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MOTIVATION

[ Pos_FourMembers

[Z Member

e WHAT: Prove structural contracts
to guarantee element existence

o GIVEN: A transformation divided into
layers, containing LHS/RHS rules

o GOAL/WHY: Understand @ HOW: Create all possible rule
transformation's behaviour combinations through symbolic
o Relation between input/output elements execution

Bentley Oakes. 2018. A Symbolic Execution-Based Approach to Model
Transformation Verification Using Structural Contracts.
Ph.D. Dissertation. McGill University.
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rule combinations

Process

Features:
o Eclipse/MPS visual editors
e HOT from ATL

@ Verif. possible in seconds

OAKES

Limitations:
o Reduced expressiveness
e Structural contracts only
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FUTURE WORK

o Extend to other model transformation languages

@ Promote “contract-based design” of model transformations, with continuous
verification

o Tooling: Integrate transformation verification into the ModelVerse
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e OCL for structural constraints?
o DSL with semantics for editing model state?
o “When req. is edited, mark connected safety goals as needing manual check”
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Natural Language Contract:
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Tool for checking:
BREACH? Custom-made?
Reporting:
Robustness? Visualization?
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