E “MGill Ne(S!S ;, MAKE @[S40

School of Computer Science University of Antwerp

Adaptive Co-simulation Master

— Given a co-simulation scenario, and a specification

of the master algorithm, one can compute Sigma

— Example: s
(n+1) 1 [y T [l \ 2 1
(n+1) (n) ka—1 '
£ Iy (1)
2 oo m
[S (n+1)] _4' [{rr] T (Z AE '82 Us ma
Vg m=(
(n) i ‘.I:fﬂ.]l)
n 9
0 =L e de]| %y [+1 - —du Jud -
'1;2 3;.2 o
(1) T C in) 7
I(ln +1) I(IH‘ A 5 0 0 0)
v A Uy : Aculer = Ap' 0 >z AT 0 ~hier, —lde hiex hady
(n+1) | — <teuler (m) 0 A 0 I L 0 0 0 0
I2 IE hg%(}\ h.g%d.k 0 0
An+1) (n) 2
L U3 - L Y2

. FLANDERS
\:gk MCGllj n e CS‘ S 51 MAK E @ ﬁt[v]ersp Syrspm(s)& Software Modelling

School of Computer Science University of Antwerp

Roadmap

— Address scalability by using adaptive master

specifications based on state machines.

— Identify conditions for which JSR can be computed

directly. (Example: a repeating sequence of matrices)

QE I MGill ne(s!s ,, MAKE @) [& 4

Antwerp Systems & Software Modelling
School of Computer Science University of Antwerp

Stability Analysis for Hybrid Co-simulation®

Claudio Gomes, Paschalis Karalis,

Eva M. Navarro—-Lépez, Hans Vangheluwe

* Paper accepted in Workshop on
Formal Co-Simulation of Cyber-
Physical Systems, September, Trento

QE EMGill Ne(S!S 5, MAKE @[S40

School of Computer Science rsity of Antwerp

Summary

— A co—simulation of a hybrid system must preserve the
stability properties of the later, so that the

results can be trustworthy.

— We analyze the range of communication frequencies
between simulators that ensure those properties are

kept.

FLANDERS

e ENMGIlne(s!s . MAKE @[T

School of Computer Science University of Antwerp

Example: Hybrid System

1
30

Cg L/ —x1 —mode Cart Position over Time
/
m Ce / 1
N s d, 2
| | -
! 0 o
o K = t24 fime ey
‘g($) > 0 - U.S—_
&= fi(z) @ &= fa(x) @
re X e X 04
X, ={z € R"[g(x) <0} Xo ={z e R"[g(x) > 0}|
g9(x) <0]
’ ’ tme[]
FLANDERS

McGill ne

School of Computer Science

MAKE

e (s!s

o5

Ansymo

Antwerp Systems & Software Modelling
University of Antwerp

@I

Example: Hybrid Co-simulation Scenario

o ;Uﬂﬁ
3
&
NONNNN

U (t) a 5 10 15
Controller | Plant . time [s]
(1)
Controller Ps g (t) PY

Plant

@ “ M<Gill ne(sis WKKE @ . pnamo____

School of Computer Science University of Antwerp

Question: How much delay can be tolerated?

Co-simulation vs Original

0.5
o] WW

Co-simulation vs Original

-x1

-=X1 cosim

—mode =—mode cosim

..

—-x1 —=x1 cosim

e

time [s] "

H=0.05

McGill ne(s!s

School of Computer Science

—mode —=mode cosim

FLANDERS

MANUFACTURING INNOVATION NETWORK

B
University of Antwerp

Antwerp Systems & Software Modelling

(Lyapunov) Stability of Hybrid Systems

t1 k tok t1k+1
Legend:
—— Mode 1
%
o ULk ——— Mode 2
o ¢ Comm. Point
g(x) =

. FLANDERS
cé ‘f‘:‘ MCGlll n e (S‘I S 58 MAKE 0 . ﬁt[v]ersp Syrspm(s)&Software Modelling

School of Computer Science University of Antwerp

(Lyapunov) Stability of Hybrid Co-simulation

-

[]

-

- -

" 7T =
-

l,c3 .
L]

FLANDERS

té McGill N eQS.' S & MAKE @ [E8 0T s

School of Computer Science University of Antwerp

Roadmap

_ Generalize the approach for many modal systems (not

just two), and systems with resets.

— Use a more relaxed Lyapunov stability theorem,

developed by Paschalis and Eva

QE “MGill Ne(S!S ,, MAKE @[S40

School of Computer Science University of Antwerp

Hybrid System Simulation with Dirac Deltas*

Claudio Gomes, Yentl Van Tendeloo,
Joachim Denil, Paul De Meulenaere,

Hans Vangheluwe

* Paper accepted in Symposium on
Theory of Modeling and Simulation,
April, Virginia Beach

QE “MGill Ne(S!S ,, MAKE @[S4 .

School of Computer Science rsity of Antwerp

Summary

— We compare two different approaches for the
simulation of impulsive differential equation, and

formulate their differences.

‘ié McGill ne @! S . MAKE (A1) - R —

School of Computer Science University of Antwerp

Impulse-based Modeling

Bouncing ball dynamics:

y” = —g+ Fc(t) 10.0
Around a collision: £ E: :z
G o B NEVR YA
(Momentum) Conservatioﬂ&dictates: el
V() = (e

101

Hence, whatever the shape of Fc

th ’ _;
/ Fe(r)dT = =2y/(t) 10,
te SRR

-151

Speed (m/s)

Time (s)

FLANDERS

EEENMGIlne(s!s « MAKE @[T

School of Computer Science University of Antwerp

Impulse-based Modeling

Bouncing ball dynamics:

y'=—g+ F(t)

Let & be a function abstraction,

such that:
O+

o(T)dr =1
0-

Then:

Fe(r) = =2y/(t0)o(t — t)

‘Wg McGill ne(s!S

School of Computer Science

64

Yo Yo
> ColDetect
Y]
Fo(t)—— y(t) ¥
UnitBall N i
r o ImpCalc
UnitBall
Yo Yo
F.(t) f
y.(¢)
i t
+ f i | f y()l
y”:(t) >
FLANDERS AnS mo
MAKE 0 AntwerpSystems&SoftwareModelllng
University of Antwerp

Symbolic Simulation of Impulses

Manipulate signals with impulses encoded

t)%—j{: jE:: 3u f-—?})

=0 T}E{T}}
- T=1 Tig t
—
—
Ult)
T3 Tt

S(t;)) € R? x R™

EEENMGIlne(s!s MAKE @[T e

School of Computer Science ty fA tw p

Numerical Simulation of Impulses

Numerically approximate an impulse as

Tl

the derivative of a steep ramp. ////wwjﬁiRmnp
—h h oz
1
0 (t — T d) N — !
h 2h Math.
_ Derivative
—h h x

Approx.
Derivative

_h h o

‘ié McGill ne @! S MAKE (A1) - R —

School of Computer Science University of Antwerp

Vo Yo
=ColDetect
Y Y
Fo(t)—— y(t) ¥
UnitBall o |
|_’ 70 ImpCalc
UnitBall
) Yo
F() |9
I y.(1) (
' t
Tl W e
y" (1)
ColDetect ImpCalc
0
’ﬁ’jg ar %
IE I B0
1 x(=2) + PP

¥ McGill ne

e

School of Computer Science

(SIS

Height (m)

Speed (m/s)

Impulsive Force (N)

Example: Bouncing ball

Symbolic
10.0
7.5
5.0
25
0.0
0 1 2 3 4 5
Time (s)
15
10 \
5
. =
-5
-10
-15- . ; : : r
0 1 2 3 4 5
Time (s)
20
~ 28
10
U T T T T T T
0 1 2 3 4 5
Time (s)
FLANDERS

Height (m)

Speed (m/s)

Impulsive Force (N)

10.01
7.51
5.01
2.51

0.01

151
101

—5]
10

=15+~
3e+07 4
2e+07

1e+07 1

Oe+001

O

Numerical

Time (s)

0 1 2 3 4 5
Time (s)

0 1 2 3 4 5
Time (s)

Ans mo

Antwerp Systems & Software Modelling
University of Antwerp

Comparison: Symbolic vs Numerical

— Numerical approach shifts the solution n.h “\
time units H(t —7q4)
—~ Maximum magnitude for a discontinuity D: Y
d
n—1 n dt
D(, 1)/H* where k—ﬁoor() j
k — 2
E n
d
Conclusion: Symbolic approach is more accurate
for models that manipulate impulse v
derivatives. é?

J
EEENMGIlne(s!S « MAKE @[T

School of Computer Science University of Antwerp

Roadmap

— Find models that require impulse derivatives.

QE EMGill Ne(S!S ,, MAKE @[S40

School of Computer Science University of Antwerp

Coffee Break

. FLANDERS
E “MGill Ne(S!S ,, MAKE @) [A0 .

School of Computer Science University of Antwerp

Model Debugging

Simon Van Mierlo
Universiteit Antwerpen

simon. vanmierlo@uantwerpen. be

. FLANDERS
cé %“k MCGlll n e (rs‘l S 71 MAKE 0 . ﬁt[v]ersp Syrspm(s)&Software Modelling

School of Computer Science University of Antwerp

Summary

5 N analytical timle P >1 e
WINNER OF JOLT PRODUCTIVITY AWARD i: ',' as fast as possible) - . e - ‘s =1
- . :
~ 4
WHY PROGRAMS FAIL @ s .
A GUIDE TO SYSTEMATIC DEBUGGING £ (scarea) real-time:
SECOND EDITION IF 3 ’ ° ° ST=5 *WCT
o
3) [o [
@'E(‘a‘ /4 ‘—;)) stop event
"' ["’_l V- “‘:: E ° . 'y - e’ scale factor changg_ .- .
i 4 a Y oo pause event e s<t
P .- °. _______________ oo ocO restme event
D- 1 2 3 4 5
-
PAUSE
Wallclock Time (WCT)
_________________________________ iSC + &
i * i’ A Simulator (Behavioui?mﬁam
E ModeI-Speciﬁc Statecharts . () Srarecha)rts Statecharts Kernel|Simu\ation Library
1 Visualization UI (Behaviour) Debugging UI (Behaviour e
F 1 F E Stlastﬁcah;ftas |I<er:1e|| u? L:)r\’::'ur Statecharts Kernel| UI Library m
M o ST — — — L
: +debug i i :
| — Causal-Block Diagrams, Parallel DEVS, Statecharts, Petrinets,
___ | Dynamic-Structure DEVS, Hybrid TFSA-CBD, Action Language
Simon Van Mierlo, Yentl Van Tendeloo, and Hans Simon Van Mierlo, Claudio Gomes, and Hans Vangheluwe. Explicit
Vangheluwe. Debugﬂllng Parallel Modelling and Synthesis of Debuggers for Hybrid Simulation
DEVS. SIMULATION, 93(4):285-306, 2017 Languages. In Proceedings of the 2017 Symposium on Theo?/ of
Modeling and Simulation - DEVS (TMS/DEVS), pages 1013-1024, 2017

@€ MGl ne(s!s . MAKE @) [

School of Computer Science University of Antwerp

MANUFACTURING INNOVATION NETWORK

Motivation

T DEVS-Suite Var 210 ==
el

e options Controls Hcp
g oea o aQoneE

= o ||| Motel Viewer

ety

Usable M&S Environments:
* Fidelity (w.r.t. formalism’s syntax and semantics)
« Accuracy (in simulation results)
* Resuse (model libraries)
« Performance
« Debugging

cé E‘? MCGill n e (S.‘I S 73 WDEKK\E @ ﬁt[v]erSpSyl;Dm?& Software Modelling

School of Computer Science University of Antwerp

Building Language-Specific Debugging Environments

: . _' analytical time >1 "
B Operatlons . - s Nas fast as possible) o s -
- |] > ® s=1
— Pause/Resume IR ,
() o N
~ Stepping £ | | (scalea) rear time:
, ¥ [) .9’
. 1] ;
— Breakpoints I . .
g 2
. . = StOp event
~ State Tracing (Visual) 2 . - scale factor change .- #°
b= 1|’ Ts<1
— Manual State Changes N e L | peuseevent e
"', _________________ resume event
— Omniscient Debugging 0 1 2 3 a s
PAUSE
Wallclock Time (WCT)
a 7 | o > | o o
N L | | N |
[)]] @ | | o .‘ |
— — | | — | |
s < o ° 2 | |
& & o e : 5 5 . |
> > | | > | |
[)] I |) | |
46 “-u' | | 4‘-“' | |
o e | | e} | |
[1)] [7)] | |)] | |
1 2 3 1 2 3 0.8 2.3 3
Simulated Time (ST) Simulated Time (ST) Simulated Time (ST)

Q& ¥ McGill ne(s!s

School of Computer Science

FLANDERS ra A
nsymo
74 MAK E 0 & Antwerp)S’ystems & Software Modelling
MANUFACTURING INNOVATION NETWORK k ‘

University of Antwerp

De- and Reconstruction

......................... 2! i iSCE B

i i : SC :

F 1 1 F 1 1 '
_'...: ; _',._: SIMFmodaI ! € :
— SIM¢ ' M . : SIIVII=non modall}

1 1 L 7 7|71 F-=-]

1, " 1 L ___:':'_: I :

: : || TEXECqc ¢ :

¥ McGill

"

School of Computer Science

I 'SC + @

E SC SC :

E 5IMFrnu::u:flall 5]:IMIIFu:lv.=~.l:|u+;| E

=1 T Tmeérge ™ : :

r : E : 1 FE

M .- Y SC — _ SIMFn?jn—bmudal .

] [} +]

: ; SIMFmodaHdebug I — .

| T

5 ' EXECq 5

Y a0
ne¢s!s » MAKE@QI[E

Ansymo

Antwerp Systems & Software Modelling
University of Antwerp

Architecture and Workflow
!

Construct
Debugging Environment

[:ModellingEnv | [:VisualizationEnv

]

:Deconstruct :InstrumentME :InstrumentVE

InstrumentVE

InstrumentSM Compose CreateComm

Statecharts
N

VisualizationEnv

:ModalPart :NonModalPart ’ :Instrumented

ModellingEnv

‘ :Instrumented

InstrumentME!
0 :SimulatorModel
CodeGen
:Instrumented :Instrumented
- InstrumentSM ModellingEnvImpl [CreateComm VisEnvImpl
:Instrumented
SimulatorModel
=
:CodeGen
L L__] moaelansfac
® maiualgtransfcrmatien :Instrumented ugging=nv @ el activity
(© automatic transformation Simulator (D) automatic activity
®
. Statecharts
+ - Simulator (Behaviour)
y
o | Statecharts Statecharts Kernel|5imu|ation Library
Model-Specific Statecharts —
i izati i Debugging UI (Behaviour
Visualization UI (Behaviour) gging UI () ——
Statecharts Kernel‘ UI Library Statecharts Kernel| UI Library Model
Lo A AL

W . FLANDERS 7 ‘
fi: MCGlll n e (_S_! S 76 MAKE @ G ﬁt[v]er%o)slymm?& Software Modelling

School of Computer Science University of Antwerp

Dynamic-Structure DEVS

[localhost9595

x\ ¥ - - - e e e

Examples
Parallel DEVS

€« C [} localhost:9595

P simulate P, Realtme Simulate 30 Il Pause MM BigStep Ml Small Step €D Reset @ Add Breakpoint

SIMULATION TIME: 4133

BREAKPOINTS: [EREY ()]

TN: 41374

|
| PositionManager
>4 TN: 42011
™ 4141
N 4141

TN: 4421

Particle[12]
TN: 4751

Dy EelEBEnrRGE20C S =

ProcessorState

+job = null

generatin
% vetumn {p_out’; [Job{0.2)]}

© retum

'r return {job"- inputs[p_in][0]}
+
HLout c ®int
Particle[13] I
1
1
L |
=3 ®x_"

Petrinets

idle

® retun FENTY

retum 0B inputs p_i

TS Sheay

processi
? veturn ip_out” [seif statejob]}

® retum nFENTY [(® return seff state jobSize

retum [job inputs[p_in][0]}

<= inr

processi
’? retum [p_out" [self state job]}

@ retumn seff state jobSize

® return INFINTY 0
1

(® retum INFINITY

return {'ne_of_jobs”. seff state.nr_of_jobs + 1}

T4 Petrinets Debugging Interface

nace | voansmon| o] 72|

end producing

end consuming

=

Hle]

jﬂﬂﬁﬂ

H >

+job = null

[produced’: 0, "waiting": 2, "producing”: 0, ‘consu

end consurhing \andproducmg

producing

N
Hgmduced‘: 0, 'waiting": 2, 'producing': 1, 'consuming': 0, 'free’ 2)

[produced” 1, ‘waiting: 2, ‘producing” 0. ‘consuming". 0, ‘free’: 3}

" start consuming

roduced": 0, 'waiting": 1, 'producing’: 0, ‘consuming": 1, 'free": 3

McGill

School of Computer Science

&

nes!s

FLANDERS

7 MAKE

MANUFACTURING INNOVATION NETWORK

ProcessorState

CollectorState

+nr_of_jobs = 48

Ansymo

Antwerp Systems & Software Modelling
University of Antwerp

Debugging Hybrid Formalisms

when Fy > 100

Obj_Detected

when Fy > 100

micro
i O<v
iom ™" 0<=i
Started
when wH< 0
_up
M;‘-‘Evop“zl; 0.6 DES »
. macro
micro
Initial State (0 Iast)
T-FSA State ’
CBD State 1
__Event I" 3
bowhen x>y ate event | v
e even CTS >
(0,0) macro
Continuous
Breakpoints Continuous
Pause/Resume Stepping Continuous Continuous
Stepping Event Injection Stepping Stepping Continuous
Realtime Simulation | | | |

Simulator sy [hild | Simulatoryesy gs <114 .| Simulatorresa ss <4) Simulatoriesa Trans
methods, attributes pari ent methods, attributes paren t methods, attributes par ent methods, attributes
behaviour (5C) behaviour (5C) behaviour (5C) behaviour (5C)

Simulatoryyprig
methods, attributes ‘ ‘
behaviour (5C) i) .

Simulatoregp F29 5 |Simulatoresp psl<9>Simulatoregp ssp<2%9 > Simulatoresp giock
methods, attributes Parent methods, attributes _L? arent methods, attributes g arent methods, attributes
behaviour (5C) behaviour (5C) behaviour (5C) behaviour (5C)

FLANDERS

‘Wg McGill ne

School of Computer Science

(SIS

78

MAKE

Ansymo

Antwerp Systems & Software Modelling
University of Antwerp

Efficient Omniscient Debugging (PDEVS)

< Y G »ad " el o [
S

Periodic
State Saving

Simulation Time

Optimizations:
* XS ->2XS
* Disk I/O
« Compression

FLANDERS

e ENMGIlne(s!s . MAKE @[T

School of Computer Science University of Antwerp

Roadmap

Denotational (vs. Operational) Semantics
Language Engineering

~ “wyeaving” debugging language

Simulators

— black- or grey-box (see FMI)

— hybrid: canonical form (moving away from SCCD)

Architecture

— automatic artefact generation/instrumentation

Advanced Breakpoint Conditions

— (see ProMoBox)

e

McGill ne (_S! S 80 FﬁiﬁKE 0

School of Computer Science

Ansrno

Antwerp Systems & Software Modelling
University of Antwerp

FurLrLy VERIFYING GRAPHICAL CONTRACTS ON MODEL

TRANSFORMATIONS

Bentley James Oakes

McGill University
bentley.oakes@mail.mcgill.ca

July 26, 2017

. FLANDERS
cé ‘f‘:‘ MCGlll n e (S‘I S 81 MAKE 0 . ﬁt[v]ersp Syrspm(s)&Software Modelling

School of Computer Science University of Antwerp

PROBLEM STATEMENT

Model transformations are at the heart and soul of model-based engineering?!

Given a model transformation...

L Layer ol Layer
P i
t
FatherMan ! CityCompany2Association
{
i Layer !
y Parent 3 Family ; ! | w City w Company
Country2Community fathers e | companies
firstName lastName e ! name . name
|
w Country family i isin
{
¢
{
- i b
Man i s v s ED 2 Asscciation
Community : P n ‘
fullName e name

Does the following structural contract hold on all input/output model pairs?

1. Sendall and W. Kozaczynski. Model Transformation: The Heart and Soul of Model-driven Software
Development. |IEEE Software, 20(5):4245, Sep 2003.

[Z] Pos_ParentCompany

OUR APPROACH

STEP 1 - GENERATE PATH CONDITIONS

@ We build representations of rule
interactions - path conditions

o Represent elements present in input
and output models
@ Through abstraction relation,

represent all possible transformation
executions

STEP 2 - CONTRACT PROVING BY

MATCHING

e Contract statement: “If pre-condition
matches on input model, then
post-condition must match on output
model”

e If this does not hold, the path
condition is a counter-example

L. Lucio, B. Barroca, V. Amaral. “A Technique for the
Verification of Model Transformations” Proceedings of
MODELS, 2010.

Path condition representing execution of
Daughter2Woman, Mother2Woman,
Country2Community rules:

—family
Parent Family Country — Family Child
~——— families daughters
~ mothers \\ /,
\\ //) N7
Woman Community Woman
persons

A contract that will not hold on the above
path condition:
@ Neg_DaughterMother

Interpretation: Families with Daughters
and Mothers will produce a Man element

APPLICATIONS

Verification that proprietary General Motors model for Vehicle Control Software is
properly translated to industry-standard AUTOSAR:

Pattern Contracts: (Properties that relate source and target metamodel elements)

— (P1) If a PhysicalNode is connected to a Service through the provided association (in the input),
then the corresponding CompositionType will be connected to a PPortPrototype (in the output).
— (P2) If a PhysicalNode is connected to a Service through the required association (in the input),
then the corresponding CompositionType will be connected to a RPortPrototype (in the output).

G. Selim, L. Licio, J. Cordy, J. Dingel, B. Oakes. “Specification and Verification of Graph-Based Model Transformation Properties” .
ICGT 2014.

Verification of translation from UML-RT state machine diagrams into Kiltera
(language for timed, event-driven, mobile and distributed simulation):

G. Selim, L. Licio, J. Cordy, J. Dingel, B. Oakes. “Specification and Verification of Graph-Based Model Transformation Properties” .

ICGT 2014.
G. Selim, J. Cordy, J. Dingel, L. Licio, B. Oakes. “Finding and Fixing Bugs in Model Transformations with Formal Verification: An

Experience Report” MODELS 2015.

@ Verification of mbeddr

e Designed to aid the development of
embedded C software by providing a
higher-level language

BUILDING TRANSFORMATIONS AND CONTRACTS

Currently there are three approaches to build transformation and contracts:
@ Translating declarative ATL transformations into DSLTrans
@ Eclipse plug-in
© Meta-Programming System plug-in

v

= eclipse

ATLC

ATL TRANSLATION

AT Lf DSLTrans

Translation (ATL HOT) > =Ml

@ Atlas Transformation Language is heavily used in industry and academia

e We translate ATL transformations using a higher-order transformation into our
language DSLTrans for contract proving

@ Approach covers all declarative ATL model transformations

e B. Oakes, J. Troya (Universidad de Sevilla), L. Licio, M. Wimmer (TU Wien).
“Fully Verifying Transformation Contracts for Declarative ATL" MODELS 2015.

e Expanded to journal article: “Full Contract Verification for ATL using Symbolic
Execution” SoSyM 2016.

EcLiPSE TOOL INTEGRATION

[d] motherFatherProp.syvolt_diagram £3 ="
»e Palette I
@ motherFathar —
- heaao-
(= Objects Ere)
= : (L) Concatenation
Eo‘ Membear EO- Family EQ Member g
— : [E] Contract
firstName : lastName lastName 3 ExistsMatchClass

Post-Attribute
EO Post-Element
1%, PestCondition

Pre-Attribute
EO- Pre-Element

PreCondition

@ Same Value
[Specification

T "
= Connections 0

@ AttributeRef
& Post-Association

@ Pre-Association

Same Post-Elements

Same Pre-Elements

%, Trace Link

Eclipse plug-in to build transformation and perform contract verification

e L. Lucio, B. Oakes, C. Gomes, G. Selim, J. Dingel, J. Cordy, H.Vangheluwe.
“SyVOLT: Full Model Transformation Verification Using Contracts” MODELS
2015.

e Collaboration with University of Antwerp and Queen’s University

MPS TooOL INTEGRATION

¢ DSLTrans - [~/Projects/language_verification/DSLTrans] - .../solutions/ExFamToPerson/models/ExFamToPerson.transforma’ + - o X
File Edit View Projection Navigate Code Analyze Build Run Tools Migration VCS Window Help
%" Logical View v € == ¥~ [~ (N Neighborhood2District ¥ Father2Man ¥ Neg_ CityCompany
ans (/home/dcx/Projects/language | v

hmples
ETP Textual n

S ExFamToPerson

~ Rule Name: Father2Man

ExFamToPerson
m transformation Match Model
contracts Classes
N F2P extendedCi 2.0.m.0Parent : concept/Parent/ Any MatchClass (Allow inheritance = false) Is Negative= false
¥ Neg_CityCompa firstName : property/Parent : firstWName/ : (String) <<String Matchers>
N Neg Countrycit& 2.0.m.1Family : concept/Family/ Exists MatchClass (Allow inheritance = false) Is Negative= false
N Neg_SChDO'QTdF lastName : property/Family : lastName/ : (String) <<String Matcher>>
N Pos_AssocCity ks
N Pos ChildSchoo 2.0.m.0Parent ---- Direct Match : link/Parent : family/ ---> 2.0.m.1Family Is Negative= false
N Pos_Daughteer 2.0.m.1Family ---- Direct Match : link/Family : fathers/ ---> 2.0.m.BParent Is Negative= false
= Apply Model
N Pos_FourMembe Ahsa
= Classes
N Pos_MotherFath 2.0.a.0Man : concept/Man/ ApplyClass (Allow inheritance = false)
N Pos_ParentCom

fullName : property/Man : fuliName/ : {(Reference to) firstName + (Reference to) lastName

N Pos_TownHallC¢
= Links

transformation

Ol-COUﬂtI'yZCOIT Backward Links
02-Father2Man_ << ... >>

N Father2Man

03-Mother2Wom

04-Daughter2Wc

> 05-Son2Man_Cr

(] nfa Gitmaster: & B8 7o ()

Integration into the Meta-Programming System from Jetbrains

e MPS is designed to easily create domain-specific languages
@ Projectional editor for creation of the DSLTrans transformation and contracts
e Provides auto-complete and syntax checking

@ Can execute DSLTrans transformations on a model, or verify the transformations
using contracts

ROADMAP

Current Work

e Formalizing all DSLTrans constructs of DSLTrans [1]
e Includes indirect links and negative elements

@ A detailed and more formal approach to the contract-proving technique [2]
e Includes negative elements and the representation of multiple rule application

[1] B. Oakes, L. Licio, C. Gomes, H. Vangheluwe.

“Complete Semantics for the DSLTrans Transformation Language”.

[2] B. Oakes, L. Licio, C. Gomes, H. Vangheluwe.

“Expressive Symbolic-Execution Contract Proving for the DSLTrans Transformation Language”.

Future Work

DIRECTION 1: APPLICATION OF CONTRACT-PROVING

@ Technique applicable to most

Overview: Apply proving to transformation languages with
I i trictions?
different transformation languages festrictions

and (industrial) case studies @ Further work on mbeddr case studies
and investigate more ATL

transformations

DIRECTION 2: INTEGRATION OF CONTRACT-PROVING APPROACH

Components can be extracted from existing
Overview: Add contract-proving SyVOLT prover
ability to model transformation @ Creation of matchers operating on
transformation rules
tools such as

AtomPM/ModeIVerse @ Graph non-isomorphism matching
@ Slicing/pruning optimizations

Frames

--= Enabling Reuse in MBSE =--

Joachim Denil

Joachim. Denil@uantwerpen. be

QE EMGill Ne(S!S o, MAKE @[S40 .

School of Computer Science University of Antwerp

Summary

— Reuse of (Simulation) Models is important

— Modelers make assumptions during all stages of a M&S process:
— Model Construction
— Model Calibration
- Etec.

— Frames record information to allow such reuse!

— Information needs to be stored for meaningful reuse

- Selection from catalogue of models

— Information needs to be modelled for automation

— Test that Frame works on Model

— Test that Models works with Frame

FLANDERS

e ENMGIlne(s!s . MAKE @[T

School of Computer Science University of Antwerp

Reuse of Models Example

pD - F=mar)

\V , =—mg+m;,g

0 1 dv

d —» Py > V(1)
1 C o

10 e _Epf1".f."1"_f.' —Fp(t)

pf — -%dz-cd (wig))

\ -

: o .
i RIS
l : %
BY FR 52 588

. FLANDERS
cé ti: MCGlll n e QS‘I S 99 ’Muéolo(hg 0 . ﬁt[v]ersp Syrspm(s)& Software Modelling

School of Computer Science University of Antwerp

1. Invariant Constraints

l.a SphereAttributes

1.

2.

10.

11.

Sphere Property - The body is a sphere and it re-
mains spherical.
Smooth Property - The body is smooth and it re-
mains smooth.
Impermeable Property - The body is completely
impermeable.
Initial Velocity - The body has an initial velocity
of v, that has no horizontal component of motion.
Angular Velocity - The body has no initial angu-
lar velocity.
Constant Mass - The mass of the body remains
constant over time. The body does not experience
ablation or accretion.
Constant Diameter - The diameter of the body
remains constant over time.
Distribution of Mass - The body has a centrally
symmetric mass distribution that remains constant
over time.
Uncertainty Principle - The diameter of the body
is much greater than the Plank length.
Brownian Motion - The mass and diameter of the
body are large enough such that Brownian motion
of the fluid has negligible impact on the body.
General Relativity - The mass of the body is low
enough to ignore the gravitational curvature of
space-time.

1.b Fluid Attributes

12.

13.
14.

15.

e

Fluid Density - The fluid density is constant. The
fluid is incompressible.

Fluid Pressure - The fluid pressure is constant.
Fluid Temperature - The fluid temperature is con-
stant.

Kinematic Viscosity - The kinematic viscosity is
constant. The medium is a Newtonian fluid.

16.

17.

Stationary Fluid - The fluid is stationary apart
from being disturbed by the falling body.

Infinite Fluid - The volume of the fluid is large
enough to completely envelope the sphere. The
movement of the fluid is not restricted by a con-
tainer such as a pipe or tube.

1.c Earth Attributes

18.

19.

Flat Terrain - The ground does not have terrain
and remains flat for all t > 0.

Coriolis Effect - The Earth is not rotating. We ig-
nore the Coriolis effect.

2. Dynamic Constraints

20.

21.

22.

Mach Speed - The velocity of the body is suffi-
ciently less than the speed of sound for that me-
dium.

Special Relativity - The velocity of the body is
sufficiently less than the speed of light for that
medium.

Reynolds Number - The Reynolds number re-
mains between 102 and 10’ for all t > 0. The
Reynolds number is a function of velocity.

3. Inter-Object Constraints

23.

Sphere/Fluid Interaction - The body and the fluid
interact only through buoyancy and drag. For ex-
ample, the body cannot dissolve in the fluid, nor
can the body transfer heat to the fluid.

24.

25.

26.

27.

28.

29.

Sphere/Earth Interaction - The body and the eart
interact only through the gravitational force.
Fluid/Earth Interaction - The fluid and the eart
do not interact.

Closed System - The Earth, sphere, and fluid d
not interact with any other objects.

Simple Gravity - Gravity is a constant downwar
force of 9.8 m/s°.

One-Sided Gravity - The mass of the body i
much less than the mass of the Earth. The Eartl
is not affected by the gravitational pull of th
body.

Inelastic Collision - The collision between th
sphere and the ground is perfectly inelastic.

Spiegel, Michael, Paul F. Reynolds Jr, and David C. Brogan. "A case study of model context for simulation composability

and reusability." Proceedings of the 37th conference on

(SIS

¥ McGill ne

School of Computer Science

FLANDERS

MAKE

93

inter simulation. Winter Simulation Conference, 2005.

Ansymo

Antwerp Systems & Software Modelling
University of Antwerp

15" attempt: Zeigler’s

Experimental Frame

Proportioral Limit

displacement

force

e ENMGIlne(s!s . MAKE @[T .

School of Computer Science University of Antwerp

Give Procedure that can be enacted and automated
and allows for reuse!

Expenmental spring results, with mass m in kg and displacement x (3+0.0001) in em

m X m X m X | m X m X
1 2.100 3 | 63749 || 5 | 104915 || 7 | 14.6081 9 | 19.0012
2 | 43166 || 4 | B4332 || 6 | 125489 || 8 | 16.7774

Q

[Parameter, IC, constant definition]
-1 p: Pm::m*lcrs
B : =
Ee= Sol fi 1

: . : L WET Eﬂ: guration](—-

MW

c : Solver Config

-3 | Exccution of simulation/experiment J—

r : Results |
+

Analysis of results]

r°=0.9998413 | k=4.759093 | €, =[1,9] (force) | €,.. =[2.101241,18.91116]

— Ansymo
bg OAVANNDLLL I I c ka") 95 MAK: w . Antwerp)f-,,ystems&Software Modelling

School of Computer Science University of Antwerp

Masses

I

| £ L
ol
e

Not only for Model but for all parts of M&S cycle!

Synthesis

System Activity Analysis

Inputs

. Out t
Environment el

* Process

7 Modeling Activity

Modeling
v

Optimisation

Validation

Calibration

Verification

sjuoesoadoa

Objectives

Constraints

A1: Colour times are constant
A2: Sequence of colours uses pattern R->G->Y

C1: Precision is +-0.1 sec.
O: find values for the parameters: T_y, T_r, T_g such A1:24 hours of data capturing is sufficient
that the behaviour of the model reflects the behaviour éQ'l Time measurement device is precise to 0.1 sec
of the traffic light under study. 1: Data is processable

f”

-
””
l ‘Data Collection 4=~
Data
C1: Confidence interval
:Average memmmemm=== =T
Calculation
— . . arameters
Objective achieved under assumptions @ P

w . FLANDERS 7 ‘
'i: MCGlll n e (' I S 96 MAKE @ G ﬁt[v]ersp)slyl;tre]m?& Software Modelling

School of Computer Science University of Antwerp

Future Directions

~ Work with Alex, Rick and Stefan @ MPM4CPS Cost?
— Continue on the different M&S life—cycle elements

~ Extended Case Study

— Power window?
— Appropriate languages for modelling frames
— Extend formalization and frame relations

_ Libraries with Frames (tool-building)

FLANDERS

EENMGIlne(s!s » MAKE @[50

School of Computer Science University of Antwerp

Lunch

. FLANDERS
cé ‘fi: MCGlll n e QS‘I S 98 MAKE 0 . ﬁt[v]erSpSyrst?&Software Modelling

School of Computer Science University of Antwerp

Engineering Process Transformation

to Manage (In)consistency

Istvan David
MSDL Antwerp

1stvan. david@uantwerp. be

. FLANDERS
cé ‘fi: MCGlll n e QS‘I S 99 MAKE 0 ﬁt[v]ersp Syrspm(s)& Software Modelling

School of Computer Science University of Antwerp

Summary

— Inconsistency management 1n engineering processes

— Inconsistencies — $$9%

— Late (or no) detection, numerous re—iterations..

— We provide:
— A methodology, and

— A tool for managing inconsistencies.

1. David, J. Denil, K. Gadeyne, and H. Vangheluwe, “Engineering Process Transformation to Manage
(In)consistency,”

in Proceedings of the 1st International Workshop on Collaborative Modelling in MDE (COMMitMDE
2016), pp. 7-16, http://ceur-ws.org/Vol-1717/,2016.

t’é MCGill n e (-S! S 100 WDEXKE 0 ﬁt[v]eﬁoSyrstTe]m?& Software Modelling

School of Computer Science University of Antwerp

Engineering complex systems is hard!

"McGill ne

"

School of Computer Science

it Mm..mm

I l Wi
i

€«

101

FLANDERS

MAKE

MANUFACTUR

(&)
N/

Ansymo

Antwerp Systems & Software Modelling
University of Antwerp

Engineering complex systems is hard!

()

Modeling

Increased
complexity ,

VAN

Disparate
domains

Inconsistencie

S

. FLANDERS /7 ‘
cé RO MCGlll n e (S‘I S 102 M AKE @ & ﬁt[v]eﬁo)slyrspm?& Software Modelling

School of Computer Science University of Antwerp

Engineering complex systems is hard!

7 N\
Modeling g
g m}t’fhmﬂn au'rr'{.‘M

\ Y,

7)
Increased
complexity

_J

))
Disparate

domains

Inconsistencies

CORRECTNESS EFFICIENCY

Ansymo

Antwerp Systems & Software Modelling
University of Antwerp

tmé McGill Ne(S!IS s MAKE

School of Computer Science

O

Managing inconsistencies

— Rather than thinking about removing inconsistency we
need to think about 'managing consistency™ -
Finkelstein

— Tolerate, analyze, prevent..

‘ié McGill ne @! S MAKE (A1) - R —

School of Computer Science University of Antwerp

Managing inconsistencies

— Rather than thinking about removing inconsistency we
need to think about 'managing consistency™ -
Finkelstein

— Tolerate, analyze, prevent..

— Processes!
— Understand the lifecycle of models
~ ..and their relation with (semantic) properties

— ...and consequently: inconsistencies (origin, impact)

Qe MGl Ne(SIS , MAKE @) (2500000 e

School of Computer Science University of Antwerp

Managing inconsistencies

— Rather than thinking about removing inconsistency we
need to think about "managing consistency™ —
Finkelstein

— Tolerate, analyze, prevent..

— Processes!

— Understand the lifecycle of models

~ ..and their relation with (semantic) properties

Model the Identify Transform the

potential

T i i i
process inconsistencies

process

. FLANDERS
tré t‘;ﬁ MCGlll n e C'S! S 1 0 6 M AK E 0 ﬁt[v]ersp SyEIa]m(s)& Software Modelling

School of Computer Science University of Antwerp

Managing inconsistencies

— RKather than thinking about removing inconsistency we

need to think about "managing consistency™ —

Finkelstein

— Tolerate, analyze, prevent..

Processes!

— Understand the lifecycle of models

_ ..and their relation with (semantic)

Model the
process

McGill nhe

e

School of Computer Science

Identify
potential
inconsistencies

(S!S

Goal 1: Goal 2:
manage potential minimize
inconsistencies transit time

Weave 1in
management
patterns into
the process

Transform the
process

Quantify
optimality

Ansrno
1 0 7 Antwerp Systems & Software Modelling
MANUFACTURING INNOVATION NETWORK

FLANDERS

University of Antwerp

Model the
process

Process modeling and transformation

— Appropriate process modeling formalism?

— Extended FTG+PM

. Mechanical design

$ 0

!

o Simulate electrical model

$ ooz

. FLANDERS
cé ti: MCGlll n e (S‘I S 108 MUAOKLED 0 . ﬁt[v]ersp Syrspm?&Software Modelling

School of Computer Science University of Antwerp

Identify
potential
inconsistencies

Process modeling and transformation

— Appropriate process modeling formalism?

— Extended FTG+PM

. Mechanical design

$ 0

!

o Simulate electrical model

$ ooz

. FLANDERS
cé ‘f‘\: MCGlll n e C'S‘I S 109 MAKE 0 . ﬁt[v]ersp Syrspm(s)&Software Modelling

School of Computer Science University of Antwerp

Transform the
process

Process modeling and transformation

— Appropriate process modeling formalism?

— Extended FTG+PM

. Mechanical design

$ 0

N —

!

o Simulate electrical model

$ ooz

Inconsistencies Management
techniques

— It’s an optimization problem

— Matching ICs with ICMs while keeping transit costs at minimum

— Challenge: impact of ICM techniques on the process

. FLANDERS
cé ‘fi: MCGlll n e QS‘I S 110 MAKE 0 . ﬁt[v]ersp Syrspm(s)&Software Modelling

School of Computer Science University of Antwerp

Roadmap

— Methodology+tooling

— Future work

— Cost/performance modeling

— Resolution techniques to be revisited

~ Fits into a larger framework (see the other

Specification phase Enactment phase
Specification-time Run-time
. inconsistency inconsistency Inconsistency
Process modeling .
management management resolution
(Preventive) (Detection-based)
Transformation-based Symbolic constraint
L multi-objective DSE evaluation Enablers
Legend Current main scope Out of scope

t% 'i: AVALJ111 I I c &a‘l D 111 MAKt m u AntweerSy.st.E;n\s'& Software Modelling

School of Computer Science University of Antwerp

Modeling and enactment support
for early detection of inconsistencies

In engineering processes

Istvan David
MSDL Antwerp

1stvan. david@uantwerp. be

. FLANDERS
cé ‘fi: MCGlll n e QS‘I S 112 MAK E 0 ﬁt[v]ersp Syrspm(s)& Software Modelling

School of Computer Science University of Antwerp

Summary

Specification phase Enactment phase
Specification-time Run-time
. inconsistenc inconsisten Inconsistenc
Process modeling Y - . y
management management resolution
(Preventive) (Detection-based)

|

Transformation-based Symbolic constraint
PIePm multi-objective DSE evaluation Enablers
Lege nd Current main scope Additional current scope Out of scope

— FEarly inconsistency detection

— We provide:
— A methodology for formalizing inconsistencies, and

— An enactment engine for running the managed process.

1. David, B. Meyers, K. Vanherpen, Y. Van Tendeloo, K. Berx, and H. Vangheluwe, “Modeling and enactment support for early detection of inconsistencies in

engineering processes,”
Submitted, under review, 2nd International Workshop on Collaborative Modelling in MDE (COMMIitMDE 2017)

@ . FLANDERS 7 ‘
cé g MCGlll n e (S_‘I S 113 MA KE @ G éitgisﬁzsgs;?:qg&érspoﬂware Modelling

School of Computer Science

Process enactment

— Process modeling is a must, but it’s not enough

— Process enactment is required to ensure consistency

Enactment engine
2|5

[«}] — =
= e e
— .
o Consistency manager s ||
1= v]
= : L
o Transformation rules = | 3
— . . o] @
S (Execution semantics) L 3
o =
— — 1
1] (D -
2 FTG+PM Enactment @
< . [v3]
@ instance model 5 |l :

enacts = |

w . FLANDERS
‘ié “ McGill N@(SIS |, MAKE @) [TF 25000 o

School of Computer Science University of Antwerp

b M "
i
2 mmmn i sl
4 LT AT
y! I | i
T
| il

Example

- My = mpmy,Fmg

- my < 150 [kg],
m, < 100 [kgl,
m, < 50 [kg],
m, < 10 [kg]

_ mass > 0 [kg]

. FLANDERS
I g MCGlll n e QS‘I S 115 MAKE 0 ﬁt[v]ersp Syrspm(s)&Software Modelling

University of Antwerp
School of Computer Science

N
Gl i :
i {1 44Ny
- il A &
1 o
‘V‘l | 1 1
]

Example
— My = Mptmy,Tmy
- my < 150 [kg],
m, < 100 [kg],
Step 1

=
=
IA

50 [kg]) A platform is selected with a mass of 100kg. (m,=100 [kg])
10 [kg]

=
o5
I

_ mass > 0 [kg]

cé MCG'ill n e QS! S 116 WDEKKE 0 ﬁt[v]ersp Symm?& Software Modelling

School of Computer Science University of Antwerp

Example

- My = mp+mM+mB

- my < 150 [kg],
m, < 100 [kgl,
Step 1
My < 50 [kg] , A platform is selected with a mass of 100kg. (m,=100 [kg])
My < 10 [kg] Step 2

A motor is selected with a mass of 50kg. (m,,=50 [kg])

_ mass > 0 [kg]

cé MCG'ill n e QS! S 117 WDEKKE 0 ﬁt[v]ersp Symm?& Software Modelling

School of Computer Science University of Antwerp

Example

— My = Mptmy,Tmy

- my < 150 [kg],
m, < 100 [kg],
Step 1
my, < 50 [kg] ’ A platform is selected with a mass of 100kg. (m,=100 [kg])
mg < 10 [kg] Step 2
A motor is selected with a mass of 50kg. (m,,=50 [kg])
Step 3
_ mass > 0O [kg] A battery is selected with a mass of 10 kg. (mg= 10 [kg])

cé MCG'ill n e QS! S 118 WDEKKE 0 ﬁt[v]ersp Symm?& Software Modelling

School of Computer Science University of Antwerp

Example

- My = mPerNﬁmB

- m; £ 150 [kgl,
m, < 100 [kg],
Step 1
my, < 50 [kg], A platform is selected with a mass of 100kg. (m,=100 [kg])
mp <10 [kg] Step 2

A motor is selected with a mass of 50kg. (m,,=50 [kg])

Step 3
A battery is selected with a mass of 10 kg. (mg= 10 [kg])

_ mass > 0 [kg]

cé MCG'ill n e QS! S 119 WDEKKE 0 ﬁt[v]ersp Symm?& Software Modelling

School of Computer Science University of Antwerp

my = mp+mM+mB

150 [kgl,
100 [kgl,
50 [kel,
10 [kgl

B B B
A A IA

£
IA

mass > 0 [kg]

McGill ne

e

School of Computer Science

,,,,,

Example

Step 1
A platform is selected with a mass of 100kg. (m,=100 [kg])

Step 2
A motor is selected with a mass of 50kg. (m,,=50 [kg])

Step 3
A battery is selected with a mass of 10 kg. (mg= 10 [kg])

FLANDERS

QS‘I S 1 20 M A K E 0 ﬁt[v]ersp Syrspm(s)& Software Modelling

University of Antwerp

:I%ﬂ%ﬂ%

IA

150 [kgl,
100 [kgl,
50 [kel,
10 [kgl

_ mass > 0 [kg]

e

IA IA IA

McGill ne

School of Computer Science

,,,,,

Example

Step 1
A platform is selected with a mass of 100kg. (m,=100 [kg])

Step 2
A motor is selected with a mass of 50kg. (m,,=50 [kg])

Step 3
A battery is selected with a mass of 10 kg. (mg= 10 [kg])

FLANDERS

QS‘I S 1 2 1 M A K E 0 ﬁt[v]ersp Syrspm(s)& Software Modelling

University of Antwerp

Example

- My = mpFmy g
Attribute

150 [kgl,

100 [kgl,

50 [kgl,

10 [kgl

_ mass > 0 [kg]

Capability

|
=i

—
IA

=]
-
IA

Step 1

=
IA

Step 2

£
IA

Step 3

‘wg McGill ne @! S ., MAKE

School of Computer Science

A platform is selected with a mass of 100kg. (m,=100 [kg])

A motor is selected with a mass of 50kg. (m,,=50 [kg])

A battery is selected with a mass of 10 kg. (mg= 10 [kg])

il el
Gl il ’
Raafl AHTTTET $8680012
! - ffi@ e
3 il 7
A ““ 1
™% ,"
8
(

Ansymo

Antwerp Systems & Software Modelling
University of Antwerp

Attributes and capabilities

F TG [E FormalismTransformatiomGralgq P M
() 1
3 [0.] contralFlow [0.%] node

[0..*] controlln LAt l .
B contralFlow B Node ’(—‘ 10.*] dataFlowFrom
\

.) 21 [0..*] dataFlowTo
[0.7] trpnsformation [0..] controlout [1.1] from T

[0.#] flormalism

[0..1] typedBy, [0..1] types

E Formalism 0.7 input 0.7 Inputar E Transfnrmatmr@ E Object ‘ Eﬁ Activity ‘ ﬁ Control
[0.4 output [0..*] outputOf h i —‘?—
0.3 | [0..1] persistedIn | I I ‘
.1 formalism

[E Initial l | Eﬁ Final | [E Fork] [E Decision]
)| A\)

[0..1] typedBy

[0.*] attribute l | L)
[0..*] capability [0.1] types é
H capability J H attribute] [E| AutomateaActivit@] [E| MamualActiwty@] [H activityFinal] [H FlowFinal] [H Join l [H Merge]
[0..1] typedBy [0.."] types [] [] L] [I)L A]

‘ "5 ConstraintSubject [0.*] constrains H constraint

. FLANDERS 7 » \|
\g MCGlll n e (S! S 123 MAKE @ & ﬁtgeﬁo)s,yrspm?& Software Modelling

School of Computer Science MANUFACTURING INNOVATION NETWORK University of Antwerp

|

i "] input

Attributes and capab111tles

e m o —

Q Farmalism

[0.7] inputh)[S| Transfnrmatin@]
J

[0..1] farmal

[0..*] capah

ility

L) [0.*Wutput

Hiil

[0.*] outputOf

[0..1] persistedIn

[0..%] attribute

H attribute

=| Autumatedﬁctiuit?

H capability

|

[

"9 Constraintsubject |

[0..*] canstraing

E Constraint

"McGill ne

"

School of Computer Science

(S!S

124

FLANDERS

MANUFACTURING INNOVATION NETWORK

O

Ans mo

Antwerp Systems & Software Modelling
University of Antwerp

Modeling the process

- MechanicalModel :

|

< e Matlab

stypedBys =~
-

-
-

k-"&ransfnrmedﬂy»
Matlab

-~

-
-

" “wtypedBy»

-
-
-

«transformationTo:=

L.

- -
-
-
- .
-
- -
-

- -
- -
“-
-
-"-

- stypedBys ~ ==L _ _
stypedBj= - _

Step 1
A platform is selected with a mass of 100kg. (m,=100 [kg])

Step 2
A motor is selected with a mass of 50kg. (m, =50 [kg])

Step 3
A battery is selected with a mass of 10 kg. (mg= 10 [kg])

‘mé McGill ne (S!S

School of Computer Science

FLANDERS

MAKE

MANUFACTURING INNOVA'

125

ON NETWORK

a DesignPlatform | = = -Tn.d'j}"'. -

¥
aSEIectMntnr

modify
¥
N a SelectBattery modify

'lr-.‘ 1 .
aﬁssignTntaIMass resolve_constrai

Ansymo

Antwerp Systems & Software Modelling
University of Antwerp

Modeling the process

mechanicalModel.

— mp = mP+mM+mB % platformMass

platformMass <= 100

150 [kel,
]-OO [kg]) mechanicalModel. =

|
B
IA

&
IA

motorMass motorMass <= 50
lIlM S 50 [kg] Py @ L3
totalMass = platformMass +
Mg <].O [kg] motorMass + batteryMass

mechanicalModel.
batteryMass batteryMass <= 10

~ mass > 0 [kg]

RELTE!

E totalMass

totalMass <= 150

Legend Constraint B corainvass Attribute

Relationship link

€ U MGl nNe(s!S . MAKE @) [0

School of Computer Science University of Antwerp

MANUFACTURING INNOVATION NETWORK

Modeling the process

- Iy = mptmytmy

«trans

~ Iy <
m, < 100 [kg], Legend
mN‘I < 50 [kg], Formalism — — = Typedby
My < 10 [kg] Transfonatuon el Transformation (by/to) «transformationTo» G
—= Constraint
Capability — Relationship link

~ mass > 0 [kgl

. FLANDERS
cé MCGlll n e (S! S 127 MU AOIO(LE 0 ﬁt[v]ersp SyrstTe]m(s)& Software Modelling

School of Computer Science University of Antwerp

Modeling the process

- Iy = mptmytmy

REL N} «trans
) o
150 [kg] , mass > 0

~ Iy <
m, < 100 [kg], Legend
m\fl < 50 [kg}, Formalism — — = Typedby
My < 10 [kg] Transrofmatlon el Transformation (by/to) «transformationTo» ¢
—= Constraint
Capability — Relationship link

~ mass > 0 [kgl

Evaluation of capability constraints
Any constraint applied on a capability imposes a constraint
on every attribute typed by that capability.

. FLANDERS /7 ‘
cé ti: MCGlll n e (S‘I S 198 MU AOKLE m & ﬁt[v]eﬁo%,yrspm?& Software Modelling

School of Computer Science University of Antwerp

Modeling the process

- Iy = mptmytmy

REL N «tran51
150 [kg], mass > 0

~ Iy <
m, < 100 [kg], Legend
m\fl < 50 [kg}, Formalism — — = Typedby
My < 10 [kg] “5'55 T"anSfOTmat'O“ el Transformation (by/to) «transformationTo= t
—= Constraint
Capability Relationship link

~ mass > 0 [kg]

kg] <m = 150 [kg],
_ < 100 [kg],
kg] <m,, S 50 [kg],
kgl <m, < 10 [ke]

E EMGill Ne(S!S .y MAKE @[S40

School of Computer Science University of Antwerp

Evaluation of capability constraints
Any constraint applied on a capability imposes a constraint
on every attribute typed by that capability.

S o o o
=~
oQ

Modeling the process

- Iy = mptmytmy

REL N} atran51
150 [kg] , mass > 0

~ Iy <
m, < 100 [kg], Legend
m\fl < 50 [kg}, Formalism — — = Typedby
My < 10 [kg] “5"':'?55 TranSfOTmat'O“ el Transformation (by/to) «transformationTo= ¢
—= Constraint
Capability Relationship link

~ mass > 0 [kg]

kg] < m, < 150 [kg],
] <m, S 100 [kg],
kg] <my, S50 [kg],
kg] <m, =10 [ke]

. FLANDERS
cé ti: MCGlll n e (S‘I S 130 MU AOKLED 0 ﬁt[v]ersp SyrsIa]m(s)& Software Modelling

School of Computer Science University of Antwerp

Evaluation of capability constraints
Any constraint applied on a capability imposes a constraint
on every attribute typed by that capability.

S o o o
=
0Q

Process enactment

{:} P
= SIS [E Enactment] [1..1] enactedProcesshModel E PrncessMndeIEl]
= READY . ¥
= RUNHNIMG
= DOME [0..*] token
E Token
[0.*] process
I state : ActivityState = READY -
5 abstract : EBoolean = false

F [0..1] subTokenOf

[0..1] currentNode
[0.*] subToken

| Eﬁ MNode El._# [0.*] node J E Process (2]
|_ L J
T
| | |

EE Activity El‘ | EE Control IE‘
)]

cé MCG'ill n e (S‘l S 131 WDEKKE @ ﬁt[v]ersp Syrspm(s)& Software Modelling

School of Computer Science University of Antwerp

Roadmap

— Methodology and tooling provided

— Tooling: fully modeled execution

~ Interfacing with Matlab/Simulink and AMESim

— Future work

— Combine with specification—time inconsistency management

Specification phase Enactment phase
Specification-time Run-time
. inconsistenc inconsisten Inconsistenc
Process modeling Y - . y
management management resolution
(Preventive) (Detection-based)
Transformation-based Symbolic constraint
P multi-objective DSE evaluation Enablers
Lege nd Current main scope Additional current scope Out of scope

cé E‘? MCGill n e (S.‘I S 132 WDEX KE @ ﬁt[v]ersp Syl;tre]m?& Software Modelling

School of Computer Science University of Antwerp

Enabling Contract-based Design

in Engineering Processes

Istvan David
MSDL Antwerp

1stvan. david@uantwerp. be

cé MCG'ill n e QS! S 133 WDEKKE 0 ﬁt[v]ersp Syrspm(s)&Software Modelling

School of Computer Science University of Antwerp

Summary

— Ensuring consistency in parallel branches of the
enacted process

— Preventive technique

— We provide:
— A methodology for ensuring consistency by contracts

— Tooling for
- modeling and enacting the process, and
— specifying contracts, and
— use contracts as a preventive technique for inconsisteny

mgmt.

E EMGill Ne(S!S ., MAKE @[S40

School of Computer Science University of Antwerp

mmmmm

Example

— The motor and the battery

are selected in parallel

Y
\
!
Y
|
SelectBattery : SelectMotor : L -=" -
] componentselection], componentSelection
~ e
-~ -
- -
J__J.-" . .. \\\
- - -
“nfoify, \

foin

t’é MCGill n e (S! S 135 WWKKE @ U" ﬁt[v]ersp)f)’yrspm?&SoftwareModelling

School of Computer Science University of Antwerp

MANUFACTUR

T (e ’, 7 S —
: 4 i i .:“ ;."

\‘ Wﬁmkdﬁﬁhﬁh . SRS | ,“,‘"";;;;;;,';,, "@.”
N l | ; > v
ove. I} .

1 /

aSeﬂmtmICondltlons i
setlnitialConditionsSpec

L TN

SelectBattery : a SelectMotor : L -
componentSelection componentSelection

-

foin

— Driving the motor assumes a minimum current from the

battery

— The battery guarantees a minimum current for the motor

. FLANDERS
cé ‘fi: MCGlll n e QS‘I S 136 MAKE 0 ﬁt[v]ersp Syrspm(s)& Software Modelling

School of Computer Science University of Antwerp

........................

Contracts

|

aSeﬂmtmICondltlons
setlnitialConditionsSpec

madify_
SelectBattery : n SelectMotor : L -
componentSelection componentSelection

' desiredCurrent: (2A, 3A)

foin

— Driving the motor demands a minimum current from the

battery

— The battery guarantees a minimum current for the motor

FLANDERS
cé MCGlll n e C'S_! S 137 MU éo!Sme m ﬁt[v]ersp SyEtTe]m?& Software Modelling

School of Computer Science University of Antwerp

Ml

Contracts

- e E N "
3 - 3
5 = N

actualCurrent > = desiredCurrent

aSeﬂmtmICondltlons
setlnitialConditionsSpec

Negotiate

Eactuall:urrent Edesirediurrent

| 0 ’
SelectBattery: n SelectMotor: L-=" -
componentSelection componentSelection

l q ed A A

Check contract validity

— Driving the motor demands a minimum current from the

battery

— The battery guarantees a minimum current for the motor

té MCGill n e QS'! S 138 FLAMNDEKK E 0 ﬁt[v]ersp SyEIa]m?& Software Modelling

School of Computer Science University of Antwerp

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Leveraging attributes and constraints

REL JE]

actualCurrent == desiredCurrent

@ad:ualturrent @desiredturrent
madify_ . - =~ "
| - E ! —
° SelectBattery : ° SelectMotor : L=~ -
componentSelection|. componentSelection

@ actualCapacity

@ desiredCapacity
'

’
]

RELYE

desiredCapacity <= actualCapacity

tﬂé MCGill n e (S! S 139 WDEKKE @ U" ﬁt[v]ersp)s/yrspm?&smwareModening

School of Computer Science University of Antwerp

MANUFACTURING INNOVATION NETWORK

Leveraging attributes and constraints
RELIE

actualCurrent > = desiredCurrent

Eactual[urrent @desired[urrent

Eactualtapacit]r

McGill ne

o

e

School of Computer Science

(S!S

E desiredCapacity

RELE]

desiredCapacity <= actualCapacity

FLANDERS)
140 MAKE @ U" ﬁt[v]ersp)‘!yrspm?& Software Modelling

University of Antwerp

MANUFACTURING INNOVATION NETWORK

RELJE

actualCurrent >= desiredCurrent

Eactualturrent @desiredturrent

@ supportTime

EL[E

actualCurrent * supportTime =
actualCapacity

@actual[apacit].r

E desiredCapacity
Es

desiredCapacity <= actualCapacity

Ansymo

Antwerp Systems & Software Modelling
University of Antwerp

(o

& TMGill ne(s!s ., MAKE

School of Computer Science

MANUFACTURING INNOVATION NETWORK

RELJE

actualCurrent >= desiredCurrent

Eactualturrent @desiredturrent

...from the requirements

@ supportTime

EL[E

actualCurrent * supportTime =
actualCapacity

@actual[apacit].r

desiredCapacity <= actualCapacity

Ansymo

Antwerp Systems & Software Modelling
University of Antwerp

(o

é McGill N EQS.'S 142 MAKE

School of Computer Science

MANUFACTURING INNOVATION NETWORK

RELJE

actualCurrent >= desiredCurrent

Eactualturrent @desiredturrent

@ supportTime

actualCurrent * supportTime =
actualCapacity

@actual[apacit].r

E desiredCapacity
Es

desiredCapacity <= actualCapacity

Ansymo

Antwerp Systems & Software Modelling
University of Antwerp

(o

é McGill N EQS.'S 143 MAKE

School of Computer Science

MANUFACTURING INNOVATION NETWORK

RELJE

actualCurrent == desiredCurrent

Eactual[urrent @desired[urrent

- ‘ @ supportTime

actualCurrent * supportTime = desiredCurrent * supportTime =
actualCapacity desiredCapacity
T

@actual[apacit].r

@ desiredCapacity

desiredCapacity <= actualCapacity ’

(o

Ansymo

Antwerp Systems & Software Modelling
University of Antwerp

é McGill N EQS.'S 144 MAKE

School of Computer Science

MANUFACTURING INNOVATION NETWORK

Reused information

actualCurrent == desiredCurrent

Eactuall:urrent @desiredturrent

I_=:

actualCurrent * supportTime =
actualCapacity

McGill nhe

e

School of Computer Science

= Eactualﬁ:apacity

(S!S

Generated

E supportTime

Contract

desiredCurrent: (2A, 3A)
supportTime: (>3h)

desiredCapacity: (6Ah, 9Ah)

L3

desiredCurrent * supportTime =
desiredCapacity

E desiredCapacity

desiredCapacity <

145

FLANDERS

MAKE

MANUFACTURING INNOVATION NETWORK

Ansymo

Antwerp Systems & Software Modelling
University of Antwerp

(o

Enactment

Negotiate

SelectBattery : SelectMotor : L-=""
componentSelection componentSelection
I

Check contract validity

€ U MGl ne(s!s ., MAKE @) [

School of Computer Science University of Antwerp

MANUFACTURING INNOVATION NETWORK

Enactment

aSeIectMotor L ==
componentSelection

SelectBattery :
componentSelection

Check contract validity

Q& ¥ McGill ne(s!s

School of Computer Science

— Negotiate a contract based
modify-read pairs of

intents.

FLANDERS

MANUFACTURING INNOVATION NETWORK

Ansrno

Antwerp Systems & Software Modelling
University of Antwerp

O

Enactment

Negotiate

aSeIectMotor L-="
componentSelection

SelectBattery :
componentSelection
I

Check contract validity

‘mé McGill ne (S!S

School of Computer Science

— Negotiate a contract based

148

modify-read pairs of

intents.

Consistency between the
parallel branches is managed
by the contract. From the
process engine’s point of

view, this is a ,safe zone”.

FLANDERS A
nsymo
M A K E 0 Antwerp Systems & Software Modelling

University of Antwerp

Enactment

_ -~ Negotiate a contract based
Negotiate

PR modify-read pairs of intents.

—— — Consistency between the

SelectBattery : a SelectMotor : L-=" -
componentSelection componentSelection

| parallel branches is managed by

the contract. From the process

engine’s point of view, this is

Ceck contract validity a safe zone”
144 i

— Upoin joining the branches, the

contract is checked.

. FLANDERS
cé ‘f‘:‘ MCGlll n e (S‘I S 149 MAKE 0 ﬁt[v]ersp Syrsl]m(s)& Software Modelling

School of Computer Science University of Antwerp

Alternative execution semantics

Negotiate — Negotiate a contract

— Map its contents to new

. P .
gy ScedBatten: Lo SN constraints of the

attributes

Check contract validity

. FLANDERS
cé MCGlll n e (S‘I S 1 50 MU AOKLE 0 ﬁt[v]ersp SyrstTe]m(s)& Software Modelling

School of Computer Science University of Antwerp

Contributions

— From the process point of view:
— CBCD as an inconsistency management technique
— From the CBCD point of view:

— Less work during contract negotiation, as part of it can be

inferred

— If sufficient information is provided, the contract can be fully
generated

~ Integrated tooling

— Process tool + CBCD tool

F EMGIlNe(SIS 1, MAKE @) [0

School of Computer Science University of Antwerp

Roadmap

— Ongoing research, but the added value to the SOTA is

obvious

— Tasks:

— Work out an example ¢/

— Identify added value vs our previous work on
— processes, and

— contract—based design.

— Provide tooling

_ Target venue: ETAPS/FASE (submission in October)

QE EMGill Ne(S!S ;, MAKE @) [A0 .

School of Computer Science University of Antwerp

Contract-Based Co-Design (CBCD)

Ing. Ken Vanherpen

E “MGill Ne(S!S 1y, MAKE @[S40

School of Computer Science University of Antwerp

mailto:ken.vanherpen@uantwerpen.be
http://msdl.cs.mcgill.ca/people/ken/

k
I
Embedded Control :
— : " |
gﬁ_’:ﬂT Fo—) Architecture Architecture |
E} 2 a::ﬁ:, g‘) | : o
| | | e R)
| Contract | | EXOo ! ;~
5 ! Definitions ! ! c =
= I I I <« Embedded -~ . = =
e . | | | y View = R
e el |l v 1 I S e B
Detorce P Fere. vl I I / . o el
-@BsED- o
| ! ry - -
Tim i B :— ————— == A
Informati | ! AN o
e Export — Lhw
: : "< Control # o - -) .
Opti N ' View =
Criteficme — — "« e e
Legend
D Import @GEED User Input —————— » Data Flow

Export @D Tool Module

K. Vanherpen et al. Ontological Reasoning as an Enabler of Contract-Based Co-Design. CyPhy, 2016.

€ U MGl ne(s!s . MAKE @) [0

School of Computer Science University of Antwerp

MANUFACTURING INNOVATION NETWORK

Problem Statement

control unit

— ABS wheel speed sensor

brake rotor

reluctor ring drive axle

Ansymo

Antwerp Systems & Software Modelling
University of Antwerp

tﬂg TMcGill ne(sls ; MAKE @[5

School of Computer Science

MANUFACTURING INNOVATION NETWORK

Contract-Based Co-Design (CBCD)

SOTA
/ \
2 ga Horizontal

'@‘ A -M- (m)consmtenczy A
— >
S Al Ala FTS
—l
c
3= Contrlbutlo
&)
g Contract- I_Based Vertical
% Co-Design (in)consistency

VN VN
é McGill A A Ans mo
‘ﬂ ol Ul n e QS,I S 156 MAKE 0 Antuer 95“ ms & Software Modeling

School of Computer Science rsity of Antwerp

CBCD Theory

Contract—
Based

Ontological

Reasoning

Design

Contract—
Based Co—

Design

tﬂé MCGill n e (S! S 157 WDEKK E @ ﬁt[v]ersp Syrspm(s)& Software Modelling

School of Computer Science University of Antwerp

CBCD Theory

Contract—
Based

Design

QZ EMGill Ne(S!S ., MAKE @A

School of Computer Science University of Antwerp

A

af:: I E 4: ’_mg.
Lofarem
mwﬁ.":

e =

e/

e/

Embe
Architect

O—‘
o
=)

Mode

|
Tim
Informati

Opti
Crite

-

CBCD - Tool Architecture

CBCD Tool — Contract Definition

Embedded
Architecture

Control
Architecture

Contract
Definitions

Export
<« Embedded
View
Export T
XpOo -3 g
" Control I e = A
View B

P e o e

Legend
T

Import
Export

@D User Input
@D Tool Module

—————— » Data Flow

McGill ne

School of Computer Science

(S!S

159

FLANDERS

MAKE

MANUFACTURING INNOVATION NETWORK

Ansymo

Antwerp Systems & Software Modelling
University of Antwerp

(o

CBCD Tool — Contract Definition

2 runtime-EciipseApplication - Srus - platfomresource/contract/representations.aird/CBCD Diagram - Eclipse Platform Son X]
File Edit Diagram Navigate Search Project Run Window Help
i BrUuEeNARIRIBRAU-BA LG oo~ QuickAccess | 1% | i@y () 4%
& Model Explorer 532 AR (m| [¢) powerWindow.cbcd & CBCD Diagram I & System Contracts Diagram = e
type filter text v | B W X%|[B) A | Hr i@ : % Palette b
<4 Assumption numblnstr - 2 [- QAT =~
<4 Assumption sampleFrequency _ SystemContractl (= System Contract o
<4 Assumption processorSpeed 4 SystemContract
4 Assumption processorUtilization < numblnstr: -1000 YEILONAC

4 Assumption wcet <4 sampleFrequency: 1KHz- ~= Contract Properties

4 Assumption wrt Assu mpti Ons — < processorSpeed: 1MHz-8MHz - 4 contractAssumption

< Guarantee StADelay <4 processorUtilization: -70%
4 <4 Mapping Contract Debouncing 4 wcet: 0.5-1ms
<4 Assumption numblnstr 4

<+ StADelay: 0-200ms

4 contractGuarantee

4 Assumption sampleFrequency

<4 Assumption processorSpeed

<4 Assumption processorUtilization

+ Assumption weet - Guarantees-

4 Assumption wrt

<4 Assumption StADelay

<+ Assumplicn SettlingTime
4 4 Mapping Contract C lusion —

<4 Assumption numblnstr

4 Assumption samplefrequency

<4 Assumption processorSpeed

4 Assumption processorUtilization

4 Assumption wcet

4 Assumption wrt &

<4 Assumption StADelay

<4 Assumption SettlingTime

4 <4 Mapping Contract Control v o b
« m »
5 P [T Properties 2 Int ter |®] Proble 2 ¢ Jnit Hist Pl Depende Bon Toc = v= R
25 Outline 53 s v=o P ' g 3 A
— 4 Assumption wrt
4 General ~ Properties
- Sy = —
- Semantic Name: ot
Advanced .
Min Value: 0
Appearance
Style Max Value: 10ms

E “MGill Ne(S!S ., MAKE @[S40

School of Computer Science University of Antwerp

MANUFACTURING INNOVATION NETWORK

CBCD Theory — Ontological Reasoning

Ontological

Reasoning

. FLANDER
QZE EMGill Ne(S!S . MAKE @A

School of Computer Science University of Antwerp

CBCD Theory — Ontological Reasoning

——— Model Modelll S —

Performance Valuel (PVI) Performance Valuell (PVi)

Linguistic World

_——— — — - -V - - M | —

Ontological World
Propi=f(PVI)

—"
- -—
s —

—_——
e————— e — - —" N

Real World (RW)

Control Engineer

HW/SW Engineer

Transforms ——» Checks satisfaction
=P~ Holds ———- Conforms to

----------- » Represents

K. Vanherpen et al. Ontological Reasoning for Consistency in the Design of Cyber-Physical Systems. CPPS, 2016.

QZE EMGill Ne(S!S . MAKE @A

School of Computer Science University of Antwerp

NUFACTURING INNOVATION NETWORK

CBCD Theory — Ontological Reasoning

Max E-E Latency Control1->2 = 199 ms
Assumptions 1| Min interval inputs = 100 ms Safety

200us>T1<100ms "

Reaction

Guarantees 1 | Complexity = low
= Performance

Control T -

Mapping TN T
Processor Clock1 = 1 MHz
Complexity =low= ="~ ~~ ~T 7

Assumptions Mapping

NS --"""""-'-_'_: System
HW Architecture :

Guarantees Max E-E Latency Comp1 = 199 ms

Mapping 0 TTrmeeeseeeeeees

Hardware

Max E-E Latency ECU1->2 =199 ms === =~~~..__ ..

Assumptions 1| Min interval inputs = 100 ms

WCETH = 200 us P — N\
— . o Cost —*§ Schedulability

Guarantees 1 —

p——

K. Vanherpen et al. Ontological Reasoning as an Enabler of Contract-Based Co-Design. CyPhy, 2016.

. FLANDERS
& T MGl Ne(SIS . MAKE @[B40,

School of Computer Science University of Antwerp

MANUFACTURING INNOVATION NETWORK

CBCD Tool — Ontology

CBCD - Tool Architecture

Embedded Control
: Architecture Architecture
7 ?DTQ. Embe
EH ™ Lm—- Architec
' T Contract Ontology B
[Definitions xR
=]] <« Embedded
N ——— o a Co _ View
B o, . S Model
Tim —
Informa Lz
_______________________________________ Export 3 g
\ -
. 4 Control L o e
Opti . View B
Crite e i
Legend
D Import @D Userlnput - ————-— » Data Flow
Export @D Tool Module

. FLANDERS 7 a N\
é e/ MCGlll n e @! S 164 M AKE @ u éfgi?ﬁgﬁ%]?gi IrSpoftware Modelling

School of Computer Science MANUFACTURNG. INNOVATION NETWORK

CBCD Tool — Ontology

mechProp_loweringle | 4

contrProp_reactionTimeHighEnough L_ =

mechProp_safe

ontrProp_deadlockFree

T e
Equefs ‘ \ Y L
x’/ '\\ IcomrProp_comrolPerformancel-ﬁghEnoughl / ‘\\ icontrProp_priority
mechProp_reactionTimeHighEnough| Lb \ s Xt // \\
2 AN R [\
+3 \ o // \\
\ /

\ ~ 17
fi \
\“ = \ sampleFrequency 7
N Saom] \ [y

Control m - /
.———————&\—— a________ o — ___T____;:___

Mapping \, \
_\ \\\ \] \ . f{/ \
N\ L\a 5 I\ <X \
\ psProp_controlledSystem, cpsProp_costLowEnough
\ \ \ = " L ,
\ r V.
Mappin \ \ ’
.-f&g_________d_q‘ N S S
Hardware W\

//
//‘
\ ; /"
e schedTime
processorSpeed _{emProp_systemIsSchedulable r
=3 = /\ =t
|throp _processorPerformamEnough] = '+’('\ [throp_commSpeedHighEnuugh I
= — \ ’
3 s L3

processorltilization communicationTime

X y
[taskDeadIine | |taskPriority |

. FLANDERS 7 » \|
cé ?‘g‘;‘ MCGlll n e C'S_! S 165 M AK E m G ?:f%;s%ﬁif%g&e rSpoftwa\re Modelling

School of Computer Science MANUFACTURING INNOVATION. NETWORK

CBCD Tool — Ontology

(http://www. - - x
File Edit View Reasoner Tools Refactor Window Help
[<] = [@ cps (hitps//www.kvanherpen.be/contracts/ontologies/cps.owl v || Search...
Active Ontology x| Entities X| Classes x]]ndividuils by class xllndividulls matrix xIOntoGrif x\
OWLViz: contrProp_reactionTimeLowEno UZCIS] @ contrProp_reactionTimeLowEnough — hitp://www.kvanherpen.be/contracts/ontologies/controlDomain.owl#contrProp_reactionTimeLowEnough
9 | &| ." @ (o) 0’0 x |t(‘Q E‘I | ‘ i) Class Annotations |C|I!! Usage |
|As;erted hierarchy “nferred hierarchy ‘ Annctations: contrProp_reactionTimeLowEnough DE=E

— — — — Annotations 1=
A ControlProperti “contiProp_teactionTimeLowEn

|Classes [Obje:tprop:m‘es |Dm properties |Annnhtion properties lDih!ypes |]ndividua\s |

Class hierarchy: contrProp_reactionTimelLowEnough MmEEE
o+ Description: contrProp_reactionTimeLowEnough
Le [:1- E Asseited ¥
— Equivalent To =
v @ owl:Thing fupaen

v ControlProperties

SubClass Of

@ contr_requires some contrProp_controlPerformanceHighEnough I User-deﬂ ned

@ CPSProperties
& contrProp_reactionTimeHighEnough = mechProp_reactionTimeHighEno ® EmbeddedProperties
»© CPSProperties ; Reasoner
»-- @ EmbeddedProperties @ HWProperties
- @ HWProperties @ MechanicalProperties
MechanicalProperties

General class axioms

SubClass Of (Ananymous Ancestor)

Instances
& staDelay

& wrt

Target for Key ||
| »

Reasoner active v Show Inferences

€ U MGl nNe(s!S MAKE @) [

School Of Computer Scienoe MANUFACTURING INNOVATION NETWORK k J UniverSity OfAntwerp

CBCD Theory

Contract—
Based

Ontological

Reasoning

Design

Contract—
Based Co—

Design

tﬂ’é MCGlll n e CS'! S 167 FLAMN[KK E @ ﬁt[v]ersp SyEIalm?& Software Modelling

School of Computer Science University of Antwerp

A

af:: I E 4: ’_mg.
Lofarem
mwﬁ.":

e =

e/

e/

Embe
Architect

O—‘
o
=)

Mode

|
Tim
Informati

Opti
Crite

-

CBCD - Tool Architecture

CBCD Tool — Contract Definition

Embedded
Architecture

Control
Architecture

Contract
Definitions

Export
<« Embedded
View
Export T
XpOo -3 g
" Control I e = A
View B

P e o e

Legend
T

Import
Export

@D User Input
@D Tool Module

—————— » Data Flow

McGill ne

School of Computer Science

(S!S

168

FLANDERS

MAKE

MANUFACTURING INNOVATION NETWORK

Ansymo

Antwerp Systems & Software Modelling
University of Antwerp

(o

CBCD Tool — Mapping Contract

B i Cp e — p = ons.aird/System Contracts Diagram - Eclipse Platform| C=Ritt
File Edit Diagram Navigate Search Project Run Window Help
03~ BoneiN Q- B-Freoero-

- Model Explorer 52
type filter text

4 Guarantee StADelay
4 4 Mapping Contract Debouncing
< Assumption numblnstr
< Assumption sampleFrequency
4 Assumption processorSpeed
<4 Assumption processorUtilization
<4 Assumption wcet
<4 Assumption wrt
<4 Assumption StADelay
<4 Assumption SettlingTime
4 <4 Mapping Contract ControlExclusion
< Assumption numblnstr
<4 Assumption sampleFrequency
<4 Assumption processorSpeed
<4 Assumption processorUtilization
< Assumption wcet
<4 Assumption wrt
<4 Assumption StADelay
<4 Assumption SettlingTime
4 Mapping Contract Control
<4 Assumption numblnstr
+ A ption sampleFreq

14! powerWindow.cbed & CBCD Diagram

T
avidg~iliv| ot

@ w X %|[B)7 A-=
- ControlExclusion
<4 numblnstr: 150-200

<4 sampleFrequency: 500Hz-1KHz
<4 processorSpeed: 1MHz-

<4 processorUtilization: -59

<+ wcet: -0.3ms

< wrt: -1.5ms
<+ StADelay: -2ms
4 SettlingTime: -

Assumptions

& System Contracts Diagram 3

v = v [i ‘

Control

<4 numblnstr: 400-500

<4 sampleFrequency: 5KHz-10KHz
<4 processorSpeed: 1MHz-8MHz
<4 processorUtilization: -15%

<4 wcet: 125us-1ms

6t L.5ms

<4 StADelay: -5ms

< SettlingTime: -

4 Assumption processorSpeed

< Assumption processorUtilization
4 Assumption wcet

<4 Assumption wrt

« m »

2= Outline 52

5@ <=0

<

m

[Properties 3

+ Assumption wrt

b B

School of Computer Science

McGill e ng S

General ~ Properties
Semanti Name: wrt
Advanced

Min Value:
Appearance
Style Max Value: 1.5ms

169

FLANDERS

MAKE

MANUFACTURING INNOVATION NETWORK

‘

Quick Access

. Palette P
RRQAD-#~
Mapping Contract
& MappingContract
(= Contract Properties
< contractAssumption

< contractGuarantee

Ansymo

Antwerp Systems & Software Modelling
University of Antwerp

oy

CBCD Tool — Contract Validation Analysis

CBCD - Tool Architecture

. |
' [Embe —]
%J_y:_ﬂj om0 [~ Architect

Embedded
Architecture

Control
Architecture

I
I I
I Contract Ontology I
1= I | H Definitions | |
In — ,,_TL-:-: Con : : _______ | |1 | |
T e, - S = Mode : : : !_ I’_______H‘_________l_: e | : :
e e I \ 1l \J |
| | > : A
Tim e e e A
Informati I : :
o fmmmm
I
Opti I I
Crite
Legend
D Import @ Userlnput - ———— > Data Flow
Export @D Tool Module
o B w0 . FLANDERS
T McGill] i)
sl 170
School of Computer Science N

MANUFACTURING INNOVATION NETWORK

Export
<« Embedded
View

Export
4 Control
View

o P s o b 3

|
1 —Ll .'_I—'_'
=T [

P e o e

Ansymo

Antwerp Systems & Software Modelling
University of Antwerp

=

CBCD

Tool — Contract Validation Analysis

= S VSN ———— e — e T ——— SllEERN
File Edit Source Refactor MNavigate Search Project Run Window Help
g B0 PAcREN $-0-Q-®c £~ §-F - oo~ Quick Access | 5 | [45
- Model Explorer 53 = ¥ = 8 | &) archi [t2) archi @] cbed.ecore [t2) cbed.g d 1] OntologyP: 11] OntologyUtil.)| S.. X =% = =
type filter text public class ValidationServices { am
3 ﬁ] OntologyParser.java - private final PrintStream out; N
> [J) package-infojava - P"}W:e 8::1;5“)’35?'-1"{‘;. = T
2 private ologyUtilities util; B
» #§ be.kvanherpen.cbcd.parsers.settings private List<String> errorbessages; o
_:’E be.kvanherpen.cbcd.parsers.tests & private SymPyHelper symPyHelper;
y
> (5 META-INF L public ValidationServices() {
& build.properties DEBUG = true;
B pluginxml out = System.out;
G ﬁ‘f'lp 9 = “ s jev] | = errorMessages = new ArraylList<String>();
N — h e [Tooling dev symPyHelper = new SymPyHelper();
4 [bekvanherpen.cbcd.tool.design [Tooling dev] }
B\ Referenced Libraries |
, m\ JRE System Library [JavaSE-1.7] Ipubhc void validate (SystemContract systemContract) d
N ¥ : <\
> B Plug-in Dependencies L15t<String> domainGuarantees = util.getGuarantees();
> @ sec List<MappingContract> mappings = systemContract.getMappingContracts();
4 [services
b #} bekvanherpen.cbcd.tool.design.common for(MappingContract mapping : "‘EPPi"Sﬁ) {
o Ji} belkvanherpen.ched ook designiservices for(String domainParameter : domainGuarantees) {))
,,3 Contracts: Assumption assumption = searchParameterInA(domainParameter, mapping.getAssumptions());
ofkracEServicesjaa Guarantee guarantee = searchParameterInG(domainParameter, mapping.getGuarantees()); »
’% SchedAnalysisServices java Map<String, String> contractParameter;
J} SimulinkServices.java
>[4} testjava if(!(assumption == null)) {
» 17} ValidationServices java FontracYParameter = parseAssumption(assumption); 8
= oeey = if (lutil.getEquivalent(contractParameter.get("name")).isEmpty()) {
I8 contractsServices.iava y
% : = = S for (String equivalentParameter : ut