VERIFICATION USING CONTRACTS

Bentley James Oakes

University of Antwerp/Flanders Make

October 22, 2018

FLANDERS 7 s N\
M A K @ G ﬁtgeﬁ)¥y52m?& Software Modelling

VATION. NETWORK University of Antwerp

MANUFACTUI

OVERVIEW

MODEL TRANSFORMATION VERIF.
TRACEABILITY REQS. VERIF.

SIMULATION TRACE VERIF.

OAKES VERIFICATION 2 /12

OUTLINE

B MODEL TRANSFORMATION VERIF.

OAKES VERIFICATION 3/12

MOTIVATION

OAKES VERIFICATION 4 /12

MOTIVATION

OAKES VERIFICATION 4 /12

MOTIVATION

o GIVEN: A transformation divided into
layers, containing LHS/RHS rules

OAKES VERIFICATION 4/12

MOTIVATION

o GIVEN: A transformation divided into
layers, containing LHS/RHS rules

o GOAL/WHY: Understand
transformation’s behaviour

OAKES VERIFICATION 4/12

o GIVEN: A transformation divided into

layers, containing LHS/RHS rules

o GOAL/WHY: Understand
transformation’s behaviour

o Relation between input/output elements

OAKES VERIFICATION

1/12

o GIVEN: A transformation divided into

layers, containing LHS/RHS rules

o GOAL/WHY: Understand
transformation’s behaviour

o Relation between input/output elements

OAKES VERIFICATION

1/12

MOTIVATION

[Pos_FourMembers

o GIVEN: A transformation divided into
layers, containing LHS/RHS rules

o GOAL/WHY: Understand
transformation’s behaviour

o Relation between input/output elements

OAKES VERIFICATION

1/12

MOTIVATION

[Pos_FourMembers

o GIVEN: A transformation divided into
layers, containing LHS/RHS rules

o GOAL/WHY: Understand
transformation’s behaviour

o Relation between input/output elements

OAKES VERIFICATION

e WHAT: Prove structural contracts
to guarantee element existence

1/12

MOTIVATION

[Pos_FourMembers

o GIVEN: A transformation divided into
layers, containing LHS/RHS rules

o GOAL/WHY: Understand
transformation’s behaviour

o Relation between input/output elements

OAKES VERIFICATION

e WHAT: Prove structural contracts
to guarantee element existence

o HOW: Create all possible rule

combinations through symbolic
execution

1/12

MOTIVATION

[Pos_FourMembers

o GIVEN: A transformation divided into
layers, containing LHS/RHS rules

o GOAL/WHY: Understand
transformation’s behaviour

o Relation between input/output elements

OAKES VERIFICATION

e WHAT: Prove structural contracts
to guarantee element existence

o HOW: Create all possible rule

combinations through symbolic
execution

1/12

MOTIVATION

[Pos_FourMembers

[Z Member

e WHAT: Prove structural contracts
to guarantee element existence

o GIVEN: A transformation divided into
layers, containing LHS/RHS rules

o GOAL/WHY: Understand @ HOW: Create all possible rule
transformation's behaviour combinations through symbolic
o Relation between input/output elements execution

Bentley Oakes. 2018. A Symbolic Execution-Based Approach to Model
Transformation Verification Using Structural Contracts.
Ph.D. Dissertation. McGill University.

OAKES VERIFICATION 4/ 12

SYVOLT

OAKES VERIFICATION 5 /12

SYVOLT

SyVOLT Tool

Contracts

Success

Verification Counter-example
- Process rule combinations

Transformation

OAKES VERIFICATION 5 /12

SYVOLT

SyVOLT Tool

Contracts

Success

Verification Counter-example
- Process rule combinations

Transformation

Features:

OAKES VERIFICATION 5 /12

SYVOLT

SyVOLT Tool

Contracts

Success

= Verification Counter-example
Process rule combinations

Transformation

Features:

o Eclipse/MPS visual editors

OAKES VERIFICATION 5 /12

SYVOLT

SyVOLT Tool

Contracts

Success

= Verification Counter-example
Process rule combinations

Transformation

Features:
o Eclipse/MPS visual editors
e HOT from ATL

OAKES VERIFICATION 5 /12

SYVOLT

SyVOLT Tool

Contracts

Success

= Verification Counter-example
Process rule combinations

Transformation

Features:
o Eclipse/MPS visual editors
e HOT from ATL

@ Verif. possible in seconds

OAKES VERIFICATION 5 /12

SYVOLT

SyVOLT Tool

Contracts

Success

= Verification Counter-example
Process rule combinations

Transformation

Features:
o Eclipse/MPS visual editors
e HOT from ATL

@ Verif. possible in seconds

OAKES VERIFICATION 5 /12

SYVOLT

SyVOLT Tool

Transformation

Contracts

Success

Counter-example

Verification Aall]
rule combinations

Process

Features:
o Eclipse/MPS visual editors
e HOT from ATL

@ Verif. possible in seconds

OAKES

Limitations:

VERIFICATION

5/12

SYVOLT

SyVOLT Tool

Transformation

Contracts

Success

Counter-example

Verification Aall]
rule combinations

Process

Features:
o Eclipse/MPS visual editors
e HOT from ATL

@ Verif. possible in seconds

OAKES

Limitations:

o Reduced expressiveness

VERIFICATION

5/12

SYVOLT

SyVOLT Tool

Transformation

Contracts

Success

Counter-example

Verification Aall]
rule combinations

Process

Features:
o Eclipse/MPS visual editors
e HOT from ATL

@ Verif. possible in seconds

OAKES

Limitations:
o Reduced expressiveness

e Structural contracts only

VERIFICATION

5/12

SYVOLT

SyVOLT Tool

Transformation

Contracts

Success

Counter-example

Verification Aall]
rule combinations

Process

Features:
o Eclipse/MPS visual editors
e HOT from ATL

@ Verif. possible in seconds

OAKES

Limitations:
o Reduced expressiveness
e Structural contracts only

o Limited contract language

VERIFICATION

5 /12

FUTURE WORK

OAKES VERIFICATION 6 /12

-

FUTURE WORK

o Extend to other model transformation languages

OAKES VERIFICATION 6 /12

FUTURE WORK

o Extend to other model transformation languages

@ Promote “contract-based design” of model transformations, with continuous
verification

OAKES VERIFICATION 6 /12

FUTURE WORK

o Extend to other model transformation languages

@ Promote “contract-based design” of model transformations, with continuous
verification

o Tooling: Integrate transformation verification into the ModelVerse

OAKES VERIFICATION 6 /12

OUTLINE

TRACEABILITY REQS. VERIF.

OAKES VERIFICATION 7/12

MOTIVATION

OAKES VERIFICATION 8 /12

o CONTEXT: Development of a safety-critical system - car, airplane, smart home,
etc.

OAKES VERIFICATION 8 /12

o CONTEXT: Development of a safety-critical system - car, airplane, smart home,
etc.

o GOAL/WHY: Ensure traceability of requirements/safety goals/test cases

OAKES VERIFICATION 8 /12

o CONTEXT: Development of a safety-critical system - car, airplane, smart home,
etc.

o GOAL/WHY: Ensure traceability of requirements/safety goals/test cases
o Part of certification - 1ISO 26262

OAKES VERIFICATION 8 /12

o CONTEXT: Development of a safety-critical system - car, airplane, smart home,
etc.

o GOAL/WHY: Ensure traceability of requirements/safety goals/test cases
o Part of certification - 1ISO 26262

OAKES VERIFICATION 8 /12

MOTIVATION

o CONTEXT: Development of a safety-critical system - car, airplane, smart home,
etc.
o GOAL/WHY: Ensure traceability of requirements/safety goals/test cases
o Part of certification - 1ISO 26262

Req. > Sggeatly »| Test Case —»{Sim. Trace
Req. > Sggeatly »| Test Case —>»{Sim. Trace
Sggeatly » Test Case —»{Sim. Trace

OAKES VERIFICATION 8 /12

MOTIVATION

o CONTEXT: Development of a safety-critical system - car, airplane, smart home,
etc.
o GOAL/WHY: Ensure traceability of requirements/safety goals/test cases
o Part of certification - 1ISO 26262

Req. > Sggeatly »| Test Case —»{Sim. Trace
Req. > Sggeatly »| Test Case —>»{Sim. Trace
Sggeatly » Test Case —»{Sim. Trace

o EXAMPLE: "A requirement changed, are the related safety goals still valid?”

OAKES VERIFICATION 8 /12

MOTIVATION

o CONTEXT: Development of a safety-critical system - car, airplane, smart home,
etc.
o GOAL/WHY: Ensure traceability of requirements/safety goals/test cases
o Part of certification - 1ISO 26262

Req. > Sggeatly »| Test Case —»{Sim. Trace
Req. > Sggeatly »| Test Case —>»{Sim. Trace
Sggeatly » Test Case —»{Sim. Trace

o EXAMPLE: "A requirement changed, are the related safety goals still valid?”

o EXAMPLE: “Is every safety goal connected to a (consistent) requirement?”

OAKES VERIFICATION 8 /12

REQ. MGMT.

OAKES VERIFICATION 9/12

REQ. MaGMmT.

o EXAMPLE: “A requirement changed, are the related safety goals still valid?”
o EXAMPLE: “Is every safety goal connected to a (consistent) requirement?”

OAKES VERIFICATION 9/12

REQ. MaGMmT.

o EXAMPLE: “A requirement changed, are the related safety goals still valid?”
o EXAMPLE: “Is every safety goal connected to a (consistent) requirement?”

WHAT: Techniques/DSL /tool for expressing/enforcing traceability

OAKES VERIFICATION 9/12

REQ. MaGMmT.

o EXAMPLE: “A requirement changed, are the related safety goals still valid?”
o EXAMPLE: “Is every safety goal connected to a (consistent) requirement?”

WHAT: Techniques/DSL /tool for expressing/enforcing traceability
HOW: ProMoBox-like approach for defining contracts?

OAKES VERIFICATION 9/12

REQ. MaGMmT.

o EXAMPLE: “A requirement changed, are the related safety goals still valid?”
o EXAMPLE: “Is every safety goal connected to a (consistent) requirement?”

WHAT: Techniques/DSL /tool for expressing/enforcing traceability
HOW: ProMoBox-like approach for defining contracts?

T T A L y oL y
1 |_, StructuralPattern A ‘

1 name : String 1
condition : Condition = return Trug 1
dynamic : boolean

2
0.. - PropertyElement
| UnaryPattern | I BinaryPattern | | attern I’Ai 4 Sting
LP label : String

[T 1 condition : Condition = return Trug

|NotPatlern| |AndPatiern I |OrPattern | |ImpliesPattern I T

[1
ne 0.1 Floor \| requests * Button
0..1_[nr : Condition = return Truel elevator button pressed : Condition = return True|

0.1
currentfloor A

OAKES VERIFICATION 9/12

REQ. MaGMmT.

o EXAMPLE: “A requirement changed, are the related safety goals still valid?”
o EXAMPLE: “Is every safety goal connected to a (consistent) requirement?”

WHAT: Techniques/DSL /tool for expressing/enforcing traceability
HOW: ProMoBox-like approach for defining contracts?

T T A L y oL y
1 |_, StructuralPattern A ‘

1 name : String 1
condition : Condition = return Trug 1
dynamic : boolean

2
0.. - PropertyElement
| UnaryPattern | I BinaryPattern | | attern I’Ai 4 Sting
LP label : String

[T 1 condition : Condition = return Trug

|NotPatlern| |AndPatiern I |OrPattern | |ImpliesPattern I T

[1
ne 0.1 Floor \| requests * Button
0..1_[nr : Condition = return Truel elevator button pressed : Condition = return True|

0.1
currentfloor A

o OCL for structural constraints?

OAKES VERIFICATION 9/12

REQ. MaGMmT.

o EXAMPLE: “A requirement changed, are the related safety goals still valid?”

o EXAMPLE: “Is every safety goal connected to a (consistent) requirement?”

WHAT: Techniques/DSL /tool for expressing/enforcing traceability

HOW: ProMoBox-like approach for defining contracts?

-—— .
1 StructuralPattern 1

1 name : String 1
condition : Condition = return Trug 1

dynamic : boolean

2

PropertyElement

0.
3 A D, 1 1.,
| UnaryPattern | IBmaryPartern | | attern |’Ai d : String

lF

[| 1
|NotPatlern| |AndPatiern I |OrPaﬂern | |ImpliesPattern I

label : String
condition : Condition = return Trug

I

Floor \] requests *

0..1_|nr: Condition = return Trueg| elevator_button

o OCL for structural constraints?
o DSL with semantics for editing model state?

OAKES VERIFICATION

Button

pressed : Condition = return True|

0.1
currentfloor A

9/ 12

REQ. MaGMmT.

o EXAMPLE: “A requirement changed, are the related safety goals still valid?”
o EXAMPLE: “Is every safety goal connected to a (consistent) requirement?”

WHAT: Techniques/DSL /tool for expressing/enforcing traceability
HOW: ProMoBox-like approach for defining contracts?

-1— 11— L) .
1 StructuralPattern 1

1 name : String 1
condition : Condition = return Trug 1
dynamic : boolean

2
0.. - PropertyElement
| UnaryPattern | IBmaryPartern | | attern |’Ai 4 Sting
LP label : String

[T 1 condition : Condition = return Trug

|NotPatlern| |AndPatiern I |OrPaﬂern | |ImpliesPattern I T

[1
ne 0.1 Floor \| requests * Button
0..1_[nr : Condition = return Truel elevator button pressed : Condition = return True|

0.1
currentfloor A

e OCL for structural constraints?
o DSL with semantics for editing model state?
o “When req. is edited, mark connected safety goals as needing manual check”

OAKES VERIFICATION 9/12

OUTLINE

SIMULATION TRACE VERIF.

OAKES VERIFICATION 10 / 12

MOTIVATION

OAKES VERIFICATION 11 /12

CONTEXT: Development of safety-critical system - car, airplane, smart home, etc.

OAKES VERIFICATION 11 /12

CONTEXT: Development of safety-critical system - car, airplane, smart home, etc.
GOAL/WHY: Automate assigning of severity levels to scenarios

OAKES VERIFICATION 11 /12

CONTEXT: Development of safety-critical system - car, airplane, smart home, etc.
GOAL/WHY: Automate assigning of severity levels to scenarios
Road Conditions

Dry

Wet

OAKES VERIFICATION 11 /12

CONTEXT: Development of safety-critical system - car, airplane, smart home, etc.
GOAL/WHY: Automate assigning of severity levels to scenarios
Road Conditions Fault

Dry

X

Wet

OAKES VERIFICATION 11 /12

CONTEXT: Development of safety-critical system - car, airplane, smart home, etc.
GOAL/WHY: Automate assigning of severity levels to scenarios
Road Conditions Fault

X

Wet Accel.

Test Cases

|Dry, None| |Dry, Accel| |Wet, None| |Wet, Accel|

OAKES VERIFICATION 11 /12

CONTEXT: Development of safety-critical system - car, airplane, smart home, etc.
GOAL/WHY: Automate assigning of severity levels to scenarios
Road Conditions Fault

X

Wet Accel.

Test Cases

System Model
of Car

y

Simulator

|Dry, None| |Dry, Accel| |Wet, None| |Wet, Accel|

OAKES VERIFICATION 11 /12

CONTEXT: Development of safety-critical system - car, airplane, smart home, etc.
GOAL/WHY: Automate assigning of severity levels to scenarios
Road Conditions Fault

X

Wet Accel.

Test Cases

System Model |Dry, None| |Dry, Accel| |Wet, None| |Wet, Accel|

of Car
| I
A I 1 1
Y 1 1 1 1
Simulator > | Sim. | Sim. | Sim. | Sim.
Trace Trace Trace Trace

OAKES VERIFICATION 11 /12

CONTEXT: Development of safety-critical system - car, airplane, smart home, etc.
GOAL/WHY: Automate assigning of severity levels to scenarios
Road Conditions Fault

X

Wet Accel.

Test Cases

System Model |Dry, None| |Dry, Accel| |Wet, None| |Wet, Accel|

of Car
I I
v = T
| ! !
Simulator - Sim. Sim. Slm Slm
1 |Trace Trace Trace Trace
A J
Seventy Severlty Severity Seventy
Level 1 Level 2 Level 1 Level 2

OAKES VERIFICATION 11 /12

CONTEXT: Development of safety-critical system - car, airplane, smart home, etc.
GOAL/WHY: Automate assigning of severity levels to scenarios
Road Conditions Fault

X

Wet Accel.

Test Cases

System Model |Dry, None| |Dry, Accel| |Wet, None| |Wet, Accel|

of Car
I I
= T
Y 1 |
Simulator > | Sim. | Sim. Slm Slm
Trace Trace Trace Trace
MANUAL
\ INSPECT
Seventy Severity Seventy Seventy
Level 1 Level 2 Level 1 Level 2

OAKES VERIFICATION 11 /12

CONTEXT: Development of safety-critical system - car, airplane, smart home, etc.
GOAL/WHY: Automate assigning of severity levels to scenarios
Road Conditions Fault

X

Wet Accel.

Test Cases

System Model |Dry, None| |Dry, Accel| |Wet, None| |Wet, Accel|

of Car
I I
v = T 1
1 1 | I
. N Sim. Sim. Slm Sim.
Simulator 7 |Trace Trace Trace Trace Cenlirris
MANUAL
\ 4 A J
Seventy Severity Severity Severity
Level 1 Level 2 Level 1 Level 2

OAKES VERIFICATION 11 /12

Pro

OAKES VERIFICATION 12 /12

Natural Language Contract:

OAKES VERIFICATION 12 /12

PROCESS

Natural Language Contract:
IF accel >= 3 G && accel <= 4 G for duration < 5 sec THEN severity = S2

OAKES VERIFICATION 12 /12

PROCESS

Natural Language Contract:
IF accel >= 3 G && accel <= 4 G for duration < 5 sec THEN severity = S2

%

OAKES VERIFICATION 12 /12

PROCESS

Natural Language Contract:
IF accel >= 3 G && accel <= 4 G for duration < 5 sec THEN severity = S2

%
Signal Temporal Logic (STL):

OAKES VERIFICATION 12 /12

PROCESS

Natural Language Contract:
IF accel >= 3 G && accel <= 4 G for duration < 5 sec THEN severity = S2

%

Signal Temporal Logic (STL):
© [0,5)(aCCeI >=3 && accel <=4)

OAKES VERIFICATION 12 /12

PROCESS

Natural Language Contract:
IF accel >= 3 G && accel <= 4 G for duration < 5 sec THEN severity = S2

%

Signal Temporal Logic (STL):
< [0,5)(aCcel >=3 && accel <=4)

T 20 =
- ¢
el a 230 2 7
£5 104
g‘E’ 0 201 2
1 b 005
Q - o
=
23 10 007 &
<
2 000 3
HS1 BA YD |)
20 18 16 14 12 10 8 6 4 2 0

Age (kyr)

OAKES VERIFICATION 12 /12

PROCESS

Natural Language Contract:
IF accel >= 3 G && accel <= 4 G for duration < 5 sec THEN severity = S2

%

Signal Temporal Logic (STL):
< [0,5)(aCcel >=3 && accel <=4)

MWF in NH
(m kyr™)
o N
o o o
U-
SUI

AMOC
(Sv)
5
g o g
°
S
Ulgez/Bd ez

HS1 BA YD |

T T T T 1

20 18 16 14 12 10 8 6 4 2 0
Age (kyr)

Tool for checking:

OAKES VERIFICATION 12 /12

PROCESS

Natural Language Contract:
IF accel >= 3 G && accel <= 4 G for duration < 5 sec THEN severity = S2

%

Signal Temporal Logic (STL):
< [0,5)(aCcel >=3 && accel <=4)

MWF in NH
(m kyr™)
o N
o o o
U-
SUI

AMOC
(Sv)
5
g o g
°
S
Ulgez/Bd ez

HS1 BA YD |

20 18 16 14 12 10 8 6 4 2 0
Age (kyr)

Tool for checking:
BREACH? Custom-made?

OAKES VERIFICATION 12 /12

PROCESS

Natural Language Contract:
IF accel >= 3 G && accel <= 4 G for duration < 5 sec THEN severity = S2

%

Signal Temporal Logic (STL):
< [0,5)(aCcel >=3 && accel <=4)

MWF in NH
(m kyr™)
o N
o o o
U-
SUI

AMOC
(Sv)
5
g o g
°
S
Ulgez/Bd ez

HS1 BA YD |

20 18 16 14 12 10 8 6 4 2 0
Age (kyr)

Tool for checking:
BREACH? Custom-made?
Reporting:

OAKES VERIFICATION 12 /12

PROCESS

Natural Language Contract:
IF accel >= 3 G && accel <= 4 G for duration < 5 sec THEN severity = S2

%

Signal Temporal Logic (STL):
© [0,5)(aCCeI >=3 && accel <=4)

20 18 16 14 12 10 8 6 4 2 0
I_. 201 ———+260 §
2 a / .
L< 109 = Y23
g?, 0 20!
b 005
B =
=
Sa 10 007 &
< S
24 009 3
HS1 BA YD |
20 18 16 14 12 10 8 6 4 2 0

Age (kyr)

Tool for checking:
BREACH? Custom-made?
Reporting:
Robustness? Visualization?

OAKES VERIFICATION 12 /12

	Model Transformation Verif.
	Traceability Reqs. Verif.
	Simulation Trace Verif.

