Analog Computing

MSDL Modelling, Simulation and Design Lab

ivioucining, onnuration and peoign cap

Introduction

Analog Computers

- Use continuous physical quantities to represent and manipulate data
- More powerful and efficient for certain types of problems
- More sensitive to noise and disturbances
- Difficult to design and build
- Examples: human brain, biological systems, medical imaging **Digital Computers**
- Use discrete binary values to represent and manipulate data
- More versatile and flexible
- Less sensitive to noise and disturbances
- Easier to design and build
- Examples: personal computers, smartphones, servers

Digital

Hardware in The Loop simulation

HiL simulation is a technique that uses a real-time simulator to test control strategies for embedded systems. The simulator replaces the physical system, so that the control strategy can be tested in a safe and controlled environment.

Mathematical model

Analog Computer for Hardware-in-the-Loop (HiL) Simulation

Digital HiL systems are expensive and power-hungry.

From dspace

Analog: low power simulation, even of non-linear models.

Analog Computing: Then and Now

- 1. Analog computers did not use numerical analysis.
- 2. Traditional analog computers were used to solve specific problems, not general ones.
- 3. Analog computers required a lot of manual work to find solutions.
- 4. Analog computation started with no real way to organize calculations.
- 5. Modern analog computation started in the 1980s, at the same time as neuromorphic computing
- 6. The lack of a computational framework
- 7. Without configurable and programmable systems, analog computing discussions are mostly theoretical.

Traditional Analog vs FPAA

	Traditional	FPAA-based
Feature	Analog Circuit	Circuit
Туре	Fixed	Programmable
		Integrated
Components	Individual	circuit
Design	Simple	Complex
Applications	Simple	Complex
Cost	Low	High
Dowor		
rower		
consumption	LOW	High
Speed		
(Propagation		
Delay)	Low	High

Field Programmable Analog Array (FPAA)

• Anadigm

• Hasler

Concept of Switched Capacitor

• ϕ_1, ϕ_2 is a two phase nonoverlapping clock

At position I the charge on C at steady state is $q_1 = CV_1$ At position 2 the charge on C at steady state is $q_2 = CV_2$ Assuming $V_1 > V_2$, the charge Δq transferred is

$$\Delta q = q_1 - q_2 = C(V_1 - V_2)$$

The current flowing will be on average

$$i(t) = \frac{\delta q(t)}{\delta t} = \lim_{\Delta T_c \to 0} \frac{\Delta q}{\Delta T_c} \cong \frac{C(V_1 - V_2)}{T_c}$$
(1)

Consider now a resistance of value R connected to the same two sources $V_1 \& V_2$. Then

$$i_R(t) = \frac{(V_1 - V_2)}{R}$$
 (2)

Equating (1) and (2) yields $R = \frac{T_c}{C} = \frac{1}{f_c C}$

FPAA Structure

•Flexibility: The array of analog components can be reconfigured to perform different functions.

•Speed: The digital processor can be used to perform DSP operations on the signals that are processed by the array.

•Power efficiency: The analog components can be designed to consume less power than digital components.

Study the trade-offs between numerical accuracy, realtime performance, and energy consumption.

in the FPAA.

Basics

Vo = A + Vi

- vo=(-Rf/Rin)vin+(-Rf/Ra)VA
- Solution for Rf: [Ra*Rin*(-A Vi)/(A*Rin + Ra*Vi)]
- Solution for Rin: [-Ra*Rf*Vi/(A*Ra + A*Rf + Ra*Vi)]
- Solution for Ra: [-A*Rf*Rin/(A*Rin + Rf*Vi + Rin*Vi)]

Design Consideration

- Voltage Limits VCC, VEE -VEE<Vo<Vcc
- Slew Rate : The maximum rate of changes of the output of an opamp is known as the slew rate (in units of V/s)
- Bandwidth: fsignal< bandwidth
- Boundary for Resistors
- Offset: Vo_real=Voffset+Vout

Slew rate example

• Consider an inverting amplifier, gain=10, built using an opamp with a slew rate of $S_0=1V/\mu s$.

• Input a sinusoid with an amplitude of $V_i=1V$ and a frequency, ω .

- For a sinusoid, the slew rate limit is of the form $AV_i \omega < S_0$.
- We can therefore avoid this non-linear behaviour by
 - decreasing the frequency (ω)
 - lowering the Amplifier gain (A)
 - lower the input signal amplitude (V_i)
- Typical values: 741C: 0.5V/μs, LF356: 50V/ μs, LH0063C: 6000V/ μs,

TL074

High slew rate: 20 V/µs (TL07xH, typ)
Low offset voltage: 1 mV (TL07xH, typ)
Low offset voltage drift: 2 µV/°C
Low power consumption: 940 µA/ch (TL07xH, typ)
Wide common-mode and differential voltage ranges
Low input bias and offset currents
Low noise: V n = 18 nV/√ Hz
Output short-circuit protection
Low total harmonic distortion: 0.003% (typ)

•Wide supply voltage: ±2.25 V to ±20 V, 4.5 V to 40 V

Find Circuit Parameters

summnum.py

Vo = 5 Vi = 2 A = 1 V_offset = 1e-3 # 1mV offset f_signal = 1e3 # input frequency in Hz

Rf, Rin, Ra = x

return -(Rf/Rin) * Vi - (Rf/Ra) * A + V offset - Vo

Vcc = 10Vee = -10

slew rate = $20e-6 # 20 V/\mu s$ in V/s

bandwidth = 3e6 # 3 MHz in Hz

Output voltage constraint

def constraint1(x):
 return Vcc - equation1(x) # Vo<Vcc so Vcc - Vo >= 0

def constraint2(x): return equation1(x) - Vee # Vo>-Vee so Vo +Vee >= 0 # Slew rate constraint
def constraint3(x):
 Rf, Rin, Ra = x
 max_dVo_dt = abs((Rf/Rin) * max_dvi_dt)
 return slew_rate - max_dVo_dt # >= 0

Frequency constraint
def constraint4(x):
 Rf, Rin, Ra = x
 f_signal = 1e3 # 1 kHz
 return bandwidth - f_signal #banwidth>f_signal

Initial guesses for Rf, Rin, Ra
initial_guess = [1000, 1000, 1000]

Bounds for Rf, Rin, Ra bnds = [(100, 10000), (50, 10000), (50, 10000)]

Constraint dictionary con1 = {'type': 'ineq', 'fun': constraint1} con2 = {'type': 'ineq', 'fun': constraint2} con3 = {'type': 'ineq', 'fun': constraint3}

cons = [con1, con2, con3]

Run the optimizer
solution = minimize(objective, initial_guess, bounds=bnds,
constraints=cons)

Extract the solution Rf, Rin, Ra = solution.x

print("Solution")scipy? print("Rf:", Rf) print("Rin:", Rin) print("Ra:", Ra) NO SOLUTION TOUND.

C:\Simulation_Python_FWO>python summnum.py Solution Rf: 100.0 Rin: 10000.0 Ra: 1000.0

C:\Simulation_Python_FWO>

vo=(-Rf/Rin)vin+(-Rf/Ra)VA =-0.01*2sint-0.1

Mathematic Result

 \triangle M vs S:

RMSE=4.6e-4

$$\mathsf{RMSE} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (V_{omatlab,i} - V_{ongspice,i})^2}$$

Under study

- $Vo = A \times Vi$
- $Vo = -A \times Vi$
- $Vo = A \times V1i + B \times V2i$
- $Vo = A + B \times V1i \times V2i$

•
$$Vo = A + B \times \frac{V1i}{V2i}$$

• $Vo = A + B \times \frac{dVi}{dt}$ $Vi(0) = C$

dx2/dt2=-x(t), x(0)=0, dx/dt(0)=1

- v1(t)=x(t), dv1(t)/dt=dx/dt
- v2(t)=dx/dt, dv2(t)/dt=d2x/dt2=-x(t)=-v1(t)
- Considering 1 stage for 1 derivative:
- vout(t)=-1 \ RC∫Vin(t)dt
- $v_2(t)=1 \ R_1C_1 \int v_1(t) dt$
- $v_1(t)=1 \setminus R_2C_2 \int v_2(t) dt$

Design Consideration

Frequency Response:

Cutoff frequency of an integrator: fc=1/2 π RC

Op-Amp Limitations:

Slew Rate

Input Bias Current: Op-amps have a small DC current flowing into their inputs. very large resistances create a significant voltage drop .

Noise: High resistor values leads to more thermal noise

Capacitors leads to dielectric noise (compared with thermal noise not a concern)

Physical Size and Cost:

Larger capacitor values leads to larger sizes and more expensive.

fmax= SR/2πv=20/2.π.2=1.5 MHz

Assumption: f=10Hz

R=100 kohm C= $1/2\pi$ Rfc=0.159uF (C=150nf is a standard value)

RMSE=0.0067

Summation-Subtraction

THAT board:

Vo=av1+bv2-cv3-dv4

$$V_{8} = \frac{R_{7}}{R_{4}} \frac{R_{3}}{R_{4}} \frac{V_{1}}{R_{4}} \frac{R_{7}}{R_{2}} \frac{V_{2}}{R_{5}} \frac{R_{7}}{R_{5}} \frac{V_{3}}{R_{6}} \frac{R_{7}}{R_{6}} \frac{R_{7}}{R_{7}} \frac{R_{7}}{R_{6}} \frac{R_{7}}{R_{7}} \frac{R_$$

Scaling Circuit

```
x1 12345TL074
R1 2 5 50k
R2 2 w 50k
                                                                                   Vin1 = 0.2V * sin(2\pi ft)
Apot1 6 w 0 potmod1
                                                                                   Vin2 = 0.166V * sin(2\pi ft)
vcc 3 0 5v
                                                                                   Potentiometer1 position = 0.1325 (Vin1 is scaled by this factor)
vdd 4 0 -5v
                                                                                   Potentiometer2 position = 0.1875 (Vin2 is scaled by this factor)
vin1 6 0 dc 0 sin(0 0.2 500hz)
                                                                                   The operational amplifier (TL074) is configured in an inverting mode.
vin2 7 0 dc 0 sin(0 0.166 500hz)
                                                                                   t = 0.5ms.
v+100
                                                                                   Vin1(t) = 0.2V * sin(2\pi 500 Hz 0.0005 s) = 0.2V Vin2(t) = 0.166V *
R3 2 z 50k
                                                                                   sin(2\pi 500 Hz 0.0005 s) = 0.166 V
Apot2 7 z 0 potmod2
                                                                                   Vw1 = Vin1 * potentiometer1 position = 0.2V * 0.1325 = 0.0265V
.model potmod1 potentiometer(position=0.1325 r=1k log=FALSE log_multiplier=1)
                                                                                   Vw2 = Vin2 * potentiometer2 position = 0.166V * 0.1875 = 0.031125V
*Position: 0.5*5/8
                                                                                   V(5) = -(Vw1 + Vw2) = -(0.0265V + 0.031125V) = -0.057625V \text{ or } -
.model potmod2 potentiometer(position=0.1875 r=1k log=FALSE log_multiplier=1)
                                                                                    57.625mV
*Position: 0.5*3/8
```

Multiplication with constant

Vin = $1V * sin(2 * \pi * 500Hz * 0.0005s)=1v$

A = 1 + (R1 / R2)

 $A = 1 + (50k\Omega / 50k\Omega) = 2$

V(5) = A * Vin*0.35 0.35 is the position of potentiometer

V(5) = 2 * 0.35V = 0.7V

V(5)=0.6632 ,

Percent error = (|0.7V - 0.6632V| / 0.7V) * 100%

Percent error $\approx 5.26\%$

