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at the most appropriate level(s) of abstraction 

using the most appropriate formalism(s) 

explicitly modelling processes 

 

Enabler: (domain-specific) modelling language engineering, 

including model transformation 

Pieter J. Mosterman and Hans Vangheluwe. Computer Automated Multi-Paradigm Modeling: An Introduction. Simulation: Transactions of the Society for Modeling and Simulation International

Virtual Product 
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Language Engineering 
 

Domain-Specific Languages, Model 
Transformation, (web-based) Visual and 

Textual Modelling Environments, etc. 

Simulation 
 

Co-Simulation, Discrete-event, DEVS, 
continuous time, acausal, Modelica, etc.  

Deployment & Resource-optimized 
Execution 

 
Platforms (e.g. AUTOSAR, CAN, etc.), 

Design-Space Exploration, Virtualization, 
Models@run-time, Efficient execution of 

model transformations, etc. 

Model 
Management & 

Process 
 

FTG+PM, Safety 
(ISO 26262, 

Railway, etc,), 
Agile Modelling, 

Consistency 
management, 
Experimental 
frames, etc. 

Validation, 
Verification, 
Testing and 

Accreditation 
 

Analysis and 
Verification of Model 

Transformations, 
Debugging, 

Instrumentation, 
Tracing, etc. 
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The Modelverse: 

A Foundation for Multi-Paradigm Modelling 

Yentl Van Tendeloo 

Yentl.VanTendeloo@uantwerpen.be 
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Summary 

– What? Multi-Paradigm Modelling kernel and repository 

– Why? Support the use of Multi-Paradigm Modelling 

– How? Using Multi-Paradigm Modelling techniques 

– Maturity? Academic tool 

[1] Y. Van Tendeloo and H. Vangheluwe. The Modelverse: a Tool for Multi-Paradigm Modelling and Simulation. In Proceedings of 
the 2017 Winter Simulation Conference, 2017 (accepted). 

[2] Y. Van Tendeloo. Foundations of a Multi-Paradigm Modelling Tool. In ACM Student Research Competition at MoDELS, 2015. 
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What? 

Multi-Paradigm Modelling kernel and repository 

[3] L. Lucio, S. Mustafiz, J. Denil, H. Vangheluwe, and M. Jukss. FTG+PM: An Integrated Framework for Investigating Model 
Transformation Chains. In SDL 2013: Model-Driven Dependability Engineering, Volume 7916 of Lecture Notes in Computer 
Science, 182–202, 2013. [4] P. Mosterman and H. Vangheluwe. Computer Automated Multi-Paradigm Modeling: An Introduction. SIMULATION 80(9): 433–450, 

2004. 
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What? 

Multi-Paradigm Modelling kernel and repository 

Modelverse 

[5] E. Syriani, H. Vangheluwe, R. Mannadiar, C. Hansen, S. Van Mierlo, and H. Ergin. AToMPM: A Web-based Modeling 
Environment. In Proceedings of MODELS’13 Demonstration Session, 21–25, 2013. 

[6] K. Schmidt. LoLA: a low level analyser. In Proceedings of the 21st international conference on Application and 
theory of petri nets, 465-474, 2000. 
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What? 

Multi-Paradigm Modelling kernel and repository 

Modelverse 
Models 

Transformations 

Metamodels 
Operations 

Integer function fib (n : Integer): 
  if (n <= 2): 
    return 1! 
  else: 
    return fib(n–1) + fib(n–2)! 
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Why? 

Flexibility 
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Why? 

ClassDiagrams 

PetriNets2 PetriNets 

my_pn_2 my_pn 
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Why? 

ClassDiagrams 

PetriNets2 PetriNets 

my_pn_2 my_pn 

Bottom 
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Why? 
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Why? 
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Why? 

“I need to hack 
the transformation 
server for that.” 
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Why? 

Storage Manipulation 

[8] F. Basciani, J. Di Rocco, D. Di Ruscio, A. Di Salle, L. Iovino, and A. Pierantonio. MDEForge: an extensible web-
based modeling platform. In Proceedings of the Workshop on Model-Driven Engineering on and for the Cloud (CloudMDE), 66-
75, 2014. 

[7] R. France, J. Biemand, and B. H. C. Cheng. Repository  for  Model  Driven  Development. In Proceedings of the 
International Conference  on Model Driven Engineering Languages and Systems (MoDELS), 311-317, 2006. 
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How? 

Complex systems are 
best modelled using 

Multi-Paradigm 
Modelling! 
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How? 

I should code the 
MPM kernel and 

repository, which 
is a complex 

system! 
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How? 

I should code the 
MPM kernel and 

repository, which 
is a complex 

system! 



19 

How? 

• Protocols 

• Performance 

• Task management 

• Action Language 

• Conformance 

• Services 

• Concrete syntax 

• Data 

• Transformations 
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Roadmap 

Modelling 

• Performance 
• Client-side code 
• Conformance bottom (applications) 
• Multi-conformance (applications) 

Coupling 

• Interfaces (graphical?) 
• Services 

Usability 

• Performance 
• Action language syntax 
• Compiler 
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SCCD: A Statecharts and Class Diagrams Hybrid 

Simon Van Mierlo 

Universiteit Antwerpen 

simon.vanmierlo@uantwerpen.be 
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Summary 

Simon Van Mierlo, Yentl Van Tendeloo, Bart Meyers, Joeri Exelmans, and Hans Vangheluwe. 
SCCD: SCXML extended with class diagrams. In 3rd Workshop on Engineering 
Interactive Systems with SCXML, part of EICS 2016, 2016 
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Motivation 

 

Statecharts Design? + Class Diagrams = SCCD(XML) 

Behavior 
• Timed 

• Autonomous 

• Interactive 

• Hierarchical 

Structure 
• Dynamic 

• Hierarchical 



24 

Modelling Complex, Timed, Autonomous,  

Dynamic-Structure Systems 
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Visual Modelling Interface Behaviour: Concrete Syntax 



26 

Visual Modelling Interface Behaviour: User Interaction 
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Roadmap 

– SCCD Language: Syntax and Semantics 

– Conformance 

– Initialization/Destruction 

– Exceptions 

– Dynamic Loading of SCCD Models 

– Interfaces/Contracts: Protocol Machine 

– Subtyping 

– Events as Objects 

– Behavior  

– Object Creation Decoupled from Associations 

– Model user interaction in DSL 

– (see Vasco Sousa’s work) 

– Concrete Syntax: separation of AS/CS modification operations 
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Verification of Domain-Specific Models with ProMoBox 

Bart Meyers 

Universiteit Antwerpen 

bart.meyers@uantwerpen.be 
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Summary 

Design Propert
y ⊨ - specification of properties at DS level 

- fully automatic generation of languages 
from annotated metamodel 

- fully automatic verification of properties 

- application to model checking, testing, 
DSE,  … 

• Bart Meyers, Romuald Deshayes, Levi Lucio, Eugene Syriani, Manuel Wimmer and Hans Vangheluwe. ProMoBox: A 
Framework for Generating Domain-Specific Property Languages. In "Proceedings of the 7th International 
Conference on Software Languages Engineering (SLE 2014)", Lecture Notes on Computer Science, vol. 8706, p. 
1-20, 2014. 

• Bart Meyers, Joachim Denil, István Dávid, and Hans Vangheluwe. Automated Testing Support for Reactive 
Domain-Specific Modelling Languages. In "Proceedings of the 2016 ACM SIGPLAN International Conference on 
Software Language Engineering". ACM digital library, p. 181-194, 2016. 
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Properties for DSMLs: State of the Art 

Design Property 

3
0 

⊨ 
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Properties for DSMLs: Property DSML 

Design Property 

3
1 

⊨ 

• Bart Meyers, Romuald Deshayes, Levi Lucio, Eugene Syriani, Manuel Wimmer and Hans Vangheluwe. ProMoBox: A 
Framework for Generating Domain-Specific Property Languages. In "Proceedings of the 7th International 
Conference on Software Languages Engineering (SLE 2014)", Lecture Notes on Computer Science, vol. 8706, p. 
1-20, 2014. 
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Properties for DSMLs: Consistency 

Consistency by 
construction 

3
2 

[[.
]]’ 

MM’ 

Design Propert
y Input Runtime Trace 

.ltl 

.trail 

.txt 

.pml Spin 
1 

1 1 

2 

2 

3 

4 
Formal Methods 

DSM 

Annotations Annotations 
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Evaluation (TSE paper) 
– Modelling effort 

– comparison LOC and complexity 

– Correctness + Usability study 

– 6 participants, qualitative study + SUS 

– Model checking performance 

– better than adapted Elevator example from literature 

– Expressiveness 

– Exhaustive comparison with Promela language constructs 

– Customisability 

– added patterns to property language and replaced Spin backbone 

with Groove 
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Properties for DSMLs: Testing 

Design Test 
Case 

3
4 

⊨ 

Test DSML 

• Bart Meyers, Joachim Denil, István Dávid, and Hans Vangheluwe. Automated Testing Support for Reactive 
Domain-Specific Modelling Languages. In "Proceedings of the 2016 ACM SIGPLAN International Conference on 
Software Language Engineering". ACM digital library, p. 181-194, 2016. 
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Roadmap 

ProMoBox 
- Annotations 

- DSML generation 
- Generic semantics 

Model Checking 
Property Template 

+ 
Generic Promela compiler 

Testing 
Test Template 

 + 
Generic operational semantics  

DSE 
Rules Template 

+ 
Generic solver 

Generation 
of test 

cases from 
properties 
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Semantic Adaptation for FMI Co-simulation* 

Cláudio Gomes, Bart Meyers, Joachim Denil,  

Casper Thule, Kenneth Lausdahl,  

Hans Vangheluwe, Paul De Meulenaere 

* Journal paper submitted to SIMULATION 



37 

Summary 

– Why? There is a need for quick (but sound) changes to 

the behavior of simulators. 

– What? We developed a DSL for that…  

– How? …using hierarchical co-simulation principles. 

– Maturity: Set of techniques and tool, applied to 

academic cases. 
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Motivation 

– Quick and sound way of adapting the behaviour of an interconnected 

set of FMUs 

– Unit conversion 

– Interaction protocol modification 

– Enhance accuracy and performance 
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Semantic Adaptation 

– Actions by which the behavior of an 

original set of interconnected FMUs is 

altered, following the transparency 

and modularity principles. 
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– Actions by which the behavior of an 

original set of interconnected FMUs is 

altered, following the transparency 

and modularity principles. 

Semantic Adaptation 
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A DSL for Semantic Adaptation 
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A DSL for Semantic Adaptation 
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A DSL for Semantic Adaptation 
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Hierarchical Co-simulation 
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Roadmap 

– Industrial Case Study 

with AgroIntelli 

– Raise level of 

abstraction 
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Stability Analysis for Adaptive Co-simulation* 

Cláudio Gomes, Benoît Legat,  

Raphaël M. Jungers, Hans Vangheluwe 

* Paper accepted in IUTAM Symposium on Co-simulation 
and solver coupling – Recent developments in theory and 
application, September, Darmstadt 
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Summary 

– Stability of adaptive master algorithms is seldom 

taken into account, but can increase 

performance/accuracy tradeoff. 

– We apply the Joint Spectral Radius theory to study 

the stability of such orchestration algorithms for 

linear co-simulation scenarios. 
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Stability – Non-Adaptive Numerical Solver 

Stability: 
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Stability – Adaptive Numerical Solver 

Stability: 

Example in co-simulation: adapt the step size 
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Stability Analysis 

Non adaptive solver (spectral radius):  

Adaptive solver (joint spectral radius):  
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Adaptive Co-simulation Master 

– Given a co-simulation scenario, and a specification 

of the master algorithm, one can compute Sigma 

– Example: 
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Roadmap 

– Address scalability by using adaptive master 

specifications based on state machines. 

– Identify conditions for which JSR can be computed 

directly. (Example: a repeating sequence of matrices) 
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Stability Analysis for Hybrid Co-simulation* 

Cláudio Gomes, Paschalis Karalis,  

Eva M. Navarro-López, Hans Vangheluwe 

* Paper accepted in Workshop on 
Formal Co-Simulation of Cyber-
Physical Systems, September, Trento 
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Summary 

– A co-simulation of a hybrid system must preserve the 

stability properties of the later, so that the 

results can be trustworthy. 

– We analyze the range of communication frequencies 

between simulators that ensure those properties are 

kept. 
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Example: Hybrid System 
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Example: Hybrid Co-simulation Scenario 
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Question: How much delay can be tolerated? 

H = 0.05 H = 0.001 



58 

(Lyapunov) Stability of Hybrid Systems 
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(Lyapunov) Stability of Hybrid Co-simulation 



60 

Roadmap 

– Generalize the approach for many modal systems (not 

just two), and systems with resets. 

– Use a more relaxed Lyapunov stability theorem, 

developed by Paschalis and Eva 
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Hybrid System Simulation with Dirac Deltas* 

Cláudio Gomes, Yentl Van Tendeloo,  

Joachim Denil, Paul De Meulenaere, 

Hans Vangheluwe 

* Paper accepted in Symposium on 
Theory of Modeling and Simulation, 
April, Virginia Beach 
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Summary 

– We compare two different approaches for the 

simulation of impulsive differential equation, and 

formulate their differences. 
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Impulse-based Modeling 

Bouncing ball dynamics: 

Around a collision: 

(Momentum) Conservation dictates: 

Hence, whatever the shape of Fc, 
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Impulse-based Modeling 

Let δ be a function abstraction, 
such that: 

Bouncing ball dynamics: 

Then: 
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Symbolic Simulation of Impulses 

Manipulate signals with impulses encoded 
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Numerical Simulation of Impulses 

Numerically approximate an impulse as 

the derivative of a steep ramp. 
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Example: Bouncing ball 
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Comparison: Symbolic vs Numerical 

– Numerical approach shifts the solution n.h 
time units 

– Maximum magnitude for a discontinuity D: 

 

 

 

 

Conclusion: Symbolic approach is more accurate 
for models that manipulate impulse 
derivatives. 
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Roadmap 

– Find models that require impulse derivatives. 
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Coffee Break 
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Model Debugging 

Simon Van Mierlo 

Universiteit Antwerpen 

simon.vanmierlo@uantwerpen.be 
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Summary 

→ Causal-Block Diagrams, Parallel DEVS, Statecharts, Petrinets, 
Dynamic-Structure DEVS, Hybrid TFSA-CBD, Action Language  

Simon Van Mierlo, Yentl Van Tendeloo, and Hans 
Vangheluwe. Debugging Parallel 
DEVS. SIMULATION, 93(4):285-306, 2017 

Simon Van Mierlo, Cláudio Gomes, and Hans Vangheluwe. Explicit 
Modelling and Synthesis of Debuggers for Hybrid Simulation 
Languages. In Proceedings of the 2017 Symposium on Theory of 
Modeling and Simulation - DEVS (TMS/DEVS), pages 1013-1024, 2017 



73 

Motivation 

Usable M&S Environments: 
• Fidelity (w.r.t. formalism’s syntax and semantics) 
• Accuracy (in simulation results) 
• Resuse (model libraries) 
• Performance 
• Debugging 
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Building Language-Specific Debugging Environments 

– Operations: 

– Pause/Resume 

– Stepping 

– Breakpoints 

– State Tracing (Visual) 

– Manual State Changes 

– Omniscient Debugging 

+ 

+ 
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De- and Reconstruction 1. 2. 

3. 
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Architecture and Workflow 
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Examples 

Dynamic-Structure DEVS 

Petrinets 

Parallel DEVS 
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Debugging Hybrid Formalisms 

Continuous 
Breakpoints 
Pause/Resume 
Stepping 
Realtime Simulation 

Continuous 
Stepping 
Event Injection Continuous 

Continuous 
Stepping 

Continuous 
Stepping 
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Efficient Omniscient Debugging (PDEVS) 

C1 

A2 

C2 

B2 

A3 

C4 C3 

B3 

A1 

B1 B5 

C5 

A5 

B4 

A4 A7 

C7 

B6 

C6 

A6 

B7 

Simulation Time 

A 
B 
C 

Periodic 
State Saving 

Optimizations: 
• xs -> 2xs 
• Disk I/O 
• Compression 
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Roadmap 

– Denotational (vs. Operational) Semantics 

– Language Engineering 

– “weaving” debugging language 

– Simulators 

– black- or grey-box (see FMI) 

– hybrid: canonical form (moving away from SCCD) 

– Architecture 

– automatic artefact generation/instrumentation 

– Advanced Breakpoint Conditions 

– (see ProMoBox) 
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Frames 

--= Enabling Reuse in MBSE =-- 

Joachim Denil 

Joachim.Denil@uantwerpen.be 
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Summary 

– Reuse of (Simulation) Models is important 

– Modelers make assumptions during all stages of a M&S process: 

– Model Construction 

– Model Calibration 

– Etc. 

– Frames record information to allow such reuse! 

– Information needs to be stored for meaningful reuse  

– Selection from catalogue of models 

– Information needs to be modelled for automation   

– Test that Frame works on Model 

– Test that Models works with Frame 
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Reuse of Models Example 

Spiegel, Reynolds, and Brogan  
 

Participants were instructed to ignore any constraints 

related to the implementation of the model.  In the falling 

body simulation, there are multiple implementation choices 

of numerical methods and numerical precision.  In comput-

ing position as a function of time, what sort of numerical 

integration method should be employed?  What effect 

would it have on correctness of results?  We have chosen 

not to discuss implementation assumptions in order to fo-

cus attention on the model instead of the simulation.  When 

joining composable simulations it will be necessary to 

validate both the combined model and then to validate the 

combined simulation. 

After a period of two weeks submissions were tabu-

lated and a master list was created and discussed among 

the contestants and others.  We defer discussion of the re-

sults to after the presentation of the challenge in the next 

section. 

3.2 Falling Body Model 

The following model is an extended version of the model 

presented in Appendix A of the monograph by Davis and 

Anderson (2003).  A sphere is falling through some me-

dium and experiencing drag as it falls.  Let p(t) equal the 

position of the sphere at time t and p(0) = p0 be the initial 

position.  Let v(t) = p′(t) equal the velocity of the sphere at 

time t, and let v(0) = v0 be the initial velocity.  Calculate 

p(t) and v(t) for all t ≥ 0. 

The sphere is perfectly smooth, it has diameter d and 

mass m.  The medium has uniform density ρf and uniform 

kinematic viscosity ν.  Assume that when the sphere im-

pacts with the earth, p(tearth) = 0, it will remain on the 

ground for all t > tearth. 

The following forces will act on the sphere (Chow 

1979): 

 

• Gravity: The sphere experiences constant accel-

eration, g ≈ 9.8 m/s2. 

• Buoyancy: mf = (1/6)πd3ρf  against gravity. 

• Inertial drag: (1/2) mf v′ (t) 

• Viscous drag: (1/2)ρf · v(t) ·│v(t)│· π/4 · d2 · 

cd(v(t))  

• Wave drag: Wave drag is negligible at subsonic 

speeds. 

 

We apply Newton’s Second Law to determine acceleration, 

and then employ numerical methods of integration to cal-

culate velocity and position. 

 

 
Figure 1: Falling Body Model 

 

The term cd is the drag coefficient and it is defined as a 

function of the Reynolds number, which is Re = v(t) · d / ν.  

The drag coefficient is determined experimentally as a 

function of the Reynolds number.  Both the drag coeffi-

cient and the Reynolds number are dimensionless values.  

For a perfectly smooth sphere, cd can be approximated 

piecewise with the following function, 
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dc  

 

The reader interested in pursuing the challenge without 

bias from the challenge results should pause at this point, 

continuing when identification of unstated constraints is 

completed.  We discuss the results of the challenge next. 

3.3 Challenge Results and Constraint Taxonomy 

The competition produced a master list of twenty-nine 

validation constraints (see Appendix).  From them we have 

derived a taxonomy of validation constraint types.  Every 

effort has been made to remove redundant constraints and 

to represent identified validation constraints as concisely as 

possible.  We make no claim to having found all validation 

constraints for the falling body model.   

It is illuminating to consider that the top three contest-

ants identified only 21, 19, and 16 constraints, respectively, 

out of the master list (see Table 1).  No single participant 

was capable of identifying more than three-quarters of all 

currently identified constraints.  Like the component de-

signers of (Garlan, Allan, and Ockerbloom 1995) our chal-

lenge participants were neither “lazy, stupid, nor mali-

cious.” Each participant failed to identify several implicit 
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Spiegel, Michael, Paul F. Reynolds Jr, and David C. Brogan. "A case study of model context for simulation composability 
and reusability." Proceedings of the 37th conference on Winter simulation. Winter Simulation Conference, 2005. 

Spiegel, Reynolds, and Brogan  
 
In an informal contest related to our study, no participant 

identified more than 75% of the ultimate set of constraints 

identified.  Borrowing from Garlan, Allan, and Ocker-

bloom our challenge participants were neither “lazy, stu-

pid, nor malicious.” (1995) 

We believe the study reported here can be useful to the 

reader beyond the results above.  The falling body model 

presents a fine example for testing any proposed reusability 

process.  If the process cannot lead to the efficient extrac-

tion of the constraints listed in the Appendix, then it is of 

questionable value. 

In the future we anticipate further study of our initial 

taxonomy of validation constraints.  Will other types of 

simulations yield new categories of constraints? The tax-

onomy is useful only if it can serve as a general guidepost 

that suggests hidden constraints that have not been identi-

fied.  Additionally the taxonomy for the simulation com-

munity may benefit from insights in the larger domain of 

software design.  Generic software applications contain 

properties that are identified as invariant or time-

dependent.  Can the lessons from formal software analysis 

be applied to our objectives? We will be exploring these 

issues. 
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APPENDIX: FALLING BODY CONSTRAINTS 

1.  Invariant Constraints 
 

   1.a  Sphere Attributes 
 

1. Sphere Property - The body is a sphere and it re-

mains spherical.  

2. Smooth Property - The body is smooth and it re-

mains smooth. 

3. Impermeable Property - The body is completely 

impermeable. 

4. Initial Velocity - The body has an initial velocity 

of v0 that has no horizontal component of motion. 

5. Angular Velocity - The body has no initial angu-

lar velocity.  

6. Constant Mass - The mass of the body remains 

constant over time.  The body does not experience 

ablation or accretion.  

7. Constant Diameter - The diameter of the body 

remains constant over time.  

8. Distribution of Mass - The body has a centrally 

symmetric mass distribution that remains constant 

over time. 

9. Uncertainty Principle - The diameter of the body 

is much greater than the Plank length. 

10. Brownian Motion - The mass and diameter of the 

body are large enough such that Brownian motion 

of the fluid has negligible impact on the body. 

11. General Relativity - The mass of the body is low 

enough to ignore the gravitational curvature of 

space-time. 

 

   1.b  Fluid Attributes 
 

12. Fluid Density - The fluid density is constant.  The 

fluid is incompressible. 

13. Fluid Pressure - The fluid pressure is constant. 

14. Fluid Temperature - The fluid temperature is con-

stant. 

15. Kinematic Viscosity - The kinematic viscosity is 

constant.  The medium is a Newtonian fluid. 

16. Stationary Fluid - The fluid is stationary apart 

from being disturbed by the falling body. 

17. Infinite Fluid - The volume of the fluid is large 

enough to completely envelope the sphere.  The 

movement of the fluid is not restricted by a con-

tainer such as a pipe or tube.  

 

   1.c  Earth Attributes 
 

18. Flat Terrain - The ground does not have terrain 

and remains flat for all t > 0. 

19. Coriolis Effect - The Earth is not rotating.  We ig-

nore the Coriolis effect. 

 

2.  Dynamic Constraints 
 

20. Mach Speed - The velocity of the body is suffi-

ciently less than the speed of sound for that me-

dium. 

21. Special Relativity - The velocity of the body is 

sufficiently less than the speed of light for that 

medium. 

22. Reynolds Number - The Reynolds number re-

mains between 10-2 and 107 for all t > 0.  The 

Reynolds number is a function of velocity. 

 

3.  Inter-Object Constraints 
 

23. Sphere/Fluid Interaction - The body and the fluid 

interact only through buoyancy and drag.  For ex-

ample, the body cannot dissolve in the fluid, nor 

can the body transfer heat to the fluid. 
Spiegel, Reynolds, and Brogan  

 
In an informal contest related to our study, no participant 

identified more than 75% of the ultimate set of constraints 

identified.  Borrowing from Garlan, Allan, and Ocker-

bloom our challenge participants were neither “lazy, stu-

pid, nor malicious.” (1995) 

We believe the study reported here can be useful to the 

reader beyond the results above.  The falling body model 

presents a fine example for testing any proposed reusability 

process.  If the process cannot lead to the efficient extrac-

tion of the constraints listed in the Appendix, then it is of 

questionable value. 

In the future we anticipate further study of our initial 

taxonomy of validation constraints.  Will other types of 

simulations yield new categories of constraints? The tax-

onomy is useful only if it can serve as a general guidepost 

that suggests hidden constraints that have not been identi-

fied.  Additionally the taxonomy for the simulation com-

munity may benefit from insights in the larger domain of 

software design.  Generic software applications contain 

properties that are identified as invariant or time-

dependent.  Can the lessons from formal software analysis 

be applied to our objectives? We will be exploring these 

issues. 
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APPENDIX: FALLING BODY CONSTRAINTS 

1.  Invariant Constraints 
 

   1.a  Sphere Attributes 
 

1. Sphere Property - The body is a sphere and it re-

mains spherical.  

2. Smooth Property - The body is smooth and it re-

mains smooth. 

3. Impermeable Property - The body is completely 

impermeable. 

4. Initial Velocity - The body has an initial velocity 

of v0 that has no horizontal component of motion. 

5. Angular Velocity - The body has no initial angu-

lar velocity.  

6. Constant Mass - The mass of the body remains 

constant over time.  The body does not experience 

ablation or accretion.  

7. Constant Diameter - The diameter of the body 

remains constant over time.  

8. Distribution of Mass - The body has a centrally 

symmetric mass distribution that remains constant 

over time. 

9. Uncertainty Principle - The diameter of the body 

is much greater than the Plank length. 

10. Brownian Motion - The mass and diameter of the 

body are large enough such that Brownian motion 

of the fluid has negligible impact on the body. 

11. General Relativity - The mass of the body is low 

enough to ignore the gravitational curvature of 

space-time. 

 

   1.b  Fluid Attributes 
 

12. Fluid Density - The fluid density is constant.  The 

fluid is incompressible. 

13. Fluid Pressure - The fluid pressure is constant. 

14. Fluid Temperature - The fluid temperature is con-

stant. 

15. Kinematic Viscosity - The kinematic viscosity is 

constant.  The medium is a Newtonian fluid. 

16. Stationary Fluid - The fluid is stationary apart 

from being disturbed by the falling body. 

17. Infinite Fluid - The volume of the fluid is large 

enough to completely envelope the sphere.  The 

movement of the fluid is not restricted by a con-

tainer such as a pipe or tube.  

 

   1.c  Earth Attributes 
 

18. Flat Terrain - The ground does not have terrain 

and remains flat for all t > 0. 

19. Coriolis Effect - The Earth is not rotating.  We ig-

nore the Coriolis effect. 

 

2.  Dynamic Constraints 
 

20. Mach Speed - The velocity of the body is suffi-

ciently less than the speed of sound for that me-

dium. 

21. Special Relativity - The velocity of the body is 

sufficiently less than the speed of light for that 

medium. 

22. Reynolds Number - The Reynolds number re-

mains between 10-2 and 107 for all t > 0.  The 

Reynolds number is a function of velocity. 

 

3.  Inter-Object Constraints 
 

23. Sphere/Fluid Interaction - The body and the fluid 

interact only through buoyancy and drag.  For ex-

ample, the body cannot dissolve in the fluid, nor 

can the body transfer heat to the fluid. 

Spiegel, Reynolds, and Brogan  
 
In an informal contest related to our study, no participant 

identified more than 75% of the ultimate set of constraints 

identified.  Borrowing from Garlan, Allan, and Ocker-

bloom our challenge participants were neither “lazy, stu-

pid, nor malicious.” (1995) 

We believe the study reported here can be useful to the 

reader beyond the results above.  The falling body model 

presents a fine example for testing any proposed reusability 

process.  If the process cannot lead to the efficient extrac-

tion of the constraints listed in the Appendix, then it is of 

questionable value. 

In the future we anticipate further study of our initial 

taxonomy of validation constraints.  Will other types of 

simulations yield new categories of constraints? The tax-

onomy is useful only if it can serve as a general guidepost 

that suggests hidden constraints that have not been identi-

fied.  Additionally the taxonomy for the simulation com-

munity may benefit from insights in the larger domain of 

software design.  Generic software applications contain 

properties that are identified as invariant or time-

dependent.  Can the lessons from formal software analysis 

be applied to our objectives? We will be exploring these 

issues. 
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Spiegel, Reynolds, and Brogan  
 

24. Sphere/Earth Interaction - The body and the earth 

interact only through the gravitational force. 

25. Fluid/Earth Interaction - The fluid and the earth 

do not interact. 

26. Closed System - The Earth, sphere, and fluid do 

not interact with any other objects. 

27. Simple Gravity - Gravity is a constant downward 

force of 9.8 m/s2. 

28. One-Sided Gravity - The mass of the body is 

much less than the mass of the Earth.  The Earth 

is not affected by the gravitational pull of the 

body. 

29. Inelastic Collision - The collision between the 

sphere and the ground is perfectly inelastic. 
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Give Procedure that can be enacted and automated  
and allows for reuse! 
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Not only for Model but for all parts of M&S cycle! 



97 

Future Directions 

– Work with Alex, Rick and Stefan @ MPM4CPS Cost? 

– Continue on the different M&S life-cycle elements 

– Extended Case Study 

– Power window? 

– Appropriate languages for modelling frames 

– Extend formalization and frame relations 

– Libraries with Frames (tool-building) 
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Summary 

– Inconsistency management in engineering processes 

– Inconsistencies → $$$ 

– Late (or no) detection, numerous re-iterations… 

– We provide: 

– A methodology, and 

– A tool for managing inconsistencies. 

 

I. Dávid, J. Denil, K. Gadeyne, and H. Vangheluwe, “Engineering Process Transformation to Manage 

(In)consistency,” 

in Proceedings of the 1st International Workshop on Collaborative Modelling in MDE (COMMitMDE 

2016), pp. 7–16, http://ceur-ws.org/Vol-1717/, 2016. 
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Managing inconsistencies 

– Rather than thinking about removing inconsistency we 

need to think about "managing consistency“ – 

Finkelstein 

– Tolerate, analyze, prevent… 

– Processes! 

– Understand the lifecycle of models 

– …and their relation with (semantic) properties 

– ...and consequently: inconsistencies (origin, impact) 

Model the 
process 

Identify 
potential 

inconsistencies 

Transform the 
process 

Goal 1: 
manage potential 
inconsistencies 

Goal 2: 
minimize 
transit time 

Weave in 
management 
patterns into 
the process 

Quantify 
optimality 
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Process modeling and transformation 

– Appropriate process modeling formalism? 

– Extended FTG+PM 
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Process modeling and transformation 

– Appropriate process modeling formalism? 

– Extended FTG+PM 

 

 

 

 

Model the 
process 

Identify 
potential 

inconsistencies 

Transform the 
process 

Inconsistencies Management 
techniques 

– It’s an optimization problem 

– Matching ICs with ICMs while keeping transit costs at minimum 

– Challenge: impact of ICM techniques on the process 
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Roadmap 

– Methodology+tooling 

– Future work 

– Cost/performance modeling 

– Resolution techniques to be revisited 

– Fits into a larger framework (see the other 

presentations) 
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Summary 

– Early inconsistency detection 

– We provide: 

– A methodology for formalizing inconsistencies, and 

– An enactment engine for running the managed process. 

I. Dávid, B. Meyers, K. Vanherpen, Y. Van Tendeloo, K. Berx, and H. Vangheluwe, “Modeling and enactment support for early detection of inconsistencies in 

engineering processes,” 

Submitted, under review, 2nd International Workshop on Collaborative Modelling in MDE (COMMitMDE 2017) 
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Process enactment 

– Process modeling is a must, but it’s not enough 

– Process enactment is required to ensure consistency 

 



115 

Example 

– mT = mP+mM+mB 

 

– mT ≤ 150 [kg], 

mP ≤ 100 [kg], 

mM ≤ 50 [kg], 

mB ≤ 10 [kg] 

 

– mass > 0 [kg]  



116 

Example 

– mT = mP+mM+mB 

 

– mT ≤ 150 [kg], 

mP ≤ 100 [kg], 

mM ≤ 50 [kg], 

mB ≤ 10 [kg] 

 

– mass > 0 [kg]  

Step 1 

A platform is selected with a mass of 100kg. (m
P
=100 [kg]) 



117 

Example 

– mT = mP+mM+mB 

 

– mT ≤ 150 [kg], 

mP ≤ 100 [kg], 

mM ≤ 50 [kg], 

mB ≤ 10 [kg] 

 

– mass > 0 [kg]  

Step 1 

A platform is selected with a mass of 100kg. (m
P
=100 [kg]) 

 

Step 2 

A motor is selected with a mass of 50kg. (m
M

=50 [kg]) 



118 

Example 

– mT = mP+mM+mB 

 

– mT ≤ 150 [kg], 

mP ≤ 100 [kg], 

mM ≤ 50 [kg], 

mB ≤ 10 [kg] 

 

– mass > 0 [kg]  

Step 1 

A platform is selected with a mass of 100kg. (m
P
=100 [kg]) 

 

Step 2 

A motor is selected with a mass of 50kg. (m
M

=50 [kg]) 

 

Step 3 

A battery is selected with a mass of 10 kg. (mB= 10 [kg]) 



119 

Example 

– mT = mP+mM+mB 

 

– mT ≤ 150 [kg], 

mP ≤ 100 [kg], 

mM ≤ 50 [kg], 

mB ≤ 10 [kg] 

 

– mass > 0 [kg]  

Step 1 

A platform is selected with a mass of 100kg. (m
P
=100 [kg]) 

 

Step 2 

A motor is selected with a mass of 50kg. (m
M

=50 [kg]) 

 

Step 3 

A battery is selected with a mass of 10 kg. (mB= 10 [kg]) 



120 

Example 

– mT = mP+mM+mB 

 

– mT ≤ 150 [kg], 

mP ≤ 100 [kg], 

mM ≤ 50 [kg], 

mB ≤ 10 [kg] 

 

– mass > 0 [kg]  

Step 1 

A platform is selected with a mass of 100kg. (m
P
=100 [kg]) 

 

Step 2 

A motor is selected with a mass of 50kg. (m
M

=50 [kg]) 

 

Step 3 

A battery is selected with a mass of 10 kg. (mB= 10 [kg]) 



121 

Example 

– mT = mP+mM+mB 

 

– mT ≤ 150 [kg], 

mP ≤ 100 [kg], 

mM ≤ 50 [kg], 

mB ≤ 10 [kg] 

 

– mass > 0 [kg]  

Step 1 

A platform is selected with a mass of 100kg. (m
P
=100 [kg]) 

 

Step 2 

A motor is selected with a mass of 50kg. (m
M

=50 [kg]) 

 

Step 3 

A battery is selected with a mass of 10 kg. (mB= 10 [kg]) 



122 

Example 

– mT = mP+mM+mB 
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Attribute 

Capability 
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Modeling the process 

Step 1 

A platform is selected with a mass of 100kg. (m
P
=100 [kg]) 

 

Step 2 

A motor is selected with a mass of 50kg. (m
M

=50 [kg]) 

 

Step 3 

A battery is selected with a mass of 10 kg. (mB= 10 [kg]) 
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Modeling the process 

– mT = mP+mM+mB 

 

– mT ≤ 150 [kg], 

mP ≤ 100 [kg], 

mM ≤ 50 [kg], 

mB ≤ 10 [kg] 

 

– mass > 0 [kg]  
Automated Guided Vehicle 

(AGV) 
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Modeling the process 

– mT = mP+mM+mB 

 

– mT ≤ 150 [kg], 

mP ≤ 100 [kg], 

mM ≤ 50 [kg], 

mB ≤ 10 [kg] 

 

– mass > 0 [kg]  

Evaluation of capability constraints 

Any constraint applied on a capability imposes a constraint 

on every attribute typed by that capability. 
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Process enactment 
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Roadmap 

– Methodology and tooling provided 

– Tooling: fully modeled execution 

– Interfacing with Matlab/Simulink and AMESim 

– Future work 

– Combine with specification-time inconsistency management 
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Summary 

– Ensuring consistency in parallel branches of the 

enacted process 

– Preventive technique 

– We provide: 

– A methodology for ensuring consistency by contracts 

– Tooling for 

– modeling and enacting the process, and 

– specifying contracts, and 

– use contracts as a preventive technique for inconsisteny 

mgmt. 
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Example 

– The motor and the battery 

are selected in parallel 
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Example 

– Driving the motor assumes a minimum current from the 

battery 

– The battery guarantees a minimum current for the motor 
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Contracts 

– Driving the motor demands a minimum current from the 

battery 

– The battery guarantees a minimum current for the motor 

Contract 
 
desiredCurrent: (2A, 3A) 
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Contracts 

– Driving the motor demands a minimum current from the 

battery 

– The battery guarantees a minimum current for the motor 

Contract 
 
desiredCurrent: (2A, 3A) 

Negotiate 

Check contract validity 
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Leveraging attributes and constraints 
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Leveraging attributes and constraints 
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...from the requirements 
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Contract 
 
desiredCurrent: (2A, 3A) 

 

supportTime: (>3h) 

 

desiredCapacity: (6Ah, 9Ah) 

Reused information 

Generated 



146 

Enactment 

Negotiate 

Check contract validity 
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Enactment 

Negotiate 

Check contract validity 

– Negotiate a contract based 

modify-read pairs of 

intents. 
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Enactment 

Negotiate 

Check contract validity 

– Negotiate a contract based 

modify-read pairs of 

intents. 

– Consistency between the 

parallel branches is managed 

by the contract. From the 

process engine’s point of 

view, this is a „safe zone”. 
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Enactment 

Negotiate 

Check contract validity 

– Negotiate a contract based 

modify-read pairs of intents. 

– Consistency between the 

parallel branches is managed by 

the contract. From the process 

engine’s point of view, this is 

a „safe zone”. 

– Upoin joining the branches, the 

contract is checked. 
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Alternative execution semantics 

Negotiate 

Check contract validity 

– Negotiate a contract 

– Map its contents to new 

constraints of the 

attributes 
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Contributions 

– From the process point of view: 

– CBCD as an inconsistency management technique 

– From the CBCD point of view: 

– Less work during contract negotiation, as part of it can be 

inferred 

– If sufficient information is provided, the contract can be fully 

generated 

– Integrated tooling 

– Process tool + CBCD tool 
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Roadmap 

– Ongoing research, but the added value to the SOTA is 

obvious 

– Tasks: 

– Work out an example ✔ 

– Identify added value vs our previous work on  

– processes, and 

– contract-based design. 

– Provide tooling 

– Target venue: ETAPS/FASE (submission in October) 
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Contract-Based Co-Design (CBCD) 

Ing. Ken Vanherpen 

ken.vanherpen@uantwerpen.be 

http://msdl.cs.mcgill.ca/people/ken/  
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Summary 

K. Vanherpen et al. Ontological Reasoning as an Enabler of Contract-Based Co-Design. CyPhy, 2016. 
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Problem Statement 
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Contract-Based Co-Design (CBCD) 

Horizontal 
(in)consistency 

Vertical 
(in)consistency 

A
b
st

ra
ct

io
n
 L

ev
el

 

Contract-Based 
Design 

Contract-Based 
Co-Design 

SOTA 

Contribution 
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CBCD Theory 

157 

Contract-
Based 
Design 

Ontological 
Reasoning 

Contract-
Based Co-
Design 
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CBCD Theory 

158 

Contract-
Based 
Design 

Ontological 
Reasoning 

Contract-
Based Co-
Design 
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CBCD Tool – Contract Definition 
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CBCD Tool – Contract Definition 

Assumptions 

Guarantees 
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CBCD Theory – Ontological Reasoning 

161 

Contract-
Based 
Design 

Ontological 
Reasoning 

Contract-
Based Co-
Design 
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CBCD Theory – Ontological Reasoning 

162 

K. Vanherpen et al. Ontological Reasoning for Consistency in the Design of Cyber-Physical Systems. CPPS, 2016. 
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CBCD Theory – Ontological Reasoning 

K. Vanherpen et al. Ontological Reasoning as an Enabler of Contract-Based Co-Design. CyPhy, 2016. 
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CBCD Tool – Ontology 
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Mapping 

Mapping 

Control 

Hardware 

CBCD Tool – Ontology 
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CBCD Tool – Ontology 

User-defined 

Reasoner 
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CBCD Theory 

167 

Contract-
Based 
Design 

Ontological 
Reasoning 

Contract-
Based Co-
Design 
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CBCD Tool – Contract Definition 
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CBCD Tool – Mapping Contract 

A
ss

u
m

p
ti

o
n

s 
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CBCD Tool – Contract Validation Analysis 
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CBCD Tool – Contract Validation Analysis 
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CBCD Tool – (DSE) Mapping 
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CBCD Tool – (DSE) Mapping 
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CBCD Tool – Schedulability Analysis 
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1 Run Schedulability Analysis 

2 Model is annotated with the results… 

CBCD Tool – Schedulability Analysis 
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2 …at all levels! 

CBCD Tool – Schedulability Analysis 
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CBCD Tool – Export (Control) View 
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CBCD Tool – Export (Control) View 

Automatically set based on contract definition 
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Annotating/updating a Simulink model with hardware 

properties: 

179 

Lifted properties 

CBCD Tool – Export (Control) View 

K. Vanherpen, J. Denil, H. Vangheluwe, P. De Meulenaere, Model Transformations for Round-Trip Engineering in Control-
Deployment Co-Design. Mod4Sim, 2015. 
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CBCD Tool – Import (Control) View 
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CBCD Tool – Model Validation Analysis 
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Roadmap 

 Support for horizontal contracts 

 Enable composition and conjunction of contracts 

 Inconsistency Management combined with Contract-Based 

Design 

 RTE for embedded co-design view 

 Sensitivity Analysis 

 Contract Management 

 Link with validity frames 

 … 
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Variability for Controller Design 

Bart Meyers 

Universiteit Antwerpen 
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Summary 

CVM Config. 

Family 
Model Variant 

Variants in controller design 

Ultimate goal: 

- Generation of variants from: 

- Central variability model 

- Configuration 

- Family model 

- Traceability tool to link all 
artefacts: 
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Variability 

CVM Configuration 

Variant Family Variant Instance 

P
la

tf
o

rm
 

In
d
ep

en
d
en

t 
P

la
tf

o
rm

 
S

p
ec

if
ic

 Family Model 
gen 

gen 
Variant 
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UA Tasks in ECoVaDeVa Project 

– Variability modeling in acausal models 

– Amesim/System Synthesis 

– Simscape 

– Modelica 

– Linking features to Variation Points in different tools 

– Necessary for variant generation 

– May generate links between configuration and variant 

– Correctness check 

– Model transformation tool for Simulink and Amesim 

– Generate variant at model configuration time 

– Especially interesting for non-150% approaches 

 

CVM Config. 

Family 
Model Variant 

CVM Config. 

Family 
Model Variant 

CVM Config. 

Family 
Model Variant 
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Traceability Tool 
– Textual tool in Xtext 

– Accesses BVR model 

– Accesses Simulink model (to do: other types of models 

like SimScape, Amesim, EXAM, …) 

CVM Config. 

Family 
Model Variant 

CVM Family Model 
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Traceability Tool 
– Detection of errors 

– Paths, existence of elements, … 

CVM Config. 

Family 
Model Variant 
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Traceability Tool 

Traceability Tool 

– Detection of errors/inconsistencies 

– Checking correctness of Simulink family model against CVM 

– E.g., there is a constant block named “speed_adaptation” 

but it’s not connected to a switch 

CVM Config. 

Family 
Model Variant 

Family Model 
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Traceability Tool 

– Generation of variants 
CVM Config. 

Family 
Model Variant 

Variant 

Configuration 
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Roadmap 

 

– Implement more variability techniques in traceability tool 

 

– Look into variability modelling for tools for acausal 

modelling 

– I suspect this will be a major challenge 
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Agile Model-Based Systems Engineering 

Joachim Denil 
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Summary 

– Companies want to increase responsiveness to change 

in requirements 

– Agile principles helped Software Engineers with same 

problem! 

– Application to Systems Engineering is more difficult 

– Modelling techniques and supporting tools could help 

in enabling Agile MBSE 
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Why? 



195 

What? 
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But… for complex systems: e.g. CPS 



197 

Solutions: 
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Future Directions 

– From Research Plan to #research proposals 

– FWO SBO Proposal 

– External Partners needed 

– Company support and Valorization needed 

– Select minimal set of Topics to enable Agile MBSE in company 

setting 
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Coffee 
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Research Plan and Projects under Submission and Accepted 

(INES, ASET, EMPHYSIS) 

Joachim 
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CoSys - MSDL 

Joachim’s Research Plan 

Joachim.Denil@uantwerpen.be 
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Language Engineering 
 

Domain-Specific Languages, Model 
Transformation, (web-based) Visual and 

Textual Modelling Environments, etc. 

Simulation 
 

Co-Simulation, Discrete-event, DEVS, 
continuous time, acausal, Modelica, etc.  

Deployment & Resource-optimized 
Execution 

 
Platforms (e.g. AUTOSAR, CAN, etc.), 

Design-Space Exploration, Virtualization, 
Models@run-time, Efficient execution of 

model transformations, etc. 

Model 
Management & 

Process 
 

FTG+PM, Safety 
(ISO 26262, 

Railway, etc,), 
Agile Modelling, 

Consistency 
management, 
Experimental 
frames, etc. 

Validation, 
Verification, 
Testing and 

Accreditation 
 

Analysis and 
Verification of Model 

Transformations, 
Debugging, 

Instrumentation, 
Tracing, etc. 
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Approved: INES: Eureka Project (O&O)  

18 PM Pre-doc + 6 PM Post-doc 

Work on: 
• Fault-injection 
• Deployment Simulation 
• Co-Simulation (MiL and HiL) 
• Etc. 
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In Submission: aSET (FM ICON) 
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12 PM Pre-doc; 12 PM Post-doc 



208 

In Submission: Emphysis (EU ITEA3) 

18 PM Pre-doc, 6 PM Post-doc 
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Figure 6: Overall process of physics-based model integration in ECU software with eFMI 

In Figure 6 the overall process of exporting physics-based models from modelling and simulation 

tools via eFMI and the integration in ECU software is depicted. It is expected, that typically the 

major part of the ECU software is generated with “classical” ECU software generation tools, while 

eFMI is used for advanced controllers and diagnosis functions providing differentiating 

technology. It is also possible to simulate an eFMI component in a simulation environment or run 

it in a virtual ECU (as in the ETAS Virtual ECU ISOLAR-EVE) to validate the exported FMU 

against the original model present in the modelling and simulation tool. 

2.3.3. Expected project outputs 

This section summarizes the main expected project outputs: 

1. Public requirements document (D1.1) that defines the requirements that the eFMI standard 

has to fulfil. 

2. Public eFMI proposal (D3.3) to be submitted to the FMI standardization group  

(= FMI Change Proposal for Evaluation according to the FMI Development Process and 

Communication Policy). In an appendix, this document will include an analysis how the 

requirements of (1) are fulfilled. 

3. A public document (D7.9) that summarizes the achieved results of the EMPHYSIS project, by 

providing a short overview of eFMI, describing the novel process of physics-based ECU 

controller development with eFMI, and sketching the tool prototypes, the work flows and the 

implemented demonstrators. 

4. Tool prototypes (D4.X, D5.X) as extensions of existing commercial modelling and simulation 

environments to export eFMUs and of commercial ECU tools that integrate eFMUs on ECUs 

by the tool vendors Dassault Systemes, ETAS, Honeywell, ITI, Maplesoft, Siemens PLM 

Software as described in section 2.2.2. 

5. The eFMI compliance checker, an open source tool prototype (D6.1) that checks that an eFMI 

component fulfils the eFMI specification.  

6. A tool prototype (D6.2) as extension of an existing commercial static analyser that analyses 

the code implementing eFMI components with the goal to prove the absence of runtime errors 

(such as "index out of bound", "overflow", or "division by zero") and the absence of coding rule 

violations (such as MISRA-C rules). 
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NEXOR Research Plan 

Fons 
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Discussion on research threads, road maps, priorities, 

why/what/how for customers 
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Conclusion* 

Hans 

* If we got this far… 


