
1

Pieter Mosterman Hans Vangheluwe Joachim Denil (CoSysLab)

 Bart Meyers

Bentley Oakes, Maris Jukss Simon Van Mierlo, Yentl Van Tendeloo, István Dávid, Cláudio Gomes

Ken Vanherpen (CoSysLab)

Addis Gebremichael, Lucas Heer

http://msdl.cs.mcgill.ca/

http://msdl.cs.mcgill.ca/
http://msdl.cs.mcgill.ca/

2

at the most appropriate level(s) of abstraction

using the most appropriate formalism(s)

explicitly modelling processes

Enabler: (domain-specific) modelling language engineering,

including model transformation

Pieter J. Mosterman and Hans Vangheluwe. Computer Automated Multi-Paradigm Modeling: An Introduction. Simulation: Transactions of the Society for Modeling and Simulation International

Virtual Product

3

Language Engineering

Domain-Specific Languages, Model
Transformation, (web-based) Visual and

Textual Modelling Environments, etc.

Simulation

Co-Simulation, Discrete-event, DEVS,
continuous time, acausal, Modelica, etc.

Deployment & Resource-optimized
Execution

Platforms (e.g. AUTOSAR, CAN, etc.),

Design-Space Exploration, Virtualization,
Models@run-time, Efficient execution of

model transformations, etc.

Model
Management &

Process

FTG+PM, Safety
(ISO 26262,

Railway, etc,),
Agile Modelling,

Consistency
management,
Experimental
frames, etc.

Validation,
Verification,
Testing and

Accreditation

Analysis and
Verification of Model

Transformations,
Debugging,

Instrumentation,
Tracing, etc.

4

The Modelverse:

A Foundation for Multi-Paradigm Modelling

Yentl Van Tendeloo

Yentl.VanTendeloo@uantwerpen.be

5

Summary

– What? Multi-Paradigm Modelling kernel and repository

– Why? Support the use of Multi-Paradigm Modelling

– How? Using Multi-Paradigm Modelling techniques

– Maturity? Academic tool

[1] Y. Van Tendeloo and H. Vangheluwe. The Modelverse: a Tool for Multi-Paradigm Modelling and Simulation. In Proceedings of
the 2017 Winter Simulation Conference, 2017 (accepted).

[2] Y. Van Tendeloo. Foundations of a Multi-Paradigm Modelling Tool. In ACM Student Research Competition at MoDELS, 2015.

6

What?

Multi-Paradigm Modelling kernel and repository

[3] L. Lucio, S. Mustafiz, J. Denil, H. Vangheluwe, and M. Jukss. FTG+PM: An Integrated Framework for Investigating Model
Transformation Chains. In SDL 2013: Model-Driven Dependability Engineering, Volume 7916 of Lecture Notes in Computer
Science, 182–202, 2013. [4] P. Mosterman and H. Vangheluwe. Computer Automated Multi-Paradigm Modeling: An Introduction. SIMULATION 80(9): 433–450,

2004.

7

What?

Multi-Paradigm Modelling kernel and repository

Modelverse

[5] E. Syriani, H. Vangheluwe, R. Mannadiar, C. Hansen, S. Van Mierlo, and H. Ergin. AToMPM: A Web-based Modeling
Environment. In Proceedings of MODELS’13 Demonstration Session, 21–25, 2013.

[6] K. Schmidt. LoLA: a low level analyser. In Proceedings of the 21st international conference on Application and
theory of petri nets, 465-474, 2000.

8

What?

Multi-Paradigm Modelling kernel and repository

Modelverse
Models

Transformations

Metamodels
Operations

Integer function fib (n : Integer):
 if (n <= 2):
 return 1!
 else:
 return fib(n–1) + fib(n–2)!

9

Why?

Flexibility

10

Why?

ClassDiagrams

PetriNets2 PetriNets

my_pn_2 my_pn

11

Why?

ClassDiagrams

PetriNets2 PetriNets

my_pn_2 my_pn

Bottom

12

Why?

13

Why?

14

Why?

“I need to hack
the transformation
server for that.”

15

Why?

Storage Manipulation

[8] F. Basciani, J. Di Rocco, D. Di Ruscio, A. Di Salle, L. Iovino, and A. Pierantonio. MDEForge: an extensible web-
based modeling platform. In Proceedings of the Workshop on Model-Driven Engineering on and for the Cloud (CloudMDE), 66-
75, 2014.

[7] R. France, J. Biemand, and B. H. C. Cheng. Repository for Model Driven Development. In Proceedings of the
International Conference on Model Driven Engineering Languages and Systems (MoDELS), 311-317, 2006.

16

How?

Complex systems are
best modelled using

Multi-Paradigm
Modelling!

17

How?

I should code the
MPM kernel and

repository, which
is a complex

system!

18

How?

I should code the
MPM kernel and

repository, which
is a complex

system!

19

How?

• Protocols

• Performance

• Task management

• Action Language

• Conformance

• Services

• Concrete syntax

• Data

• Transformations

20

Roadmap

Modelling

• Performance
• Client-side code
• Conformance bottom (applications)
• Multi-conformance (applications)

Coupling

• Interfaces (graphical?)
• Services

Usability

• Performance
• Action language syntax
• Compiler

21

SCCD: A Statecharts and Class Diagrams Hybrid

Simon Van Mierlo

Universiteit Antwerpen

simon.vanmierlo@uantwerpen.be

22

Summary

Simon Van Mierlo, Yentl Van Tendeloo, Bart Meyers, Joeri Exelmans, and Hans Vangheluwe.
SCCD: SCXML extended with class diagrams. In 3rd Workshop on Engineering
Interactive Systems with SCXML, part of EICS 2016, 2016

23

Motivation

Statecharts Design? + Class Diagrams = SCCD(XML)

Behavior
• Timed

• Autonomous

• Interactive

• Hierarchical

Structure
• Dynamic

• Hierarchical

24

Modelling Complex, Timed, Autonomous,

Dynamic-Structure Systems

25

Visual Modelling Interface Behaviour: Concrete Syntax

26

Visual Modelling Interface Behaviour: User Interaction

27

Roadmap

– SCCD Language: Syntax and Semantics

– Conformance

– Initialization/Destruction

– Exceptions

– Dynamic Loading of SCCD Models

– Interfaces/Contracts: Protocol Machine

– Subtyping

– Events as Objects

– Behavior

– Object Creation Decoupled from Associations

– Model user interaction in DSL

– (see Vasco Sousa’s work)

– Concrete Syntax: separation of AS/CS modification operations

28

Verification of Domain-Specific Models with ProMoBox

Bart Meyers

Universiteit Antwerpen

bart.meyers@uantwerpen.be

29

Summary

Design Propert
y ⊨ - specification of properties at DS level

- fully automatic generation of languages
from annotated metamodel

- fully automatic verification of properties

- application to model checking, testing,
DSE, …

• Bart Meyers, Romuald Deshayes, Levi Lucio, Eugene Syriani, Manuel Wimmer and Hans Vangheluwe. ProMoBox: A
Framework for Generating Domain-Specific Property Languages. In "Proceedings of the 7th International
Conference on Software Languages Engineering (SLE 2014)", Lecture Notes on Computer Science, vol. 8706, p.
1-20, 2014.

• Bart Meyers, Joachim Denil, István Dávid, and Hans Vangheluwe. Automated Testing Support for Reactive
Domain-Specific Modelling Languages. In "Proceedings of the 2016 ACM SIGPLAN International Conference on
Software Language Engineering". ACM digital library, p. 181-194, 2016.

30

Properties for DSMLs: State of the Art

Design Property

3
0

⊨

31

Properties for DSMLs: Property DSML

Design Property

3
1

⊨

• Bart Meyers, Romuald Deshayes, Levi Lucio, Eugene Syriani, Manuel Wimmer and Hans Vangheluwe. ProMoBox: A
Framework for Generating Domain-Specific Property Languages. In "Proceedings of the 7th International
Conference on Software Languages Engineering (SLE 2014)", Lecture Notes on Computer Science, vol. 8706, p.
1-20, 2014.

32

Properties for DSMLs: Consistency

Consistency by
construction

3
2

[[.
]]’

MM’

Design Propert
y Input Runtime Trace

.ltl

.trail

.txt

.pml Spin
1

1 1

2

2

3

4
Formal Methods

DSM

Annotations Annotations

33

Evaluation (TSE paper)
– Modelling effort

– comparison LOC and complexity

– Correctness + Usability study

– 6 participants, qualitative study + SUS

– Model checking performance

– better than adapted Elevator example from literature

– Expressiveness

– Exhaustive comparison with Promela language constructs

– Customisability

– added patterns to property language and replaced Spin backbone

with Groove

34

Properties for DSMLs: Testing

Design Test
Case

3
4

⊨

Test DSML

• Bart Meyers, Joachim Denil, István Dávid, and Hans Vangheluwe. Automated Testing Support for Reactive
Domain-Specific Modelling Languages. In "Proceedings of the 2016 ACM SIGPLAN International Conference on
Software Language Engineering". ACM digital library, p. 181-194, 2016.

35

Roadmap

ProMoBox
- Annotations

- DSML generation
- Generic semantics

Model Checking
Property Template

+
Generic Promela compiler

Testing
Test Template

 +
Generic operational semantics

DSE
Rules Template

+
Generic solver

Generation
of test

cases from
properties

36

Semantic Adaptation for FMI Co-simulation*

Cláudio Gomes, Bart Meyers, Joachim Denil,

Casper Thule, Kenneth Lausdahl,

Hans Vangheluwe, Paul De Meulenaere

* Journal paper submitted to SIMULATION

37

Summary

– Why? There is a need for quick (but sound) changes to

the behavior of simulators.

– What? We developed a DSL for that…

– How? …using hierarchical co-simulation principles.

– Maturity: Set of techniques and tool, applied to

academic cases.

38

Motivation

– Quick and sound way of adapting the behaviour of an interconnected

set of FMUs

– Unit conversion

– Interaction protocol modification

– Enhance accuracy and performance

39

Semantic Adaptation

– Actions by which the behavior of an

original set of interconnected FMUs is

altered, following the transparency

and modularity principles.

40

– Actions by which the behavior of an

original set of interconnected FMUs is

altered, following the transparency

and modularity principles.

Semantic Adaptation

41

A DSL for Semantic Adaptation

42

A DSL for Semantic Adaptation

43

A DSL for Semantic Adaptation

44

Hierarchical Co-simulation

45

Roadmap

– Industrial Case Study

with AgroIntelli

– Raise level of

abstraction

46

Stability Analysis for Adaptive Co-simulation*

Cláudio Gomes, Benoît Legat,

Raphaël M. Jungers, Hans Vangheluwe

* Paper accepted in IUTAM Symposium on Co-simulation
and solver coupling – Recent developments in theory and
application, September, Darmstadt

47

Summary

– Stability of adaptive master algorithms is seldom

taken into account, but can increase

performance/accuracy tradeoff.

– We apply the Joint Spectral Radius theory to study

the stability of such orchestration algorithms for

linear co-simulation scenarios.

48

Stability – Non-Adaptive Numerical Solver

Stability:

49

Stability – Adaptive Numerical Solver

Stability:

Example in co-simulation: adapt the step size

50

Stability Analysis

Non adaptive solver (spectral radius):

Adaptive solver (joint spectral radius):

51

Adaptive Co-simulation Master

– Given a co-simulation scenario, and a specification

of the master algorithm, one can compute Sigma

– Example:

52

Roadmap

– Address scalability by using adaptive master

specifications based on state machines.

– Identify conditions for which JSR can be computed

directly. (Example: a repeating sequence of matrices)

53

Stability Analysis for Hybrid Co-simulation*

Cláudio Gomes, Paschalis Karalis,

Eva M. Navarro-López, Hans Vangheluwe

* Paper accepted in Workshop on
Formal Co-Simulation of Cyber-
Physical Systems, September, Trento

54

Summary

– A co-simulation of a hybrid system must preserve the

stability properties of the later, so that the

results can be trustworthy.

– We analyze the range of communication frequencies

between simulators that ensure those properties are

kept.

55

Example: Hybrid System

56

Example: Hybrid Co-simulation Scenario

57

Question: How much delay can be tolerated?

H = 0.05 H = 0.001

58

(Lyapunov) Stability of Hybrid Systems

59

(Lyapunov) Stability of Hybrid Co-simulation

60

Roadmap

– Generalize the approach for many modal systems (not

just two), and systems with resets.

– Use a more relaxed Lyapunov stability theorem,

developed by Paschalis and Eva

61

Hybrid System Simulation with Dirac Deltas*

Cláudio Gomes, Yentl Van Tendeloo,

Joachim Denil, Paul De Meulenaere,

Hans Vangheluwe

* Paper accepted in Symposium on
Theory of Modeling and Simulation,
April, Virginia Beach

62

Summary

– We compare two different approaches for the

simulation of impulsive differential equation, and

formulate their differences.

63

Impulse-based Modeling

Bouncing ball dynamics:

Around a collision:

(Momentum) Conservation dictates:

Hence, whatever the shape of Fc,

64

Impulse-based Modeling

Let δ be a function abstraction,
such that:

Bouncing ball dynamics:

Then:

65

Symbolic Simulation of Impulses

Manipulate signals with impulses encoded

66

Numerical Simulation of Impulses

Numerically approximate an impulse as

the derivative of a steep ramp.

67

Example: Bouncing ball

68

Comparison: Symbolic vs Numerical

– Numerical approach shifts the solution n.h
time units

– Maximum magnitude for a discontinuity D:

Conclusion: Symbolic approach is more accurate
for models that manipulate impulse
derivatives.

69

Roadmap

– Find models that require impulse derivatives.

70

Coffee Break

71

Model Debugging

Simon Van Mierlo

Universiteit Antwerpen

simon.vanmierlo@uantwerpen.be

72

Summary

→ Causal-Block Diagrams, Parallel DEVS, Statecharts, Petrinets,
Dynamic-Structure DEVS, Hybrid TFSA-CBD, Action Language

Simon Van Mierlo, Yentl Van Tendeloo, and Hans
Vangheluwe. Debugging Parallel
DEVS. SIMULATION, 93(4):285-306, 2017

Simon Van Mierlo, Cláudio Gomes, and Hans Vangheluwe. Explicit
Modelling and Synthesis of Debuggers for Hybrid Simulation
Languages. In Proceedings of the 2017 Symposium on Theory of
Modeling and Simulation - DEVS (TMS/DEVS), pages 1013-1024, 2017

73

Motivation

Usable M&S Environments:
• Fidelity (w.r.t. formalism’s syntax and semantics)
• Accuracy (in simulation results)
• Resuse (model libraries)
• Performance
• Debugging

74

Building Language-Specific Debugging Environments

– Operations:

– Pause/Resume

– Stepping

– Breakpoints

– State Tracing (Visual)

– Manual State Changes

– Omniscient Debugging

+

+

75

De- and Reconstruction 1. 2.

3.

76

Architecture and Workflow

77

Examples

Dynamic-Structure DEVS

Petrinets

Parallel DEVS

78

Debugging Hybrid Formalisms

Continuous
Breakpoints
Pause/Resume
Stepping
Realtime Simulation

Continuous
Stepping
Event Injection Continuous

Continuous
Stepping

Continuous
Stepping

79

Efficient Omniscient Debugging (PDEVS)

C1

A2

C2

B2

A3

C4 C3

B3

A1

B1 B5

C5

A5

B4

A4 A7

C7

B6

C6

A6

B7

Simulation Time

A
B
C

Periodic
State Saving

Optimizations:
• xs -> 2xs
• Disk I/O
• Compression

80

Roadmap

– Denotational (vs. Operational) Semantics

– Language Engineering

– “weaving” debugging language

– Simulators

– black- or grey-box (see FMI)

– hybrid: canonical form (moving away from SCCD)

– Architecture

– automatic artefact generation/instrumentation

– Advanced Breakpoint Conditions

– (see ProMoBox)

81

82

83

84

85

86

87

88

89

90

Frames

--= Enabling Reuse in MBSE =--

Joachim Denil

Joachim.Denil@uantwerpen.be

91

Summary

– Reuse of (Simulation) Models is important

– Modelers make assumptions during all stages of a M&S process:

– Model Construction

– Model Calibration

– Etc.

– Frames record information to allow such reuse!

– Information needs to be stored for meaningful reuse

– Selection from catalogue of models

– Information needs to be modelled for automation

– Test that Frame works on Model

– Test that Models works with Frame

92

Reuse of Models Example

Spiegel, Reynolds, and Brogan

Participants were instructed to ignore any constraints

related to the implementation of the model. In the falling

body simulation, there are multiple implementation choices

of numerical methods and numerical precision. In comput-

ing position as a function of time, what sort of numerical

integration method should be employed? What effect

would it have on correctness of results? We have chosen

not to discuss implementation assumptions in order to fo-

cus attention on the model instead of the simulation. When

joining composable simulations it will be necessary to

validate both the combined model and then to validate the

combined simulation.

After a period of two weeks submissions were tabu-

lated and a master list was created and discussed among

the contestants and others. We defer discussion of the re-

sults to after the presentation of the challenge in the next

section.

3.2 Falling Body Model

The following model is an extended version of the model

presented in Appendix A of the monograph by Davis and

Anderson (2003). A sphere is falling through some me-

dium and experiencing drag as it falls. Let p(t) equal the

position of the sphere at time t and p(0) = p0 be the initial

position. Let v(t) = p′(t) equal the velocity of the sphere at

time t, and let v(0) = v0 be the initial velocity. Calculate

p(t) and v(t) for all t ≥ 0.

The sphere is perfectly smooth, it has diameter d and

mass m. The medium has uniform density ρf and uniform

kinematic viscosity ν. Assume that when the sphere im-

pacts with the earth, p(tearth) = 0, it will remain on the

ground for all t > tearth.

The following forces will act on the sphere (Chow

1979):

• Gravity: The sphere experiences constant accel-

eration, g ≈ 9.8 m/s2.

• Buoyancy: mf = (1/6)πd3ρf against gravity.

• Inertial drag: (1/2) mf v′ (t)

• Viscous drag: (1/2)ρf · v(t) ·│v(t)│· π/4 · d2 ·

cd(v(t))

• Wave drag: Wave drag is negligible at subsonic

speeds.

We apply Newton’s Second Law to determine acceleration,

and then employ numerical methods of integration to cal-

culate velocity and position.

Figure 1: Falling Body Model

The term cd is the drag coefficient and it is defined as a

function of the Reynolds number, which is Re = v(t) · d / ν.

The drag coefficient is determined experimentally as a

function of the Reynolds number. Both the drag coeffi-

cient and the Reynolds number are dimensionless values.

For a perfectly smooth sphere, cd can be approximated

piecewise with the following function,

•
•
•

•

•
•
•

•

•

=

•<•

••<••

••<

•<

•<
•

76

654275.0

5

2

10Re10218.0

102Re103(Re)000366.0

103Re4005.0

400Re1

1Re10

646.0(Re)

24

Re
24

dc

The reader interested in pursuing the challenge without

bias from the challenge results should pause at this point,

continuing when identification of unstated constraints is

completed. We discuss the results of the challenge next.

3.3 Challenge Results and Constraint Taxonomy

The competition produced a master list of twenty-nine

validation constraints (see Appendix). From them we have

derived a taxonomy of validation constraint types. Every

effort has been made to remove redundant constraints and

to represent identified validation constraints as concisely as

possible. We make no claim to having found all validation

constraints for the falling body model.

It is illuminating to consider that the top three contest-

ants identified only 21, 19, and 16 constraints, respectively,

out of the master list (see Table 1). No single participant

was capable of identifying more than three-quarters of all

currently identified constraints. Like the component de-

signers of (Garlan, Allan, and Ockerbloom 1995) our chal-

lenge participants were neither “lazy, stupid, nor mali-

cious.” Each participant failed to identify several implicit

93

Spiegel, Michael, Paul F. Reynolds Jr, and David C. Brogan. "A case study of model context for simulation composability
and reusability." Proceedings of the 37th conference on Winter simulation. Winter Simulation Conference, 2005.

Spiegel, Reynolds, and Brogan

In an informal contest related to our study, no participant

identified more than 75% of the ultimate set of constraints

identified. Borrowing from Garlan, Allan, and Ocker-

bloom our challenge participants were neither “lazy, stu-

pid, nor malicious.” (1995)

We believe the study reported here can be useful to the

reader beyond the results above. The falling body model

presents a fine example for testing any proposed reusability

process. If the process cannot lead to the efficient extrac-

tion of the constraints listed in the Appendix, then it is of

questionable value.

In the future we anticipate further study of our initial

taxonomy of validation constraints. Will other types of

simulations yield new categories of constraints? The tax-

onomy is useful only if it can serve as a general guidepost

that suggests hidden constraints that have not been identi-

fied. Additionally the taxonomy for the simulation com-

munity may benefit from insights in the larger domain of

software design. Generic software applications contain

properties that are identified as invariant or time-

dependent. Can the lessons from formal software analysis

be applied to our objectives? We will be exploring these

issues.

ACKNOWLEDGEMENTS

We gratefully acknowledge support from the National Sci-

ence Foundation (ITR 0426971), as well as from our col-

leagues in the Modeling and Simulation Technology Re-

search Initiative (MaSTRI) at the University of Virginia.

We would also like to thank all the participants of the fal-

ling body challenge: Robert Bartholet, Joseph Carnahan,

Mark Farrington, Aleks Gershaft, William Kammersell,

Yinping Kuang, Xinyu Liu, Yannick Loitiere, Thomas Lu-

bitz, and Weide Zhang.

APPENDIX: FALLING BODY CONSTRAINTS

1. Invariant Constraints

 1.a Sphere Attributes

1. Sphere Property - The body is a sphere and it re-

mains spherical.

2. Smooth Property - The body is smooth and it re-

mains smooth.

3. Impermeable Property - The body is completely

impermeable.

4. Initial Velocity - The body has an initial velocity

of v0 that has no horizontal component of motion.

5. Angular Velocity - The body has no initial angu-

lar velocity.

6. Constant Mass - The mass of the body remains

constant over time. The body does not experience

ablation or accretion.

7. Constant Diameter - The diameter of the body

remains constant over time.

8. Distribution of Mass - The body has a centrally

symmetric mass distribution that remains constant

over time.

9. Uncertainty Principle - The diameter of the body

is much greater than the Plank length.

10. Brownian Motion - The mass and diameter of the

body are large enough such that Brownian motion

of the fluid has negligible impact on the body.

11. General Relativity - The mass of the body is low

enough to ignore the gravitational curvature of

space-time.

 1.b Fluid Attributes

12. Fluid Density - The fluid density is constant. The

fluid is incompressible.

13. Fluid Pressure - The fluid pressure is constant.

14. Fluid Temperature - The fluid temperature is con-

stant.

15. Kinematic Viscosity - The kinematic viscosity is

constant. The medium is a Newtonian fluid.

16. Stationary Fluid - The fluid is stationary apart

from being disturbed by the falling body.

17. Infinite Fluid - The volume of the fluid is large

enough to completely envelope the sphere. The

movement of the fluid is not restricted by a con-

tainer such as a pipe or tube.

 1.c Earth Attributes

18. Flat Terrain - The ground does not have terrain

and remains flat for all t > 0.

19. Coriolis Effect - The Earth is not rotating. We ig-

nore the Coriolis effect.

2. Dynamic Constraints

20. Mach Speed - The velocity of the body is suffi-

ciently less than the speed of sound for that me-

dium.

21. Special Relativity - The velocity of the body is

sufficiently less than the speed of light for that

medium.

22. Reynolds Number - The Reynolds number re-

mains between 10-2 and 107 for all t > 0. The

Reynolds number is a function of velocity.

3. Inter-Object Constraints

23. Sphere/Fluid Interaction - The body and the fluid

interact only through buoyancy and drag. For ex-

ample, the body cannot dissolve in the fluid, nor

can the body transfer heat to the fluid.
Spiegel, Reynolds, and Brogan

In an informal contest related to our study, no participant

identified more than 75% of the ultimate set of constraints

identified. Borrowing from Garlan, Allan, and Ocker-

bloom our challenge participants were neither “lazy, stu-

pid, nor malicious.” (1995)

We believe the study reported here can be useful to the

reader beyond the results above. The falling body model

presents a fine example for testing any proposed reusability

process. If the process cannot lead to the efficient extrac-

tion of the constraints listed in the Appendix, then it is of

questionable value.

In the future we anticipate further study of our initial

taxonomy of validation constraints. Will other types of

simulations yield new categories of constraints? The tax-

onomy is useful only if it can serve as a general guidepost

that suggests hidden constraints that have not been identi-

fied. Additionally the taxonomy for the simulation com-

munity may benefit from insights in the larger domain of

software design. Generic software applications contain

properties that are identified as invariant or time-

dependent. Can the lessons from formal software analysis

be applied to our objectives? We will be exploring these

issues.

ACKNOWLEDGEMENTS

We gratefully acknowledge support from the National Sci-

ence Foundation (ITR 0426971), as well as from our col-

leagues in the Modeling and Simulation Technology Re-

search Initiative (MaSTRI) at the University of Virginia.

We would also like to thank all the participants of the fal-

ling body challenge: Robert Bartholet, Joseph Carnahan,

Mark Farrington, Aleks Gershaft, William Kammersell,

Yinping Kuang, Xinyu Liu, Yannick Loitiere, Thomas Lu-

bitz, and Weide Zhang.

APPENDIX: FALLING BODY CONSTRAINTS

1. Invariant Constraints

 1.a Sphere Attributes

1. Sphere Property - The body is a sphere and it re-

mains spherical.

2. Smooth Property - The body is smooth and it re-

mains smooth.

3. Impermeable Property - The body is completely

impermeable.

4. Initial Velocity - The body has an initial velocity

of v0 that has no horizontal component of motion.

5. Angular Velocity - The body has no initial angu-

lar velocity.

6. Constant Mass - The mass of the body remains

constant over time. The body does not experience

ablation or accretion.

7. Constant Diameter - The diameter of the body

remains constant over time.

8. Distribution of Mass - The body has a centrally

symmetric mass distribution that remains constant

over time.

9. Uncertainty Principle - The diameter of the body

is much greater than the Plank length.

10. Brownian Motion - The mass and diameter of the

body are large enough such that Brownian motion

of the fluid has negligible impact on the body.

11. General Relativity - The mass of the body is low

enough to ignore the gravitational curvature of

space-time.

 1.b Fluid Attributes

12. Fluid Density - The fluid density is constant. The

fluid is incompressible.

13. Fluid Pressure - The fluid pressure is constant.

14. Fluid Temperature - The fluid temperature is con-

stant.

15. Kinematic Viscosity - The kinematic viscosity is

constant. The medium is a Newtonian fluid.

16. Stationary Fluid - The fluid is stationary apart

from being disturbed by the falling body.

17. Infinite Fluid - The volume of the fluid is large

enough to completely envelope the sphere. The

movement of the fluid is not restricted by a con-

tainer such as a pipe or tube.

 1.c Earth Attributes

18. Flat Terrain - The ground does not have terrain

and remains flat for all t > 0.

19. Coriolis Effect - The Earth is not rotating. We ig-

nore the Coriolis effect.

2. Dynamic Constraints

20. Mach Speed - The velocity of the body is suffi-

ciently less than the speed of sound for that me-

dium.

21. Special Relativity - The velocity of the body is

sufficiently less than the speed of light for that

medium.

22. Reynolds Number - The Reynolds number re-

mains between 10-2 and 107 for all t > 0. The

Reynolds number is a function of velocity.

3. Inter-Object Constraints

23. Sphere/Fluid Interaction - The body and the fluid

interact only through buoyancy and drag. For ex-

ample, the body cannot dissolve in the fluid, nor

can the body transfer heat to the fluid.

Spiegel, Reynolds, and Brogan

In an informal contest related to our study, no participant

identified more than 75% of the ultimate set of constraints

identified. Borrowing from Garlan, Allan, and Ocker-

bloom our challenge participants were neither “lazy, stu-

pid, nor malicious.” (1995)

We believe the study reported here can be useful to the

reader beyond the results above. The falling body model

presents a fine example for testing any proposed reusability

process. If the process cannot lead to the efficient extrac-

tion of the constraints listed in the Appendix, then it is of

questionable value.

In the future we anticipate further study of our initial

taxonomy of validation constraints. Will other types of

simulations yield new categories of constraints? The tax-

onomy is useful only if it can serve as a general guidepost

that suggests hidden constraints that have not been identi-

fied. Additionally the taxonomy for the simulation com-

munity may benefit from insights in the larger domain of

software design. Generic software applications contain

properties that are identified as invariant or time-

dependent. Can the lessons from formal software analysis

be applied to our objectives? We will be exploring these

issues.

ACKNOWLEDGEMENTS

We gratefully acknowledge support from the National Sci-

ence Foundation (ITR 0426971), as well as from our col-

leagues in the Modeling and Simulation Technology Re-

search Initiative (MaSTRI) at the University of Virginia.

We would also like to thank all the participants of the fal-

ling body challenge: Robert Bartholet, Joseph Carnahan,

Mark Farrington, Aleks Gershaft, William Kammersell,

Yinping Kuang, Xinyu Liu, Yannick Loitiere, Thomas Lu-

bitz, and Weide Zhang.

APPENDIX: FALLING BODY CONSTRAINTS

1. Invariant Constraints

 1.a Sphere Attributes

1. Sphere Property - The body is a sphere and it re-

mains spherical.

2. Smooth Property - The body is smooth and it re-

mains smooth.

3. Impermeable Property - The body is completely

impermeable.

4. Initial Velocity - The body has an initial velocity

of v0 that has no horizontal component of motion.

5. Angular Velocity - The body has no initial angu-

lar velocity.

6. Constant Mass - The mass of the body remains

constant over time. The body does not experience

ablation or accretion.

7. Constant Diameter - The diameter of the body

remains constant over time.

8. Distribution of Mass - The body has a centrally

symmetric mass distribution that remains constant

over time.

9. Uncertainty Principle - The diameter of the body

is much greater than the Plank length.

10. Brownian Motion - The mass and diameter of the

body are large enough such that Brownian motion

of the fluid has negligible impact on the body.

11. General Relativity - The mass of the body is low

enough to ignore the gravitational curvature of

space-time.

 1.b Fluid Attributes

12. Fluid Density - The fluid density is constant. The

fluid is incompressible.

13. Fluid Pressure - The fluid pressure is constant.

14. Fluid Temperature - The fluid temperature is con-

stant.

15. Kinematic Viscosity - The kinematic viscosity is

constant. The medium is a Newtonian fluid.

16. Stationary Fluid - The fluid is stationary apart

from being disturbed by the falling body.

17. Infinite Fluid - The volume of the fluid is large

enough to completely envelope the sphere. The

movement of the fluid is not restricted by a con-

tainer such as a pipe or tube.

 1.c Earth Attributes

18. Flat Terrain - The ground does not have terrain

and remains flat for all t > 0.

19. Coriolis Effect - The Earth is not rotating. We ig-

nore the Coriolis effect.

2. Dynamic Constraints

20. Mach Speed - The velocity of the body is suffi-

ciently less than the speed of sound for that me-

dium.

21. Special Relativity - The velocity of the body is

sufficiently less than the speed of light for that

medium.

22. Reynolds Number - The Reynolds number re-

mains between 10-2 and 107 for all t > 0. The

Reynolds number is a function of velocity.

3. Inter-Object Constraints

23. Sphere/Fluid Interaction - The body and the fluid

interact only through buoyancy and drag. For ex-

ample, the body cannot dissolve in the fluid, nor

can the body transfer heat to the fluid.

Spiegel, Reynolds, and Brogan

In an informal contest related to our study, no participant

identified more than 75% of the ultimate set of constraints

identified. Borrowing from Garlan, Allan, and Ocker-

bloom our challenge participants were neither “lazy, stu-

pid, nor malicious.” (1995)

We believe the study reported here can be useful to the

reader beyond the results above. The falling body model

presents a fine example for testing any proposed reusability

process. If the process cannot lead to the efficient extrac-

tion of the constraints listed in the Appendix, then it is of

questionable value.

In the future we anticipate further study of our initial

taxonomy of validation constraints. Will other types of

simulations yield new categories of constraints? The tax-

onomy is useful only if it can serve as a general guidepost

that suggests hidden constraints that have not been identi-

fied. Additionally the taxonomy for the simulation com-

munity may benefit from insights in the larger domain of

software design. Generic software applications contain

properties that are identified as invariant or time-

dependent. Can the lessons from formal software analysis

be applied to our objectives? We will be exploring these

issues.

ACKNOWLEDGEMENTS

We gratefully acknowledge support from the National Sci-

ence Foundation (ITR 0426971), as well as from our col-

leagues in the Modeling and Simulation Technology Re-

search Initiative (MaSTRI) at the University of Virginia.

We would also like to thank all the participants of the fal-

ling body challenge: Robert Bartholet, Joseph Carnahan,

Mark Farrington, Aleks Gershaft, William Kammersell,

Yinping Kuang, Xinyu Liu, Yannick Loitiere, Thomas Lu-

bitz, and Weide Zhang.

APPENDIX: FALLING BODY CONSTRAINTS

1. Invariant Constraints

 1.a Sphere Attributes

1. Sphere Property - The body is a sphere and it re-

mains spherical.

2. Smooth Property - The body is smooth and it re-

mains smooth.

3. Impermeable Property - The body is completely

impermeable.

4. Initial Velocity - The body has an initial velocity

of v0 that has no horizontal component of motion.

5. Angular Velocity - The body has no initial angu-

lar velocity.

6. Constant Mass - The mass of the body remains

constant over time. The body does not experience

ablation or accretion.

7. Constant Diameter - The diameter of the body

remains constant over time.

8. Distribution of Mass - The body has a centrally

symmetric mass distribution that remains constant

over time.

9. Uncertainty Principle - The diameter of the body

is much greater than the Plank length.

10. Brownian Motion - The mass and diameter of the

body are large enough such that Brownian motion

of the fluid has negligible impact on the body.

11. General Relativity - The mass of the body is low

enough to ignore the gravitational curvature of

space-time.

 1.b Fluid Attributes

12. Fluid Density - The fluid density is constant. The

fluid is incompressible.

13. Fluid Pressure - The fluid pressure is constant.

14. Fluid Temperature - The fluid temperature is con-

stant.

15. Kinematic Viscosity - The kinematic viscosity is

constant. The medium is a Newtonian fluid.

16. Stationary Fluid - The fluid is stationary apart

from being disturbed by the falling body.

17. Infinite Fluid - The volume of the fluid is large

enough to completely envelope the sphere. The

movement of the fluid is not restricted by a con-

tainer such as a pipe or tube.

 1.c Earth Attributes

18. Flat Terrain - The ground does not have terrain

and remains flat for all t > 0.

19. Coriolis Effect - The Earth is not rotating. We ig-

nore the Coriolis effect.

2. Dynamic Constraints

20. Mach Speed - The velocity of the body is suffi-

ciently less than the speed of sound for that me-

dium.

21. Special Relativity - The velocity of the body is

sufficiently less than the speed of light for that

medium.

22. Reynolds Number - The Reynolds number re-

mains between 10-2 and 107 for all t > 0. The

Reynolds number is a function of velocity.

3. Inter-Object Constraints

23. Sphere/Fluid Interaction - The body and the fluid

interact only through buoyancy and drag. For ex-

ample, the body cannot dissolve in the fluid, nor

can the body transfer heat to the fluid.

Spiegel, Reynolds, and Brogan

24. Sphere/Earth Interaction - The body and the earth

interact only through the gravitational force.

25. Fluid/Earth Interaction - The fluid and the earth

do not interact.

26. Closed System - The Earth, sphere, and fluid do

not interact with any other objects.

27. Simple Gravity - Gravity is a constant downward

force of 9.8 m/s2.

28. One-Sided Gravity - The mass of the body is

much less than the mass of the Earth. The Earth

is not affected by the gravitational pull of the

body.

29. Inelastic Collision - The collision between the

sphere and the ground is perfectly inelastic.

REFERENCES

Bartholet, R., D.C. Brogan, P.F. Reynolds, and J.C.

Carnahan 2004. In search of the philosopher’s stone:

Simulation composability versus component-based

software design. In Proceedings of the Fall 2004
Simulation Interoperability Workshop, Orlando, FL.

Carnahan, J.C., D.C. Brogan and P.F. Reynolds. Simula-

tion-specific characteristics. Submitted for publica-

tion.

Chow, C. 1979. Introduction to computational fluid me-

chanics. Hoboken, New Jersey: John Wiley & Sons

Inc.

Davis, P.K. and R.H. Anderson 2003. Improving the com-

posability of Department of Defense models and simu-

lations, Rand Corporation Report.
<http://www.rand.org/publications/MG

/MG101/>

Garlan, D., R. Allen, and J. Ockerbloom 1995. Architec-

tural mismatch or why it’s hard to build systems out of

existing parts. In Proceedings of the Seventeenth In-
ternational Conference on Software Engineering. Se-

attle WA.

Hanks, K.S., K.C. Knight, and E.A. Strunk. 2001. Erro-

neous requirements: a linguistic basis for their occur-

rence and an approach to their reduction. In Proceed-
ings of the 26th Annual NASA Goddard Software
Engineering Workshop. Greenbelt, MD

Hayhurst, K.J. and C.M. Holloway 2001. Challenges in

software aspects of aviation systems. In Proceedings
of the 26th Annual NASA Goddard Software Engineer-
ing Workshop. Greenbelt, MD

Kasputis, S. and H.C. Ng 2000. Composable simulations.

In Proceedings of the 2000 Winter Simulation Confer-
ence, ed. J.A. Joines, R.R. Barton, K. Kang, and P.A.

Fishwick, 1577-1584.

Lutz, R. R. 1993. Analyzing software requirements errors

in safety-critical, embedded systems. In Proceedings
of the IEEE International Symposium on Requirements

Engineering. Piscataway, New Jersey: Institute of

Electrical and Electronics Engineers.

Malak, R. J., and C.J.J. Paradis 2004. Foundations of vali-

dating reusable behavioral models in engineering de-

sign problems. In Proceedings of the 2004 Winter
Simulation Conference, ed. R.G. Ingalis, M.D. Ros-

setti, J.S. Smith, and B.A. Peters, 420-428. Piscata-

way, New Jersey: Institute of Electrical and Electron-

ics Engineers.

Page, E.H. and J.M. Opper 1999. Observations on the

complexity of composable simulation. In Proceedings
of the 1999 Winter Simulation Conference, ed. P.A.

Farrington, H.B. Nembhard, D.T. Sturrock, and G.W.

Evans, 553-560. Piscataway, New Jersey: Institute of

Electrical and Electronics Engineers.

Petty, M.D. and E.W. Weisel 2003a. A composability

lexicon. In Proceedings of the Spring 2003 Simulation
Interoperability Workshop, 181-187. Simulation In-

teroperability Standards Organization.

Petty, M.D. and E.W. Weisel 2003b. A formal basis for a

theory of semantic composability. In Proceedings of
the Spring 2003 Simulation Interoperability Work-
shop, 416-423. Simulation Interoperability Standards

Organization.

Shaughnessy, E.J., I.M. Katz, and J.P. Schaffer. 2005. In-

troduction to fluid mechanics. New York: Oxford

English Press.

Sullivan, K.J. and J.C. Knight 1996. Experience assessing

an architectural approach to large-scale, systematic re-

use. In Proceedings of the 18th International Confer-
ence on Software Engineering (ICSE18), 220-229.

Berlin, Germany, March 25-29.

Yam, P. September 2004. Everyday Einstein. Scientific
American, 50-55.

Yilmatz, L. 2004. On the need for contextualized intro-

spective models to improve reuse and composability

of defense simulations. Journal of Defense Modeling
and Simulation 1 (3): 141-151.

Zeigler, B.P., H. Praehofer, and T.G. Kim. 2000. Theory

of Modeling and Simulation, 2nd Edition. Burlington,

MA: Academic Press.

AUTHOR BIOGRAPHIES

MICHAEL SPIEGEL is a Ph.D. Candidate in Computer

Science and a member of the Modeling and Simulation

Technology Research Initiative (MaSTRI) at the Univer-

sity of Virginia. Michael earned his B.A. in Computer

Science at Swarthmore College. He has previously held

the position of research associate at StreamSage, Inc.

studying natural language processing for multimedia

search engines. His email addresses is

<mspiegel@cs.virginia.edu> and his web ad-

dress is <www.cs.virginia.edu/~ms6ep> .

94

What?

1st attempt: Zeigler’s

Experimental Frame

force

d
is

p
la

ce
m

en
t

95

Give Procedure that can be enacted and automated
and allows for reuse!

96

Not only for Model but for all parts of M&S cycle!

97

Future Directions

– Work with Alex, Rick and Stefan @ MPM4CPS Cost?

– Continue on the different M&S life-cycle elements

– Extended Case Study

– Power window?

– Appropriate languages for modelling frames

– Extend formalization and frame relations

– Libraries with Frames (tool-building)

98

Lunch

99

Engineering Process Transformation

to Manage (In)consistency

Istvan David

MSDL Antwerp

istvan.david@uantwerp.be

100

Summary

– Inconsistency management in engineering processes

– Inconsistencies → $$$

– Late (or no) detection, numerous re-iterations…

– We provide:

– A methodology, and

– A tool for managing inconsistencies.

I. Dávid, J. Denil, K. Gadeyne, and H. Vangheluwe, “Engineering Process Transformation to Manage

(In)consistency,”

in Proceedings of the 1st International Workshop on Collaborative Modelling in MDE (COMMitMDE

2016), pp. 7–16, http://ceur-ws.org/Vol-1717/, 2016.

101

Engineering complex systems is hard!

Automated Guided Vehicle (AGV)

102

Engineering complex systems is hard!

Automated Guided Vehicle (AGV)

Modeling

Increased
complexity

Disparate
domains

Inconsistencie
s

103

Engineering complex systems is hard!

Automated Guided Vehicle (AGV)

Modeling

Increased
complexity

Disparate
domains

Inconsistencies

CORRECTNESS EFFICIENCY

104

Managing inconsistencies

– Rather than thinking about removing inconsistency we

need to think about "managing consistency“ –

Finkelstein

– Tolerate, analyze, prevent…

105

Managing inconsistencies

– Rather than thinking about removing inconsistency we

need to think about "managing consistency“ –

Finkelstein

– Tolerate, analyze, prevent…

– Processes!

– Understand the lifecycle of models

– …and their relation with (semantic) properties

– ...and consequently: inconsistencies (origin, impact)

106

Managing inconsistencies

– Rather than thinking about removing inconsistency we

need to think about "managing consistency“ –

Finkelstein

– Tolerate, analyze, prevent…

– Processes!

– Understand the lifecycle of models

– …and their relation with (semantic) properties

– ...and consequently: inconsistencies (origin, impact)

Model the
process

Identify
potential

inconsistencies

Transform the
process

107

Managing inconsistencies

– Rather than thinking about removing inconsistency we

need to think about "managing consistency“ –

Finkelstein

– Tolerate, analyze, prevent…

– Processes!

– Understand the lifecycle of models

– …and their relation with (semantic) properties

– ...and consequently: inconsistencies (origin, impact)

Model the
process

Identify
potential

inconsistencies

Transform the
process

Goal 1:
manage potential
inconsistencies

Goal 2:
minimize
transit time

Weave in
management
patterns into
the process

Quantify
optimality

108

Process modeling and transformation

– Appropriate process modeling formalism?

– Extended FTG+PM

Model the
process

Identify
potential

inconsistencies

Transform the
process

109

Process modeling and transformation

– Appropriate process modeling formalism?

– Extended FTG+PM

Model the
process

Identify
potential

inconsistencies

Transform the
process

110

Process modeling and transformation

– Appropriate process modeling formalism?

– Extended FTG+PM

Model the
process

Identify
potential

inconsistencies

Transform the
process

Inconsistencies Management
techniques

– It’s an optimization problem

– Matching ICs with ICMs while keeping transit costs at minimum

– Challenge: impact of ICM techniques on the process

111

Roadmap

– Methodology+tooling

– Future work

– Cost/performance modeling

– Resolution techniques to be revisited

– Fits into a larger framework (see the other

presentations)

112

Modeling and enactment support

for early detection of inconsistencies

in engineering processes

Istvan David

MSDL Antwerp

istvan.david@uantwerp.be

113

Summary

– Early inconsistency detection

– We provide:

– A methodology for formalizing inconsistencies, and

– An enactment engine for running the managed process.

I. Dávid, B. Meyers, K. Vanherpen, Y. Van Tendeloo, K. Berx, and H. Vangheluwe, “Modeling and enactment support for early detection of inconsistencies in

engineering processes,”

Submitted, under review, 2nd International Workshop on Collaborative Modelling in MDE (COMMitMDE 2017)

114

Process enactment

– Process modeling is a must, but it’s not enough

– Process enactment is required to ensure consistency

115

Example

– mT = mP+mM+mB

– mT ≤ 150 [kg],

mP ≤ 100 [kg],

mM ≤ 50 [kg],

mB ≤ 10 [kg]

– mass > 0 [kg]

116

Example

– mT = mP+mM+mB

– mT ≤ 150 [kg],

mP ≤ 100 [kg],

mM ≤ 50 [kg],

mB ≤ 10 [kg]

– mass > 0 [kg]

Step 1

A platform is selected with a mass of 100kg. (m
P
=100 [kg])

117

Example

– mT = mP+mM+mB

– mT ≤ 150 [kg],

mP ≤ 100 [kg],

mM ≤ 50 [kg],

mB ≤ 10 [kg]

– mass > 0 [kg]

Step 1

A platform is selected with a mass of 100kg. (m
P
=100 [kg])

Step 2

A motor is selected with a mass of 50kg. (m
M

=50 [kg])

118

Example

– mT = mP+mM+mB

– mT ≤ 150 [kg],

mP ≤ 100 [kg],

mM ≤ 50 [kg],

mB ≤ 10 [kg]

– mass > 0 [kg]

Step 1

A platform is selected with a mass of 100kg. (m
P
=100 [kg])

Step 2

A motor is selected with a mass of 50kg. (m
M

=50 [kg])

Step 3

A battery is selected with a mass of 10 kg. (mB= 10 [kg])

119

Example

– mT = mP+mM+mB

– mT ≤ 150 [kg],

mP ≤ 100 [kg],

mM ≤ 50 [kg],

mB ≤ 10 [kg]

– mass > 0 [kg]

Step 1

A platform is selected with a mass of 100kg. (m
P
=100 [kg])

Step 2

A motor is selected with a mass of 50kg. (m
M

=50 [kg])

Step 3

A battery is selected with a mass of 10 kg. (mB= 10 [kg])

120

Example

– mT = mP+mM+mB

– mT ≤ 150 [kg],

mP ≤ 100 [kg],

mM ≤ 50 [kg],

mB ≤ 10 [kg]

– mass > 0 [kg]

Step 1

A platform is selected with a mass of 100kg. (m
P
=100 [kg])

Step 2

A motor is selected with a mass of 50kg. (m
M

=50 [kg])

Step 3

A battery is selected with a mass of 10 kg. (mB= 10 [kg])

121

Example

– mT = mP+mM+mB

– mT ≤ 150 [kg],

mP ≤ 100 [kg],

mM ≤ 50 [kg],

mB ≤ 10 [kg]

– mass > 0 [kg]

Step 1

A platform is selected with a mass of 100kg. (m
P
=100 [kg])

Step 2

A motor is selected with a mass of 50kg. (m
M

=50 [kg])

Step 3

A battery is selected with a mass of 10 kg. (mB= 10 [kg])

122

Example

– mT = mP+mM+mB

– mT ≤ 150 [kg],

mP ≤ 100 [kg],

mM ≤ 50 [kg],

mB ≤ 10 [kg]

– mass > 0 [kg]

Step 1

A platform is selected with a mass of 100kg. (m
P
=100 [kg])

Step 2

A motor is selected with a mass of 50kg. (m
M

=50 [kg])

Step 3

A battery is selected with a mass of 10 kg. (mB= 10 [kg])

Attribute

Capability

123

Attributes and capabilities

124

Attributes and capabilities

125

Modeling the process

Step 1

A platform is selected with a mass of 100kg. (m
P
=100 [kg])

Step 2

A motor is selected with a mass of 50kg. (m
M

=50 [kg])

Step 3

A battery is selected with a mass of 10 kg. (mB= 10 [kg])

126

Modeling the process

– mT = mP+mM+mB

– mT ≤ 150 [kg],

mP ≤ 100 [kg],

mM ≤ 50 [kg],

mB ≤ 10 [kg]

– mass > 0 [kg]
Automated Guided Vehicle

(AGV)

127

Modeling the process

– mT = mP+mM+mB

– mT ≤ 150 [kg],

mP ≤ 100 [kg],

mM ≤ 50 [kg],

mB ≤ 10 [kg]

– mass > 0 [kg]

128

Modeling the process

– mT = mP+mM+mB

– mT ≤ 150 [kg],

mP ≤ 100 [kg],

mM ≤ 50 [kg],

mB ≤ 10 [kg]

– mass > 0 [kg]

Evaluation of capability constraints

Any constraint applied on a capability imposes a constraint

on every attribute typed by that capability.

129

Modeling the process

– mT = mP+mM+mB

– mT ≤ 150 [kg],

mP ≤ 100 [kg],

mM ≤ 50 [kg],

mB ≤ 10 [kg]

– mass > 0 [kg]

Evaluation of capability constraints

Any constraint applied on a capability imposes a constraint

on every attribute typed by that capability.

0 [kg] < m
T
 ≤ 150 [kg],

0 [kg] < m
P
 ≤ 100 [kg],

0 [kg] < m
M

 ≤ 50 [kg],

0 [kg] < m
B
 ≤ 10 [kg]

130

Modeling the process

– mT = mP+mM+mB

– mT ≤ 150 [kg],

mP ≤ 100 [kg],

mM ≤ 50 [kg],

mB ≤ 10 [kg]

– mass > 0 [kg]

Evaluation of capability constraints

Any constraint applied on a capability imposes a constraint

on every attribute typed by that capability.

0 [kg] < m
T
 ≤ 150 [kg],

0 [kg] < m
P
 ≤ 100 [kg],

0 [kg] < m
M

 ≤ 50 [kg],

0 [kg] < m
B
 ≤ 10 [kg]

131

Process enactment

132

Roadmap

– Methodology and tooling provided

– Tooling: fully modeled execution

– Interfacing with Matlab/Simulink and AMESim

– Future work

– Combine with specification-time inconsistency management

133

Enabling Contract-based Design

in Engineering Processes

Istvan David

MSDL Antwerp

istvan.david@uantwerp.be

134

Summary

– Ensuring consistency in parallel branches of the

enacted process

– Preventive technique

– We provide:

– A methodology for ensuring consistency by contracts

– Tooling for

– modeling and enacting the process, and

– specifying contracts, and

– use contracts as a preventive technique for inconsisteny

mgmt.

135

Example

– The motor and the battery

are selected in parallel

136

Example

– Driving the motor assumes a minimum current from the

battery

– The battery guarantees a minimum current for the motor

137

Contracts

– Driving the motor demands a minimum current from the

battery

– The battery guarantees a minimum current for the motor

Contract

desiredCurrent: (2A, 3A)

138

Contracts

– Driving the motor demands a minimum current from the

battery

– The battery guarantees a minimum current for the motor

Contract

desiredCurrent: (2A, 3A)

Negotiate

Check contract validity

139

Leveraging attributes and constraints

140

Leveraging attributes and constraints

141

142

...from the requirements

143

144

145

Contract

desiredCurrent: (2A, 3A)

supportTime: (>3h)

desiredCapacity: (6Ah, 9Ah)

Reused information

Generated

146

Enactment

Negotiate

Check contract validity

147

Enactment

Negotiate

Check contract validity

– Negotiate a contract based

modify-read pairs of

intents.

148

Enactment

Negotiate

Check contract validity

– Negotiate a contract based

modify-read pairs of

intents.

– Consistency between the

parallel branches is managed

by the contract. From the

process engine’s point of

view, this is a „safe zone”.

149

Enactment

Negotiate

Check contract validity

– Negotiate a contract based

modify-read pairs of intents.

– Consistency between the

parallel branches is managed by

the contract. From the process

engine’s point of view, this is

a „safe zone”.

– Upoin joining the branches, the

contract is checked.

150

Alternative execution semantics

Negotiate

Check contract validity

– Negotiate a contract

– Map its contents to new

constraints of the

attributes

151

Contributions

– From the process point of view:

– CBCD as an inconsistency management technique

– From the CBCD point of view:

– Less work during contract negotiation, as part of it can be

inferred

– If sufficient information is provided, the contract can be fully

generated

– Integrated tooling

– Process tool + CBCD tool

152

Roadmap

– Ongoing research, but the added value to the SOTA is

obvious

– Tasks:

– Work out an example ✔

– Identify added value vs our previous work on

– processes, and

– contract-based design.

– Provide tooling

– Target venue: ETAPS/FASE (submission in October)

153

Contract-Based Co-Design (CBCD)

Ing. Ken Vanherpen

ken.vanherpen@uantwerpen.be

http://msdl.cs.mcgill.ca/people/ken/

mailto:ken.vanherpen@uantwerpen.be
http://msdl.cs.mcgill.ca/people/ken/

154

Summary

K. Vanherpen et al. Ontological Reasoning as an Enabler of Contract-Based Co-Design. CyPhy, 2016.

155

Problem Statement

156

Contract-Based Co-Design (CBCD)

Horizontal
(in)consistency

Vertical
(in)consistency

A
b
st

ra
ct

io
n
 L

ev
el

Contract-Based
Design

Contract-Based
Co-Design

SOTA

Contribution

157

CBCD Theory

157

Contract-
Based
Design

Ontological
Reasoning

Contract-
Based Co-
Design

158

CBCD Theory

158

Contract-
Based
Design

Ontological
Reasoning

Contract-
Based Co-
Design

159

CBCD Tool – Contract Definition

160

CBCD Tool – Contract Definition

Assumptions

Guarantees

161

CBCD Theory – Ontological Reasoning

161

Contract-
Based
Design

Ontological
Reasoning

Contract-
Based Co-
Design

162

CBCD Theory – Ontological Reasoning

162

K. Vanherpen et al. Ontological Reasoning for Consistency in the Design of Cyber-Physical Systems. CPPS, 2016.

163

CBCD Theory – Ontological Reasoning

K. Vanherpen et al. Ontological Reasoning as an Enabler of Contract-Based Co-Design. CyPhy, 2016.

164

CBCD Tool – Ontology

165

Mapping

Mapping

Control

Hardware

CBCD Tool – Ontology

166

CBCD Tool – Ontology

User-defined

Reasoner

167

CBCD Theory

167

Contract-
Based
Design

Ontological
Reasoning

Contract-
Based Co-
Design

168

CBCD Tool – Contract Definition

169

CBCD Tool – Mapping Contract

A
ss

u
m

p
ti

o
n

s

170

CBCD Tool – Contract Validation Analysis

171

CBCD Tool – Contract Validation Analysis

172

CBCD Tool – (DSE) Mapping

173

CBCD Tool – (DSE) Mapping

174

CBCD Tool – Schedulability Analysis

175

1 Run Schedulability Analysis

2 Model is annotated with the results…

CBCD Tool – Schedulability Analysis

176

2 …at all levels!

CBCD Tool – Schedulability Analysis

177

CBCD Tool – Export (Control) View

178

CBCD Tool – Export (Control) View

Automatically set based on contract definition

179

Annotating/updating a Simulink model with hardware

properties:

179

Lifted properties

CBCD Tool – Export (Control) View

K. Vanherpen, J. Denil, H. Vangheluwe, P. De Meulenaere, Model Transformations for Round-Trip Engineering in Control-
Deployment Co-Design. Mod4Sim, 2015.

180

CBCD Tool – Import (Control) View

181

CBCD Tool – Model Validation Analysis

182

Roadmap

 Support for horizontal contracts

 Enable composition and conjunction of contracts

 Inconsistency Management combined with Contract-Based

Design

 RTE for embedded co-design view

 Sensitivity Analysis

 Contract Management

 Link with validity frames

 …

183

Variability for Controller Design

Bart Meyers

Universiteit Antwerpen

bart.meyers@uantwerpen.be

184

Summary

CVM Config.

Family
Model Variant

Variants in controller design

Ultimate goal:

- Generation of variants from:

- Central variability model

- Configuration

- Family model

- Traceability tool to link all
artefacts:

185

Variability

CVM Configuration

Variant Family Variant Instance

P
la

tf
o

rm

In
d
ep

en
d
en

t
P

la
tf

o
rm

S

p
ec

if
ic

 Family Model
gen

gen
Variant

186

UA Tasks in ECoVaDeVa Project

– Variability modeling in acausal models

– Amesim/System Synthesis

– Simscape

– Modelica

– Linking features to Variation Points in different tools

– Necessary for variant generation

– May generate links between configuration and variant

– Correctness check

– Model transformation tool for Simulink and Amesim

– Generate variant at model configuration time

– Especially interesting for non-150% approaches

CVM Config.

Family
Model Variant

CVM Config.

Family
Model Variant

CVM Config.

Family
Model Variant

187

Traceability Tool
– Textual tool in Xtext

– Accesses BVR model

– Accesses Simulink model (to do: other types of models

like SimScape, Amesim, EXAM, …)

CVM Config.

Family
Model Variant

CVM Family Model

188

Traceability Tool
– Detection of errors

– Paths, existence of elements, …

CVM Config.

Family
Model Variant

189

Traceability Tool

Traceability Tool

– Detection of errors/inconsistencies

– Checking correctness of Simulink family model against CVM

– E.g., there is a constant block named “speed_adaptation”

but it’s not connected to a switch

CVM Config.

Family
Model Variant

Family Model

190

Traceability Tool

– Generation of variants
CVM Config.

Family
Model Variant

Variant

Configuration

191

Roadmap

– Implement more variability techniques in traceability tool

– Look into variability modelling for tools for acausal

modelling

– I suspect this will be a major challenge

192

Agile Model-Based Systems Engineering

Joachim Denil

Joachim.Denil@uantwerpen.be

193

Summary

– Companies want to increase responsiveness to change

in requirements

– Agile principles helped Software Engineers with same

problem!

– Application to Systems Engineering is more difficult

– Modelling techniques and supporting tools could help

in enabling Agile MBSE

194

Why?

195

What?

196

But… for complex systems: e.g. CPS

197

Solutions:

198

Future Directions

– From Research Plan to #research proposals

– FWO SBO Proposal

– External Partners needed

– Company support and Valorization needed

– Select minimal set of Topics to enable Agile MBSE in company

setting

199

Coffee

200

Research Plan and Projects under Submission and Accepted

(INES, ASET, EMPHYSIS)

Joachim

201

CoSys - MSDL

Joachim’s Research Plan

Joachim.Denil@uantwerpen.be

202

203

204

205

Language Engineering

Domain-Specific Languages, Model
Transformation, (web-based) Visual and

Textual Modelling Environments, etc.

Simulation

Co-Simulation, Discrete-event, DEVS,
continuous time, acausal, Modelica, etc.

Deployment & Resource-optimized
Execution

Platforms (e.g. AUTOSAR, CAN, etc.),

Design-Space Exploration, Virtualization,
Models@run-time, Efficient execution of

model transformations, etc.

Model
Management &

Process

FTG+PM, Safety
(ISO 26262,

Railway, etc,),
Agile Modelling,

Consistency
management,
Experimental
frames, etc.

Validation,
Verification,
Testing and

Accreditation

Analysis and
Verification of Model

Transformations,
Debugging,

Instrumentation,
Tracing, etc.

206

Approved: INES: Eureka Project (O&O)

18 PM Pre-doc + 6 PM Post-doc

Work on:
• Fault-injection
• Deployment Simulation
• Co-Simulation (MiL and HiL)
• Etc.

207

In Submission: aSET (FM ICON)

DataBase

DB Scheme

name

Nominal
Behaviour

name
type

Component

type

Faults

name

Link

Contract

Safety

from

to

name

Environments

refines_into

0..*

1

Traces

Language

Model

SystemC
Simulink
SPICE
AmeSim

<<Enumeration>>
Language

Contract Verification

Component a.1 Component a.2

Component a

⨁

refines

to Analysis

from Analysis

to Simulation

from Simulation

Trace Analysis

allowed region

dissallowed region

Trace from Sim Contract

GUI

wsdfsd dsafsdf

wsdfsd dsafsdf

wsdfsd dsafsdf

<< block >>

asd xzcfds

<< block >>

asd xzcf ds
<< block >>

asd xzcfds

<< block >>

asd xzcf ds

Fault-Injection

FMU

Component a.1

Simulink Solver

FMU

Component a.2

SPICE Solver

FMU

Environment

Environment
Solver

FMU

Fault a.1

Fault Solver

FMU

Fault a.2

Fault Solver

12 PM Pre-doc; 12 PM Post-doc

208

In Submission: Emphysis (EU ITEA3)

18 PM Pre-doc, 6 PM Post-doc

36

EMPHYSIS
FPP Annex

Page 36 of 102 Based on the ITEA 3 FPP Template v2.0 (June 2015)

Figure 6: Overall process of physics-based model integration in ECU software with eFMI

In Figure 6 the overall process of exporting physics-based models from modelling and simulation

tools via eFMI and the integration in ECU software is depicted. It is expected, that typically the

major part of the ECU software is generated with “classical” ECU software generation tools, while

eFMI is used for advanced controllers and diagnosis functions providing differentiating

technology. It is also possible to simulate an eFMI component in a simulation environment or run

it in a virtual ECU (as in the ETAS Virtual ECU ISOLAR-EVE) to validate the exported FMU

against the original model present in the modelling and simulation tool.

2.3.3. Expected project outputs

This section summarizes the main expected project outputs:

1. Public requirements document (D1.1) that defines the requirements that the eFMI standard

has to fulfil.

2. Public eFMI proposal (D3.3) to be submitted to the FMI standardization group

(= FMI Change Proposal for Evaluation according to the FMI Development Process and

Communication Policy). In an appendix, this document will include an analysis how the

requirements of (1) are fulfilled.

3. A public document (D7.9) that summarizes the achieved results of the EMPHYSIS project, by

providing a short overview of eFMI, describing the novel process of physics-based ECU

controller development with eFMI, and sketching the tool prototypes, the work flows and the

implemented demonstrators.

4. Tool prototypes (D4.X, D5.X) as extensions of existing commercial modelling and simulation

environments to export eFMUs and of commercial ECU tools that integrate eFMUs on ECUs

by the tool vendors Dassault Systemes, ETAS, Honeywell, ITI, Maplesoft, Siemens PLM

Software as described in section 2.2.2.

5. The eFMI compliance checker, an open source tool prototype (D6.1) that checks that an eFMI

component fulfils the eFMI specification.

6. A tool prototype (D6.2) as extension of an existing commercial static analyser that analyses

the code implementing eFMI components with the goal to prove the absence of runtime errors

(such as "index out of bound", "overflow", or "division by zero") and the absence of coding rule

violations (such as MISRA-C rules).

209

NEXOR Research Plan

Fons

210

Discussion on research threads, road maps, priorities,

why/what/how for customers

211

Conclusion*

Hans

* If we got this far…

