Semantical Reflection for Computational Structures

Eduard Kamburjan
and collaborators

Antwerp, 23.11.23

University of Oslo

Reflection

What is Reflection?

= Reasoning about oneself

= Reasoning about the relation to the
environment

= Forming insights: expectations and memories

= Acting on reflective insights

Reflection

What is Reflection?

= Reasoning about oneself

= Reasoning about the relation to the
environment

= Forming insights: expectations and memories

= Acting on reflective insights

How can we program reflective applications?

Appearance

Beyond OO Reflection

In programming, reflection refers to the ability to manipulate runtime structures, such

as classes directly — We want more:
= Reasoning about runtime structures

= Relate runtime structures to application domain

= Formulate models and data based on this relation

= How to connect a program with its application domain?
= How to interpret a program through the lens of it domain?

= How to express and adhere to domain knowledge at runtime?

Semantically Lifted Programs

Knowledge Graphs

Triple-Based Knowledge Representation

Knowledge Graphs are a framework to represent (RDF), reason (OWL) over, and query
(SPARQL) domain knowledge and data. Example: Asset model of a house.

Knowledge Graphs

Triple-Based Knowledge Representation

Knowledge Graphs are a framework to represent (RDF), reason (OWL) over, and query
(SPARQL) domain knowledge and data. Example: Asset model of a house.

Outer Wall

Room Room

Outer Wall

o
>

2| [inner wall

Controller

Knowledge Graphs

Triple-Based Knowledge Representation

Knowledge Graphs are a framework to represent (RDF),

reason (OWL) over, and query

(SPARQL) domain knowledge and data. Example: Asset model of a house.

Inner Wall

Room Room
ck

3
=
-
L
5
[}

o
8

Outer Wall
Outside

ast:heaterl a ast:Heater. ast:heaterl ast:in

ast:heater2 a ast:Heater. ast:heater2 ast:in

ast:heaterl ast:id 13. ast:heater2 ast:id 12.

ast:rooml ast:left0f ast:room2.

ast:rooml.

ast:room2.

Knowledge Graphs

Triple-Based Knowledge Representation

Knowledge Graphs are a framework to represent (RDF), reason (OWL) over, and query
(SPARQL) domain knowledge and data. Example: Asset model of a house.

Inner Wall

Room Room
ck

ast:heaterl a ast:Heater. ast:heaterl ast:in

3
=
-
L
5
[}

Outer Wall
Outside

o
8

ast:rooml.
ast:heater2 a ast:Heater. ast:heater2 ast:in

ast:heaterl ast:id 13. ast:heater2 ast:id 12.
ast:rooml ast:left0f ast:room2.

ast:room2.

htLeft0f subPropertyOf ast:in o ast:left0f o inverse(ast:in)

Semantically Lifted Programs

app 3> app

Semantically Lifted Programs

app 3> app

g &

Semantically Lifted Programs

app > app

G- &

(2]
€
[
S
1)
2)
S
(o}
°
Q
b=
o
=
®
=
e
c
]
£
9]
7]

llllll

lllllll

(2]
€
[v]
S
o0
o
-
o
©
Q
&
-
>
=
0
=
c
(1]
=
()]
wn

lllll

o

lllll

llllll

Ceow

T %
bapp'

lllllllllll

N m :
e m
L @ " :

lllllllllll

(2]
€
[v]
S
o0
o
-
o
©
Q
&
-
>
=
0
=
c
(1]
=
()]
wn

lllll

o

lllll

llllll

Ceow

T %
bapp'

lllllllllll

N m :
e m
L @ " :

lllllllllll

Direct Mapping of Program States

SMOL: Integration of Semantics and Semantic Technologies

Map each program state to a knowledge graph and allow program to operate on the
KG. Implemented in SMOL (smolang.org).

1 class C (Int i) Unit inc(){ this.i = this.i + 1; } end
2 Main C ¢ = new C(5); Int i = c.inc(); end

Direct Mapping of Program States

SMOL: Integration of Semantics and Semantic Technologies

Map each program state to a knowledge graph and allow program to operate on the
KG. Implemented in SMOL (smolang.org).

1 class C (Int i) Unit inc(){ this.i = this.i + 1; } end
2 Main C ¢ = new C(5); Int i = c.inc(); end

prog:C a prog:class. prog:C prog:hasField prog:i.
run:objl a prog:C. run:objl prog:i 5.
run:procl a prog:process.

run:procl prog:runsOn run:objl.

[K. et al., Programming and Debugging with Semantically Lifted States, ESWC'21]

I

Semantic Reflection: Reasoning about oneself

1 class Building(List<Room> rooms) ... end

2 class Inspector(List<Building> buildings)

3 Unit inspectStreet(String street)

4 List<Building> 1 := access("SELECT 7x WHERE {7x a Villa. 7x :in %
street}");

5 this.inspectAll(1l);

6 end

7 end

Semantic Reflection: Reasoning about oneself

1 class Building(List<Room> rooms) ... end

2 class Inspector(List<Building> buildings)

3 Unit inspectStreet(String street)

4 List<Building> 1 := access("SELECT 7x WHERE {7x a Villa. 7x :in %
street}");

5 this.inspectAll(1l);

6 end

7 end

Villa EquivalentTo: rooms o length some xsd:int [>= 3]

Semantic Reflection: Reasoning about oneself — GeoSimulator

Case study of using SMOL for a geological simulator
= SMOL simulators describes the effects of the process
= SMOL state is interpreted through ontology

= Geological ontology describes under which conditions a geological process starts

Geology Knowledge Modeling Computational Modeling

Lifting :
| Reflecting Simulator

Ontology Process Triggers

% Use Case S Enconding %

[Qu, K., and Giese, A Geological Case Study on Semantically Triggered Processes, ESWC'23]

Semantic Reflection: Reasoning about oneself — GeoSimulator

Modeling of a geological shale structure in SMOL

class ShaleUnit extends GeoUnit
(Double temperature,
Boolean hasKerogenSource,

Int maturedUnits)

1

2

3

4

5 models
6 "a GeoReservoirOntology_sedimentary_geological_object;
7 location_of [a domain:amount_of_organic_matter];

8 GeoCoreOntology_constituted_by [a domain:shale];

9

has_quality [domain:datavalue %temperature; a domain:temperature

Semantic Reflection: Reasoning about oneself — GeoSimulator

Resulting (part of the) knowledge graph

run:objl smol:models domain:objl.

domain:objl a GeoReservoirOntology_sedimentary_geological_object;
location_of [a domain:amount_of_organic_matter];
GeoCoreOntology_constituted_by [a domain:shale];

has_quality [domain:datavalue "10.0"""xsd:Double; a domain:temperature].

Semantic Reflection: Reasoning about oneself — GeoSimulator

Simulation driver
1 List<ShaleUnit> fs =

2 member (domain:models some (obo:participates_in some domain:
0il_window_maturation_trigger));

3 while fs !'= null do

4 fs.content.mature(); fs = fs.next;

5 end

For Mandal-Ekofisk field, simulation gives similar results as original study (2mya steps)
SMOL Cornford'94 | Time Difference
Start M. | 52ma ~50ma ~2mya
End M. | 14ma ~23ma ~9mya
Crit. Moment | 28ma ~30ma ~2mya

Semantic Reflection:
Structurally Self-Adaptive Digital
Twins

Semantic Reflection: Comparing with Expectations

Is our digital twin twinning the right thing?

= Export asset model of physical system as KG
= Export program state with simulators as KG
= Formulate constraints over combined KG

Semantic Reflection: Comparing with Expectations

Is our digital twin twinning the right thing?

= Export asset model of physical system as KG
= Export program state with simulators as KG
= Formulate constraints over combined KG

Semantic Reflection: Comparing with Expectations

Is our digital twin twinning the right thing?

= Export asset model of physical system as KG
= Export program state with simulators as KG
= Formulate constraints over combined KG

Semantic Reflection: Comparing with Expectations

Is our digital twin twinning the right thing?
= Export asset model of physical system as KG
= Export program state with simulators as KG

= Formulate constraints over combined KG

Semantic Reflection: Comparing with Expectations

Is our digital twin twinning the right thing?
= Export asset model of physical system as KG
= Export program state with simulators as KG

= Formulate constraints over combined KG

Semantic Reflection: Comparing with Expectations

Is our digital twin twinning the right thing?
= Export asset model of physical system as KG
= Export program state with simulators as KG

= Formulate constraints over combined KG

........................

PELTTTY) CETIN
LR Yrrid

........................

Semantic Reflection: Comparing with Expectations

Is our digital twin twinning the right thing?
= Export asset model of physical system as KG
= Export program state with simulators as KG

= Formulate constraints over combined KG

........................

PELTTTY) CETIN
LR Yrrid

........................

Semantic Reflection: Comparing with Expectations

Is our digital twin twinning the right thing?
= Export asset model of physical system as KG
= Export program state with simulators as KG

= Formulate constraints over combined KG

........................

PELTTTY) CETIN
LR Yrrid

........................

Semantic Reflection: Comparing with Expectations

Is our digital twin twinning the right thing?
= Export asset model of physical system as KG
= Export program state with simulators as KG

= Formulate constraints over combined KG

Possible Constraints
= Constraint on program

“Is this a sensible simulation structure?”

........................

= Constraints on twinning

“Does the program have the same structure as

the asset?”

PELTTTY) CETIN

........................

Semantic Reflection: Structurally Self-Adaptive Digital Twins — SMOL/FMI

Functional Mock-Up Interface (FMI)

Standard for (co-)simulation units, called function mock-up units (FMUs). Can also
serve as interface to sensors and actuators.

Semantic Reflection: Structurally Self-Adaptive Digital Twins — SMOL/FMI

Functional Mock-Up Interface (FMI)

Standard for (co-)simulation units, called function mock-up units (FMUs). Can also
serve as interface to sensors and actuators.

1 //simplified shadow
2 class Monitor (FMO[out Double val] sys,
3 FMO[out Double val] shadow)

4 Unit run(Double threshold)

5 while shadow !'= null do

6 sys.doStep(1.0); shadow.doStep(1.0);

7 if(sys.val - shadow.val >= threshold) then ... end
8 end ...

Knowledge Structures over Simulation Units, K. and Johnsen. [ANNSIM'22]

Semantic Reflection: Structurally Self-Adaptive Digital Twins

SPARQL

Define structural requirements as queries in SPARQL on combined knowledge graph,

to use domain constraints on digital twins.

Semantic Reflection: Structurally Self-Adaptive Digital Twins

SPARQL

Define structural requirements as queries in SPARQL on combined knowledge graph,
to use domain constraints on digital twins.

T
- ; -
3 2 5 [S o
-%@ §<> Room g e <> §<>§
o > >
S of |°
s
D] Controller [D

Semantic Reflection: Structurally Self-Adaptive Digital Twins

SPARQL

Define structural requirements as queries in SPARQL on combined knowledge graph,
to use domain constraints on digital twins.

> | 5[

Room Room

D] Controller [D

Inner Wall

<>

Outside
Outer Wall
Outer Wall
Outside

1 class Room(FMO f, Wall inner, Wall outer, Controller ctrl, Int id) end
2 class Controller(FMO f, Room left, Room right, Int id) end
3 class InnerWall(FMO f, Room left, Room right) end

Semantic Reflection: Structurally Self-Adaptive Digital Twins

SPARQL

Define structural requirements as queries in SPARQL on combined knowledge graph,

to use domain constraints on digital twin.

Query to detect non-sensical setups:

SELECT ?room WHERE { 7ctrl a prog:Controller.
?ctrl prog:left 7room.

?ctrl prog:right 7room }

Semantic Reflection: Structurally Self-Adaptive Digital Twins

SPARQL

Define structural requirements as queries in SPARQL on combined knowledge graph,

to use domain constraints on digital twin.

Query to check structural consistency for heaters:

SELECT * WHERE { 7ol prog:id ?idl. ?7hl ast:id 7idl.
702 prog:id 7id2. 7h2 ast:id 7id2.
7hl htLeftOf 7h2.

?c a prog:Controller.

7c prog:left 7ol. 7c prog:right 702.}

Semantic Reflection: Structurally Self-Adaptive Digital Twins

Semantic Reflection
One can use the knowledge graph within the program to detect structural drift:
Formulate query to retrieve all mismatching parts

1

2 List<Repairs> repairs =

3 construct ("SELECT ?room ?wallleft ?wallRight WHERE

4 {?x ast:id ?room.

5 ?x ast:right [ast:id ?7wallRight].

6 ?x ast:left [ast:id ?wallleft].

7 FILTER NOT EXISTS {7y a prog:Room; prog:id 7room.}}");

[K. et al., Digital Twin Reconfiguration Using Asset Models, 1ISoLA'22]

Semantic Reflection:
Software Engineering Aspects

Software Engineering Semantic Reflection

Static Guarantees
How can we ensure that semantic reflection does not cause runtime errors?

1 class Building(List<Room> rooms) ... end

2 class Inspector(List<Building> buildings)

3 Unit inspectStreet(String street)

4 List<Building> 1 := access("SELECT 7x WHERE {?x a Villa. ?x at %
street}");

5 this.inspectAll(1l);

6 end

7 end

Type checking reflection reduces to query containment, if the ontology C is known.

Villalldat.xsd:string Cx Building

Software Engineering Semantic Reflection

Connecting Class Models

How can we connect OWL and OO class models?

= Generate program classes from ontology
= Generate program classes for RDF structures

= Generate program classes for queries

Bridging the Gap

= Use retrieval queries as interface between class models
= Do not connect concepts, define data retrieval

= Annotate query to class, not execution point

= Implemented for Java, extended with Liskov Principle for subtyping

Example: Bike and Wheels

1 class Wheel (Int wheelld, Int year) end
2 class Bike (Int bId, Int year, Wheel front, Wheel back) end

Example: Bike and Wheels

1 class Wheel (Int wheelld, Int year) end
2 class Bike (Int bId, Int year, Wheel front, Wheel back) end

Q = SELECT * WHERE

?b :bld 7id;
:prod 7year;
:back 7back;
:front ?front.

?back :wheelld 7wheelldl;
:prod ?yearl.

7?front :wheelld ?wheelld2;

:prod ?year2.

[K., Norstein and Giese, Never mind the semantic gap, ESWC'22]

Example: Bike and Wheels

List<Result> res = query(Q); Result r = res[0];

Wheel wl = new Wheel(r.get("wheelIdl"), r.get("yearl"));
Wheel w2 = new Wheel(r.get("wheelId2"), r.get("year2"));
Bike b = new Bike(r.get("id"), r.get("year"), wl, w2);

a s W N e

print(b.front.id);

Q = SELECT * WHERE

?b :bld 7id;
:prod 7year;
:back 7back;
:front ?front.

?back :wheelld 7wheelldl;
:prod 7yearl.

7?front :wheelld ?7wheelld2;
:prod 7year2.

Example: Bike and Wheels

Challenges

= Data access is not type safe
= Query is disconnected from class

= Query is non-modular: class structure is ignored, no reuse

Q = SELECT * WHERE

?b :bId 7id;
:prod 7year;
:back 7back;
:front ?front.

?back :wheelld 7wheelldl;
:prod 7yearl.

7?front :wheelld 7wheelld2;
:prod ?7year2.

Links — Detailed Explanation

1 class Wheel anchor ?w (Int wheelld, Int year) end

2 retrieve SELECT ?wheelld ?year { 7w :wheelld ?wheelld; :prod ?year. }
3

4 class Bike anchor ?b (Int bId; Int year;

5 1ink(?b :front 7front) Wheel front;

6 1ink(?b :back ?back) Wheel back;

7) end retrieve SELECT 7id 7year { ?b :bId ?bId; :prod 7year. }

Q = SELECT * WHERE
?b :bId 7bId;
:prod 7year;
:back 7back;
:front ?front.
?back :wheelld 7wheelldl;
:prod ?7yearl.
?front :wheelld 7wheelld2;
:prod ?year2.

Evaluation

= Slegge is a query corpus for exploration in energy industry.

= Remodeling of 8 queries in extended SMOL using 27 classes.

= Found one bug due to copy-paste

Software Engineering Semantic Reflection

Ontologies for Programs

Two tools developed for JVM: jdi2owl generates a knowledge graph of a JVM state
through the debugging interface. sjdb enables debugging of Java applications.

Software Engineering Semantic Reflection

Ontologies for Programs
Two tools developed for JVM: jdi2owl generates a knowledge graph of a JVM state
through the debugging interface. sjdb enables debugging of Java applications.

Semantic Debugger
sjdb

Program

(2]
User Program state_| Mapping State
VM) to
o DL Axioms
(Paused) Program | 1 f—
state I
Gragh

o
Java Program
B REPL °

and breakpoints
Knowiedge sose & |

Exteral Knowledge e
Fomaiization B

(OWL/RDF)
(DL Inference Tasks, Q.
) lums
';“’""“’ Inverse RDF Node Mapping

[Haubner, Inspecting Java Program States with Semantic Web Technologies, MSc'22]

Software Engineering Semantic Reflection

Ontologies for Programs

Two tools developed for JVM: jdi2owl generates a knowledge graph of a JVM state
through the debugging interface. sjdb enables debugging of Java applications.

hasField

hasMethod myMethod mdeclaresVar

Software Engineering Semantic Reflection

Ontologies for Programs

Two tools developed for JVM: jdi2owl generates a knowledge graph of a JVM state
through the debugging interface. sjdb enables debugging of Java applications.

isAtStackDepth “
this 0
(callee of myMethod)

isAtStackDepth

args

Semantically Lifted Systems

Lifting Software Architectures

Beyond Programs

= Lifting larger

programs does not
scale up
= |nstead: Software

architecture to lift
only components

J

Lifting Software Architectures

Beyond Programs

= Lifting larger
programs does not
scale up

= Instead: Software

architecture to lift
only components

[G\I, K., Talasila, Larsen, An Architecture for Coupled Digital Twins with Semantic Lifting, u.S]

Lifting Software Architectures

Beyond Pro

= Lifting larger
programs does not

scale up

= |nstead: Software
architecture to lift

only components

‘ Other Services

DT Service Layer

DT Platform Layer

system config [1]

availableTwinSystems [']

DTManager

h

availableTwins (']

availableTwins 1]

Flex-cell DT
System

Controler
onreler] ot kuka) [PT Kuka
loriwa 7| [briiwa 7,

endpoint [1]
Endpoint

Flex-cell System

Kuka lbr iwa 7

[

RabbithQ FMU

Flex-cell Simulation

URSe FMU

Kuka lbr iiwa 7
FMU

Semantic Experiment Management

Reasoning for Reuse

= Lifting larger programs does not scale up
= We may not be interested in the program, but computation results

= Lifting is used to detect whether reuse of computations is possible

Semantic Experiment Management

Reasoning for Reuse

= Lifting larger programs does not scale up
= We may not be interested in the program, but computation results

= Lifting is used to detect whether reuse of computations is possible

Combining Case-Based Reasoning and Deduction

Given: 1 2 3 4
Set of triples (Q, &, A) 30, q= Q7 30,14~ Q1 < duw) 60, 14 - I < du? Perform Q2E
Question ¢ No No No No Q

return compute justify(A, a) return compute E2A(q. €, a)
(g,€, A) return (q,€&,a) (¢.€,a) return (g, &, a)

[Cederbladh et al., Symbolic Reasoning for Early Decision-Making in Model-Based Systems Engineering, MBSE@Models'23]

Conclusion

Digital Twin Lab

Digital Twin Lab

= Working with realistic software stack
= Evaluation of proposed architectures

= Software engineering with reflective
and heterogenous programs

Conclusion

Conclusion

Thank you for your attention

	Semantically Lifted Programs
	Semantic Reflection: Structurally Self-Adaptive Digital Twins
	Semantic Reflection: Software Engineering Aspects
	Semantically Lifted Systems
	Conclusion

