The Design of the MuModelica

!'_ Compiler

Steven Xu

@MSDL

School Of Computer Science
McGill University

Aug 27, 2004

i Overview of Modelica

= Modelica is a freely available, object-oriented
language for modeling of large, complex, and
heterogeneous physical system.

= Built on non-causal modeling with mathematical
equations and object-oriented constructs to facilitate
reuse of modeling knowledge

i Why Modelica Compiler

In order that the Modelica modeling language
can be used to solve actual problems, a
modeling and simulation environment (tool) is
needed:

= to translate Modelica models into a form
which can be efficiently simulated in an
appropriate simulation environment

= to simulate the translated model with
standard numerical integration methods and
visualize the result

i Basic Language Elements

= Basic components: Real, Integer, Boolean and String
= Structured components

= Component arrays, to handle real matrices, arrays of
sub-models etc

= Equations and/or algorithms (assignment statements)
= Connections
= Functions

i A simple electrical circuit

Resistarl ResistarZ
R=1 R=1
' 1
5D STE
n! =
I

A simple electrical circuit

= Declaring two physical quantities
type Voltage = Real (quantity="Voltage", unit="V");
type Current = Real (quantity="Current", unit="A");

= Defining a connector
connector Pin "pin of an electric component"”
Voltage v "Potential at the pin";
flow Current 1 "Current flowing into the pin";

end Pin;

i A simple circuit in Modelica

= A connection connect (Pinl, Pin2), connects
the two pins such that they form one node

= The keyword flow is used to generate sum-to-zero

equations
= A connection implies two equations:
Pinl.v = Pin2.v

Pinl.i + Pin2.1 = 0

A simple circuit in Modelica

= An electrical port

partial model OnePort “Superclass of Components with
two electrical pins p and n"

Voltage v "Voltage drop between p and n";
Current 1 "Current flowing from p to n";
Pin p;
Pin n;
equation
Vv = p.v — n.v;
0 = p.1 + n.i;
1 = p.1i;
end OnePort;

A simple circuit in Modelica

s A resistor

model Resistor "Ideal linear electrical resistor"
extends OnePort;
parameter Real r (unit=%“0") "“Resistance”
equation
r*i = v; “Ohm’ s Law”

end Resistor;

A simple circuit in Modelica

= A capacitor

model Capacitor "Ideal electrical Capacitor"
extends OnePort;
parameter Real c(unit=%“F") "“Capacitance”
equation
c*der (v) = 1;

end Capacitor;

A simple circuit in Modelica

= A sin-wave voltage source

model VsourceAC "sin-wave voltage source"

extends OnePort;
parameter Voltage VA = 220 "Amplitude";
parameter Real f (unit="Hz") = 50 "Frequency";
constant Real PI = 3.14159265;

equation
v = VA*sin (2*PI*f*time) ;

end VsourceAC;

i A simple circuit in Modelica

= A ground point

model Ground "Ground"
Pin p;

equation
p.v = 0;

end Ground;

A simple circuit in

= I he circuit

model circuit
Resistor R1 (r=10);
Resistor R2 (r=10);
Capacitor C(c=1);
VsourceAC AC;
Ground Gj;

equation
connect (AC.p, Rl.p);
connect (R1.n, R2.p);
connect (R2.n, C.p);
connect (C.n, AC.n);

connect (AC.n, G.p);

end circuit;

Modelica

Overview of the MuModelica
* Compiler

Modelica Writer

* The Front End

The Back End

XML Reader

AST builder

Semantic
Analyzer

DAE
processor

i Scoping Analysis

= Scoping analysis is characterized by the
introduction and maintenance of symbol tables

= A symbol table stores mappings of identifiers to
their types and definitions.

= As class definitions and declarations are processed,
bindings from identifiers to their meanings are
added to the symbol tables.

Scoping Analysis

= Data structure

// example: A.mo
class A

Real a;

Real b;
equation

a = b;
end A;

i Scoping Analysis

ClassFile

fileNgefie classDefiniti

A.mo

ErsEEErTTAE SRS e

ReguarClassDefinition

[]

definition

clasgMame

Predefined Library
ReguarClassDefinition
Scope
I g I "value" | ...,
"'un'[["

I "A" | | .EquationPart I

de

.- type: Real ...

(1]

RegularEqStm

LH

Figure. AST with scope nodes

("a

A

,... type: Real ...

outer

definition

i Expansion of Class Inheritance

= Expansion of inheritance in Modelica means copying
all elements (both definitions and declarations) and
equations from the base class.

= Inheritances need to be expanded before names are
looked up.

Expansion of Class Inheritance

package P class C
constant Real PI=3.14; class Cl1
class A Real cl1;

Real al, a2; end Cl;
equation end C;

al = az2;
end A; model M
class B extends Cj;

A a(az=PI); extends P.B;
end B; Cl x;

end P; end M;

Expansion of Class Inheritance

= Expanding the extends clauses in model M leads to the following
expanded version of M
model M
// inherited from C
class C1
Real cl1;
end C1;
// inherited from P.B
constant Real PI=3.14;
A a(az2=PI);
Cl x;
end M;

i Name lookup

= When uses of identifiers are found, they are looked
up in the symbol tables.

= The current Modelica language (version 2.0) allows
use-before-declare (UBD).

= Multiple passes are required to support UBD in
implementation.

= Lookup algorithm (refer to “report” online)

i Instantiation

= Class modification creates a variant of the original
class definition.

= The data structure has to be augmented to hold
concrete instances for these variants when
components are flattened and modifications are
merged.

= An instance is a copy of its original definition, except
that it carries additional information of modification.

Instantiation

class A
Real al;
Integer az2=1;
end A;

class B
Real bl (unit="N");
Real b2=2.0;

end B;

model M

extends A;

B b(bl=1.5, b2=3.0);
end M;

‘-L Instantiation

ClassFile

Prdefined Scope Built-in Scope

Normal Scope
"Real”

“Integer]

class A class B
Scope node definition
name|. ..| modif | def
*al" [] \
"a2" [1] !
Scope nod

name|. ..| modif | def

"b1" *+[[unit=N]|

"h2" [2.0]

a2" |-+ Ol -~

Figure. AST before Instantiation

‘L Instantiation

ClassFile

Prdefined Scope

Built-in Scope

MNormal Scope
“AI" "Real"
B h |
"B "Integer’ -
g
" 4
class A class B J
defipitie l
Scol ode
P definition / ’
name |, ..| modif | def /
"al" [1
“a2"” (1l Scope nodd
name |. ..| modif | def '
"b1" == Junit=M] -
"b2” [2.0] - Scope node
name . . .| modif | def Insl/_
L
b Jlbl=15,] ~—T .
b2-3.0] / instance of B
[~ -
al [= name|. .) modif | inst
=
"a2" 1
a2 (m i ["b1" | .. Junit=N,
halue=1.5]

instance of Integer
value=1

Figure. AST after Instantiation

[2.0,3.0]

instance of Real

instance of Real
value=1.5
unit="N"

instance of Real
value=3.0

Flattening

= The goal of semantic analysis is to transform original
Modelica models to flat DAE form

= A at DAE form of Modelica model consists of
= Declarations of variables in predefined types, e.g., Real a

=« Equations from the equation section with names resolved.

Flattening

= Main design issues in flattening are:

= Expand composite components to declarations in predefined
types, and assign each of these declarations a globally
unique name.

= Merge modifications at built-in type level, and turn
modifications into equations

= Expand coupled models, that is, replace “connect”
statements by connection equations

Flattening

class A
Real al;
Integer az2=1;
end A;

class B
Real bl (unit="N");
Real b2=2.0;

end B;

model M
del M Real al;
mode
mmmi> Integer az2=1;

extends A; ,

Real b_Dbl (unit="N")=1.5;
B b(bl=1.5, b2=3.0);

Real b_b2=3.0;
end M;

end M;

i Flattening

= Expanding coupled components: components are
coupled by connect statements. These statements

imply additional equations, eg.
connect (AC.p, Rl.p)
implies
AC.p.v = Rl.p.v
AC.p.1 + Rl.p.1 = O

Flattening

= All flow variables sum to zero at each node. For
example, flattening

connect (C.n, AC.n);

connect (AC.n, G.p);
give equations

c.n.v = AC.n.v
AC.n.v = G.p.1
c.n.1 + AC.n.1 + G.p.1 = 0

i Type Check

= Type checking: check that the types of operands are
legally defined over each operation.

= Type check is performed at the built-in type level

AN

IntegerType RealType

* Flattening

DEMO

i The DAE Processor

= DAE solvers are inefficient
= A far more efficient approach: DAE transformation

= In many cases, the DAE processor can transform the
original DAE into explicit equations in a correct
computation order

The DAE Processor

= Different transformation steps:

= Eliminate aliases from equations (ie. get rid of equations of
the type a=b)

= Canonical transformation, including for example, constant
folding

= Causality assignment

= Sort equations/detect algebraic loops

= Inline integration

= Solve algebraic loops (linear and non-linear)

Canonical Transformation

= An expression or equation is considered as a tree
made up of operators and their operands

= Canonical representation: an expression or equation
is stored internally in a particular, unique order. More
specifically,
= constants are folded

= the operators and operands at every level of the tree are in
a unique order

Canonical Transformation

= Why canonical transformation:

= Easier formula manipulation

= Runtime efficiency. For example, if constants are folded at
compile time, there is no need to calculate the same
operations on these constants at each time step at
simulation runtime time

= Equations like x+x+y=0 cannot be transformed to causal
form correctly (if x is to be calculated based on the value of
y, .e., x isin the LHS)

Canonical Transformation

= Simplification rules:

= Before sorting the equation tree into canonical order, the
following rules should be implemented

The RHS of an equation is moved to the LHS, and the RHS is set
to 0.0, e.qg., a=b is transformed to a-b=0.0

Constants are rewritten as real numbers. Fractions are evaluated

A negative number or term is written as:

-c=+(-Cc), where c is a constant

-E=+(-1.0)*E, where E is a term
Expressions in reciprocal form (divisions) are rewritten in terms of
negative powers, e.g., x/y=x*y” (-1.0)
Binary operators + and * are converted to n-ary operators since
they are both commutative and associative. For example,

a+ (b+c)=(atb) +tc=+(a, b, c)

a* (b*c)=(a*b) *c=*(a, b, c)

Canonical Transformation

= The following rules can now be repeatedly applied to the
equation to transform it into canonical order

Constant folding, e.g., x+3+2 = b —> x+5 = b
remove superfluous zeros and ones, e.g., 0.0+E —> E,
1.0*E —> E

Like terms in @ sum are collected and their constant coefficients
are added, e.g., a*x” (p) +b*x” (p) -> (a+b) *x” (p)

More detailed information about these rules can be found in[6].

i Canonical Transformation

DEMO

i Causality assignment

= DAEs are represented in implicit form. The various
unknowns cannot be solved directly by a simulator

= Need a mapping between equations and unknowns
which determines what variable is solved by which
equation

= DAEs will then be rewritten in explicit form

i Causality assignment

= Dinic's algorithm for solving the maximum flow
problem applies to this problem as well

= Both equations and variables are turned into
nodes and their dependencies are turned into

edges in a bipartite graph

= By adding a source node s, and a sink node t to
the bipartite graph, and maximizing the flow from
the source to the sink node, the causality
assignment is carried out.

* Causality assignment

= Example:
El: x + y =1
E2: x =2
E3: u * v *y =4
Ed: u - v =3

ES5:

* Causality assignment

y by El: x + y =1

X by E2: x =2

u by E3: u * v * y =4
v by E4: u - v =3

w by E5: w + v / u =1

i Sort equations

= The causality assignment gives pairing between
equations and variables, but the equations are not
yet in a correct computation order

= Equations must be sorted in the reversed order of
their dependencies, i.e. if to calculate a variable is
necessary to know the value of another, then the
other has to be calculated first

= Based on the graph of computation dependency,
this can be achieved by topological sort

Sort equations

Topological Sort
(post-order numbering)

« ~

y by El: x + y =1

x by E2: x =2

v by E4: u - v =3

u by E3: u * v * y =4

w by ES: w + v / u =1

i Detect algebraic loops

= We can observe that with the sorted equations,
variables cannot be calculated correctly since
variables u and v are mutually dependent

= These variables form an algebraic loop

= They need to be solved simultaneously, either with
symbolic method or numeric method

= Therefore, in addition to sorting equations, detecting
algebraic loops is also required

i Detect algebraic loops

= Detecting algebraic loops (finding dependency
cycles) is also known as locating strongly connected
componentsin a graph

= A strongly connected component is a set of nodes in
a graph whereby each node is reachable from each
other node in the strongly connected component.

= Based on the topological sort result, the problem can
be solved by producing a list of strong components

= If a node is not in a cycle, it will be in a strong
component with only itself as a member.

i Detect algebraic loops

DEMO

ODE

= Example
El: y = sin(time)
E2: der(x) =y + z
E3: der(y) = z + x

= Alternatives in choosing causality:
= All integral causality: der (x), der(y), =z
= some derivative causality: x, der(y), z Or der(x), vy, =z

= All derivative causality: x, vy, =z

ODE

= Prior option (default): all integral causality.
= This scheme will give more accurate simulation result
= Problem: causality assignment might fail

= Solution: more derivative causality step by step

= Try all possible combination of derivative causality until a
valid causality assignment is found

« If no valid causality assignment is found, call a DAE solver

ODE

= Generated equations:

y = sin(time)

der(y) = (y - y_ou) /4ot
z = x — der (y)

der(x) =y + z

X = 1ntegration (xX_oid, der (x))

g oo

DEMO

i Code Generation

= In progress ...

= In ideal cases, a Modelica model is finally
transformed to a set of causal, sorted algebraic
equations which may contain loops. Symbolic
or numerical solvers are needed to solve
algebraic loops, either in compile time or in
runtime.

= If causality assignment fails, a DAE solver will
be called in the simulation back end.

References

[1] Modelica Association. Overview article of Modelica. Available at:

http://www.modelica.orag/

2]

3]
4]

Modelica Association. Modelica Tutorial, version 1.4. Available
at: http://www.modelica.org/documents.shtml

Modelica Association. Modelica Specification, version 2.0.

EA International. EcosimPro Mathematical Algorithms. Dec.
1999.

[5] Michael Tiller. Introduction to Physical Modeling with Modelica.

2001

[6] Hans Vangheluwe, B. Sridharan, Indrani A.V. An algorithm to

implement a canonical representation of algebraic expressions
in AToM? . Apr. 2003.

References

[7] F.E. Cellier, H. ElImqvist. Autommated Formula Manipulation
Supports Object-Oriented Continuous-System Modeling. Sep.
1993.

[8] H. Elmqvist, Martin Otter, F.E. Cellie. Inline Integration: A New
Mixed Symbolic/Numeric Approach for Solving Differential-
Algebraic Equation Systems. Jun. 1995.

[9] Kron, G. Diakoptics — The Piecewise solution of Large-scale
Systems. 1962.

