

Dr. Judith Michael Software Engineering RWTH Aachen

http://www.se-rwth.de

09.1.2025, University of Antwerp

About me

- Universität Klagenfurt, Austria
 PhD in 2014 | Cognitive Modeling for Ambient Assistance
- <u>RWTH Aachen University</u>, Germany since 2018 Team Leader | 9 PhD candidates | lead in several projects
 - Cluster of Excellence "Internet of Production"
 Deputy coordinator work stream "Conceptual foundations of digital shadows"
 - Center for Systems Engineering
 - MaCoCo | InviDas | MontiGem | MBDO

Habilitation in 2024 on *"Model-Driven Engineering of Digital Twins with Informative and Assistive Services"*

- Lakeside Science & Technology Park GmbH, Austria Supervisory board | 38.000 m² | 70 companies | 1400 employees
- German Informatics Society

Junior Fellow 2015 | Spokesperson QFAM, executive commitee (Präsidium)

Software Engineering | RWTH Aachen

RWTH Aachen University | Software Engineering

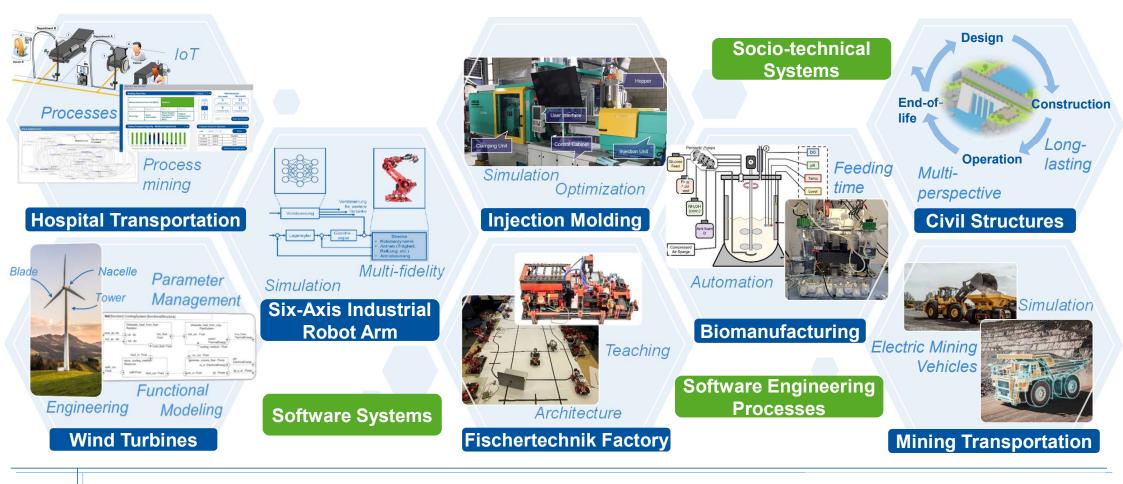
INTERNET OF RWITH PRODUCTION

Bernhard Rumpe

- Software Engineering Chair
- Editor-in-Chief SoSyM Journal, MODELS conference series,...
- Co-Founder Center for Systems Engineering

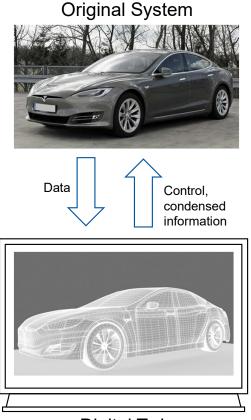
Established 1870

- 47,078 students (WS 22/23)
 4,763 Informatics (939 in 1st sem.)
- 9.715 staff, 557 professors
 - 32 prof. in Informatics
- 9 faculties, 260 institutes
- 3 Clusters of Excellence
- 1,192 Mio € annual budget
 - incl. 488 Mio € third-party funds

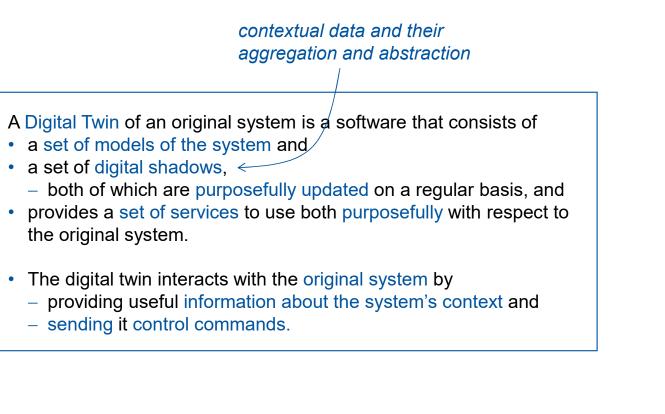


Team

- app. 30 PhD candidates
- 2 Post Docs
- 2 Controlling/Office
- 2 Senior Software Engineers
- 6 trainees

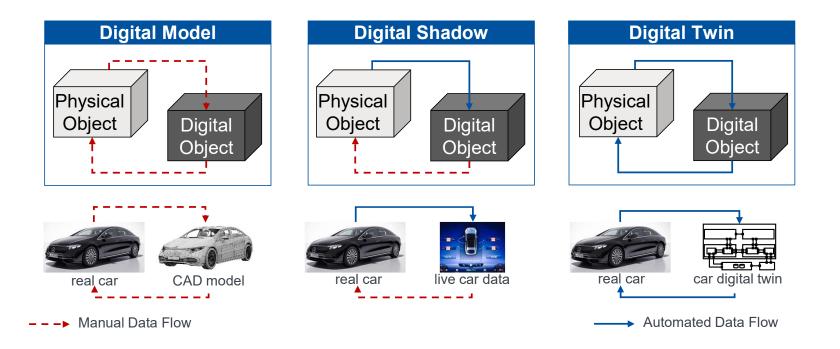


Some Digital Twin Use Cases



Digital Twins as complex, long-lasting, software-intensive systems

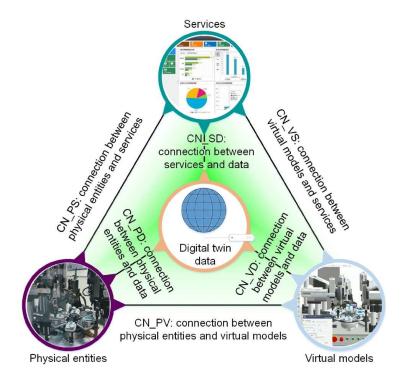
Digital Twin



A Characterization based on Data Flows

When to use which term?

- Properties of the data flows
- Manual vs. automated
- Missing, e.g.,
 - Properties of the digital object
 - Purpose
 - Data aggregation
 - How to realize automation (services?)

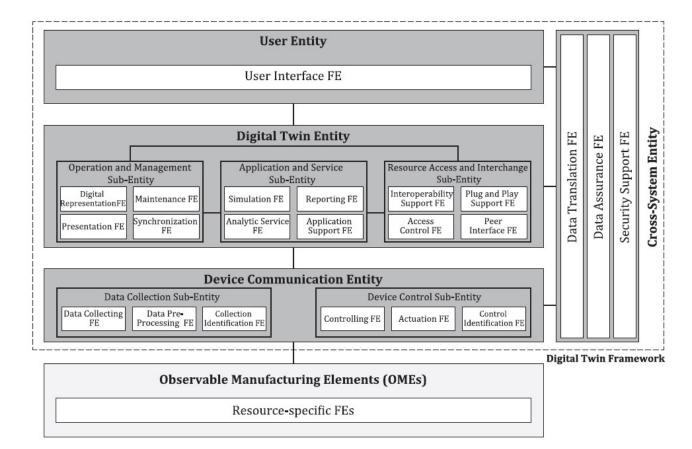

W. Kritzinger, M. Karner, G. Traar, J. Henjes, W. Sihn: Digital Twin in manufacturing: A categorical literature review and classification. IFAC-PapersOnLine, 2018.

Software Engineering | RWTH Aachen

5D Digital Twin Model

- A definition based on constituents
- · A digital twin comprises of
 - Physical object, e.g., beings, CPS,...
 - Digital object, e.g., models, software infrastructure,...
 - Services, e.g., monitoring, optimization, prediction,...
 - Digital data, e.g., sensor data, manufacturing orders,...
 - Connections, e.g., WiFi, ethernet, fieldbus,...
- Missing, e.g.,
 - Border where the digital twin is
 - Details about connections
 - Data aggregation
 - Active vs. passive components
 - Purpose

F. Tao, M. Zhang, Y. Liu, A.Y.C. Nee: Digital twin driven prognostics and health management for complex equipment. In: CIRP Ann-Manuf Technol, 67 (1), 2018. Q. Qi, F. Tao, T. Hu, N. Anwer, A. Liu, Y. Wei, L. Wang, A.Y.C. Nee: Enabling technologies and tools for digital twin, In: Journal of Manufacturing Systems, 58 (B), Elsevier, 2022.

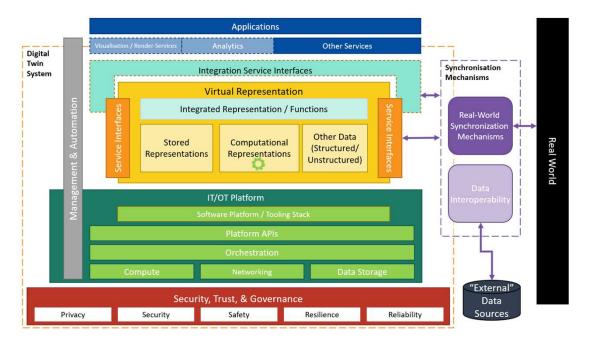


Software Engineering | RWTH Aachen

Digital Twin Framework for Manufacturing (ISO 23247)

- ISO Standard
 - Published in 2021
 - Focus on manufacturing
- Structure
 - Part 1: Overview and general principles
 - Part 2: *Reference architecture*
 - Part 3: Digital representation of manufacturing elements
 - Part 4: Information exchange

Source: https://www.iso.org/standard/78743.html


8

E. Ferko, A. Bucaioni, P. Pelliccione, M. Behnam: Standardisation in Digital Twin Architectures in Manufacturing, 20th International Conference on Software Architecture (ICSA), IEEE, https://doi.org/10.1109/ICSA56044.2023.00015

Digital Twin Consortium | Platform Stack Architectural Framework

- Digital Twin Consortium (DTC)
 - Founded in 2020 by Anys, Microsoft, Dell, Lendlease
 - Members, e.g., Google, Dassault Systems, Mitsubishi Electric, Carrier, TÜV Süd
- Platform Stack Architectural Framework
 - Virtual Representation
 - Synchronization with the real world & external data sources
 - Applications and services
 - IT/OT Platform
 - Security and Trustworthiness



Source: https://www.digitaltwinconsortium.org/platform-stack-architectural-fram-formework-an-introductory-guide-form/ https://www.digitaltwinconsortium.org/glossary/glossary/

Software Engineering | RWTH Aachen

Digital Twin Consortium | Digital twin ecosystem capabilities

https://www.digitaltwinconsortium.org/initiatives/capabilities-periodic-table/

Software Engineering | RWTH Aachen

RESEARCH AIM

HOW TO IMPROVE THE **DEVELOPMENT** OF COMPLEX, SOFTWARE-INTENSIVE **DIGITAL TWINS** WITH A VARIETY OF FUNCTIONS AND SERVICES

Overview Digital Twin Research (selected topics)

Architectures

- Connect DT with Cyber-Physical Systems and IoT
- Self-Adaptive Digital Twin Architectures
- Process Prediction with Digital Twins
- Asset Administration Shell (AAS)

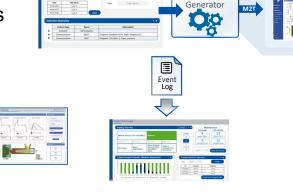
DT Engineering Processes

- Digital Twin Maturity Model
- Creating DTs from Engineering Models
- DevOps Digital Twin Engineering Process

MDE of Digital Twins & Models at Runtime

- Generating Digital Twin Cockpits & Generate
 Process-Aware DT Cockpits from Event Logs
- Low-Code Platforms for Model-Driven Digital Twins

Composition


- Methods and Variants
- Integration Challenges for DTs

Sustainability

 Digital Twins for Sustainability and Sustainable Digital Twin Engineering

Data in DTs

Digital Shadows

Digital Twin Instanc

Digital Twin

Overview Digital Twin Research (selected topics)

Architectures

- Connect DT with Cyber-Physical Systems and IoT
- Self-Adaptive Digital Twin Architectures ٠
- Process Prediction with Digital Twins
- Asset Administration Shell (AAS)

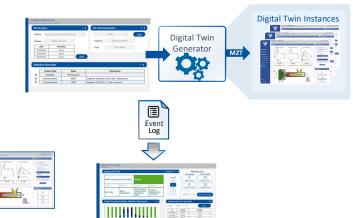
DT Engineering Processes

- Digital Twin Maturity Model
- Creating DTs from Engineering Models
- DevOps Digital Twin Engineering Process

MDE of Digital Twins & Models at Runtime

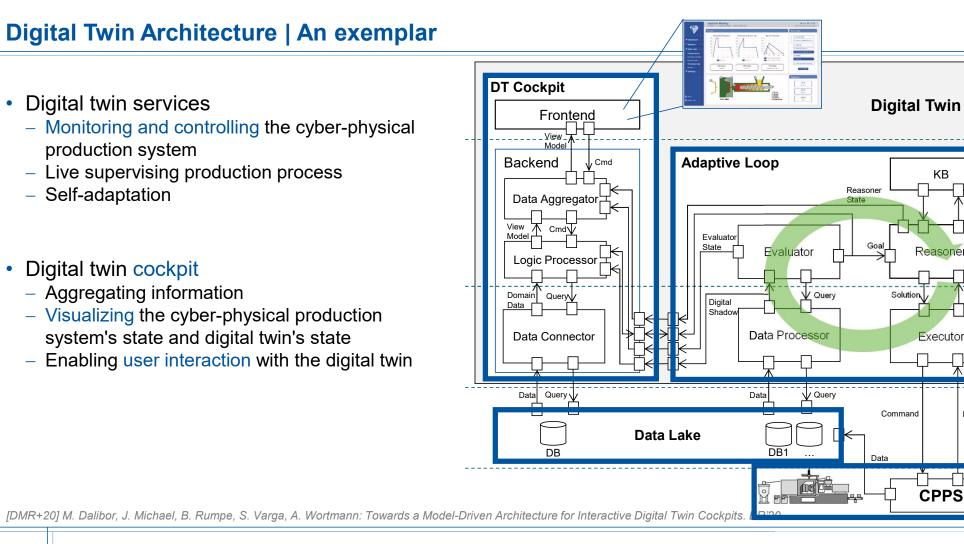
- Generating Digital Twin Cockpits & Generate *Process-Aware* DT Cockpits from Event Logs
- Low-Code Platforms for Model-Driven Digital Twins

Composition


- Methods and Variants
- Integration Challenges for DTs

Sustainability

 Digital Twins for Sustainability and Sustainable Digital Twin Engineering


Digital Shadows

MA `

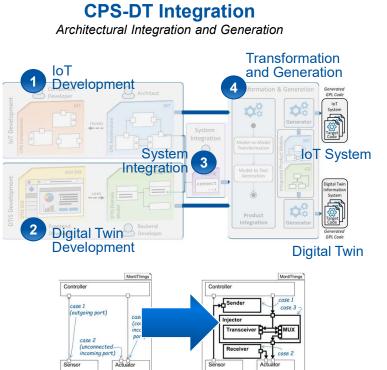
Visualization

Layer

Application Layer

Connection Layer

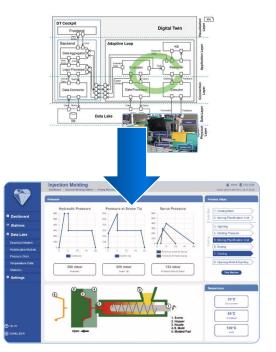
Data Layer


Cyber-Physical Layer

Feedback

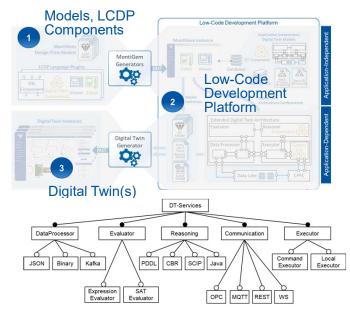
Feedback

Software Engineering | RWTH Aachen


Model-Driven Engineering of Digital Twins

[KMR+20] J. C. Kirchhof, J. Michael, B. Rumpe, S. Varga, A. Wortmann: *Model-driven Digital Twin Construction: Synthesizing the Integration of CPS with Their Information Systems*. MODELS'20

Generating Digital Twin Cockpits


Dashboards for Visualization and Interaction

[DMR+20] M. Dalibor, J. Michael, B. Rumpe, S. Varga, A. Wortmann: *Towards a Model-Driven Architecture for Interactive Digital Twin Cockpits*. ER'20

Low-Code Development Platforms for Digital Twins

2-step Generation and Configuration

[DHM+22] M. Dalibor, M. Heithoff, J. Michael, L. Netz, J. Pfeiffer, B. Rumpe, S. Varga, A. Wortmann: *Generating Customized Low-Code Development Platforms for Digital Twins*. In: Journal of Computer Languages (COLA) 70, Elsevier, 2022.

Software Engineering | RWTH Aachen

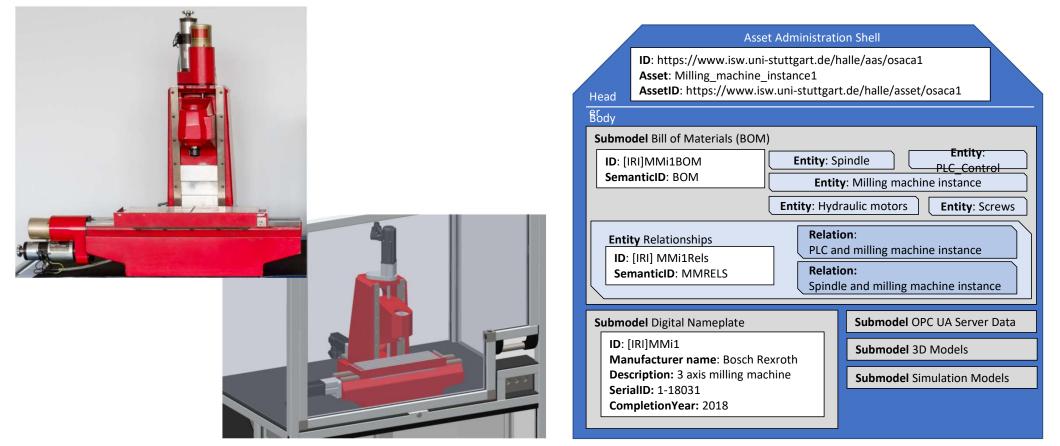
Digital Twin Architecture Requirements based on Common Definitions and Standards

Requirement	The digital twin	Context
R01 (Asset Receiving)	can receive data from its twinned counterpart.	This capability can have the form of automated data flows from the twinned system to the digital twin, dedicated data collection components, or data ingestion functionalities.
R02 (Asset Sending)	can send data to its twinned counterpart.	This capability also is foundational to all investigated digital twin models.
R03 (GUI)	has a user interface.	The form of the UI is generally underspecified but could range from basic visualizations to virtual reality.
R04 (Representing)	can represent its counterpart digitally.	Through data, models. This does not entail requiring a user interface (see R03).
R05 (Synchronizing)	can synchronize (selected) properties with its counterpart.	This is vital for the data-flow-based definition of DTs and made explicit by requiring a synchronization component.
R06 (Reporting)	can report information to selected recipients aside from the AAS, e.g., send a message to the asset operator.	Using unspecified reporting capabilities or a reporting component.

J, Zhang, C. Ellenwein, M. Heithoff, J. Michael, A. Wortmann: Digital Twin and the Asset Administration Shell: An Analysis of 3 AASs Types and their Feasibility for Digital Twin Engineering. SoSyM. 2025.

Software Engineering | RWTH Aachen

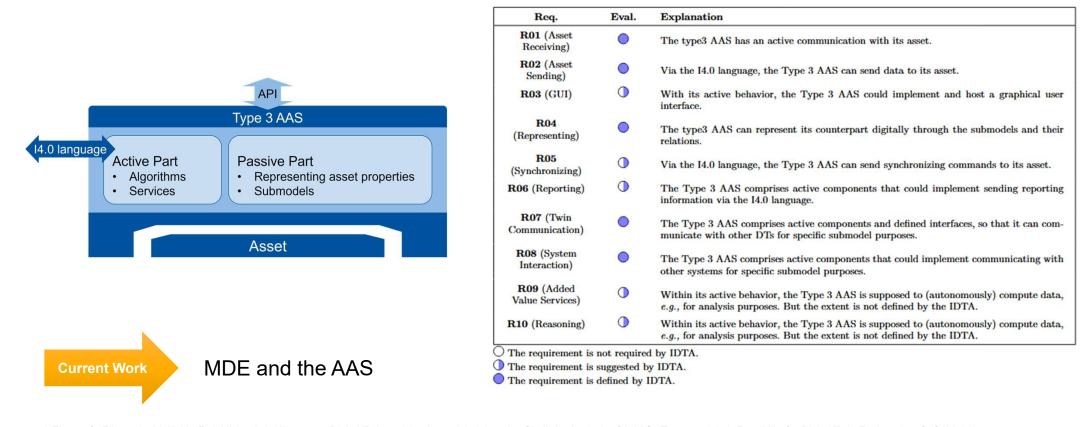
Digital Twin Architecture Requirements based on Common Definitions and Standards


Requirement	The digital twin	Context
R07 (Twin Communication)	can communicate with other digital twins.	Either through unspecified integration means or a dedicated peer interface.
R08 (System Interaction)	can interact with third-party systems e.g., MES or ERP.	This can have the form of dedicated interoperability support components or of interfaces to external data source.
R09 (Added Value Services)	provides services to act on data and models.	Much of the added value functionality of a digital twin is very specific to the AS or the processes on the AS, i.e., it can hardly be generalized. Instead, architectures propose that digital twins yield services that realize this added value functionality specifically tailored to their use cases.
R10 (Reasoning)	can reason about data from/ about the twinned counterpart as well as about data obtained from other systems (cf. R08, R09).	To enable various kinds of such reasoning, the different frameworks propose specific analytics services.

J, Zhang, C. Ellenwein, M. Heithoff, J. Michael, A. Wortmann: Digital Twin and the Asset Administration Shell: An Analysis of 3 AASs Types and their Feasibility for Digital Twin Engineering. SoSyM. 2025.

Software Engineering | RWTH Aachen

3-axis milling machine (OSAKA)



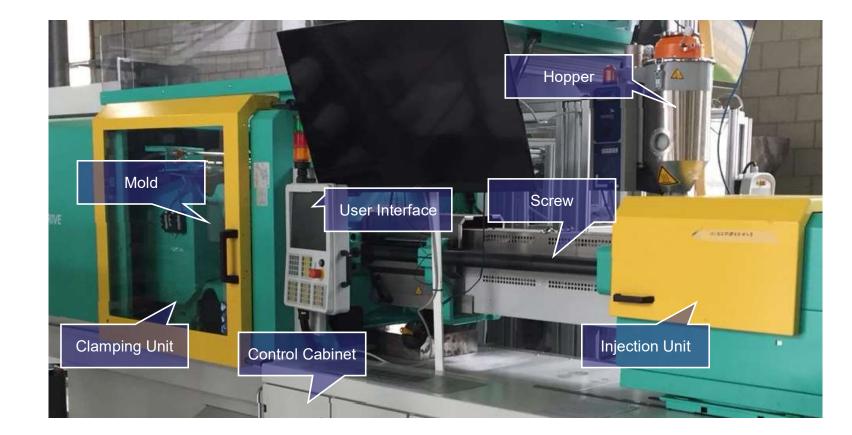
J, Zhang, C. Ellenwein, M. Heithoff, J. Michael, A. Wortmann: Digital Twin and the Asset Administration Shell: An Analysis of 3 AASs Types and their Feasibility for Digital Twin Engineering. SoSyM. 2025.

Software Engineering | RWTH Aachen

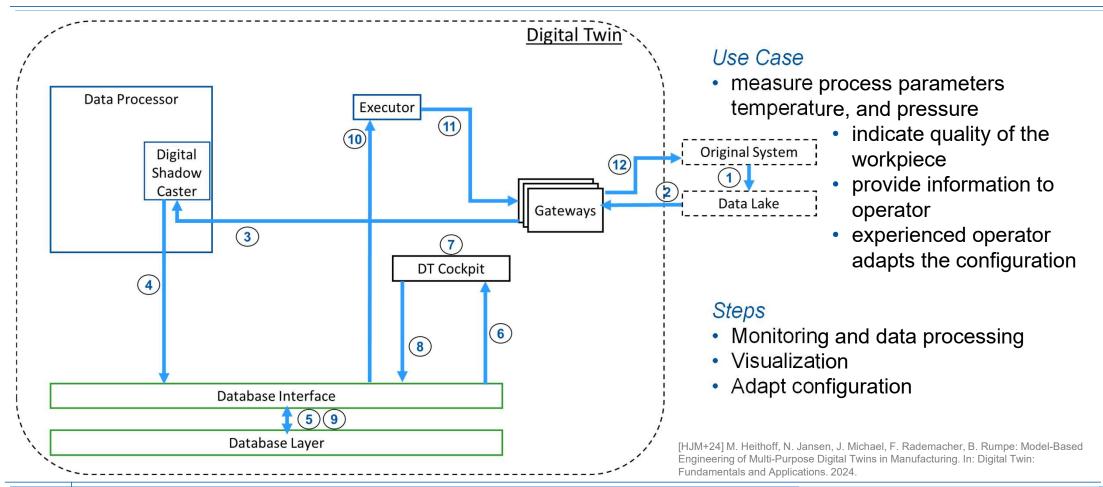
Asset Administration Shell Types (fast forward to type 3)

J, Zhang, C. Ellenwein, M. Heithoff, J. Michael, A. Wortmann: Digital Twin and the Asset Administration Shell: An Analysis of 3 AASs Types and their Feasibility for Digital Twin Engineering. SoSyM. 2025.

Software Engineering | RWTH Aachen

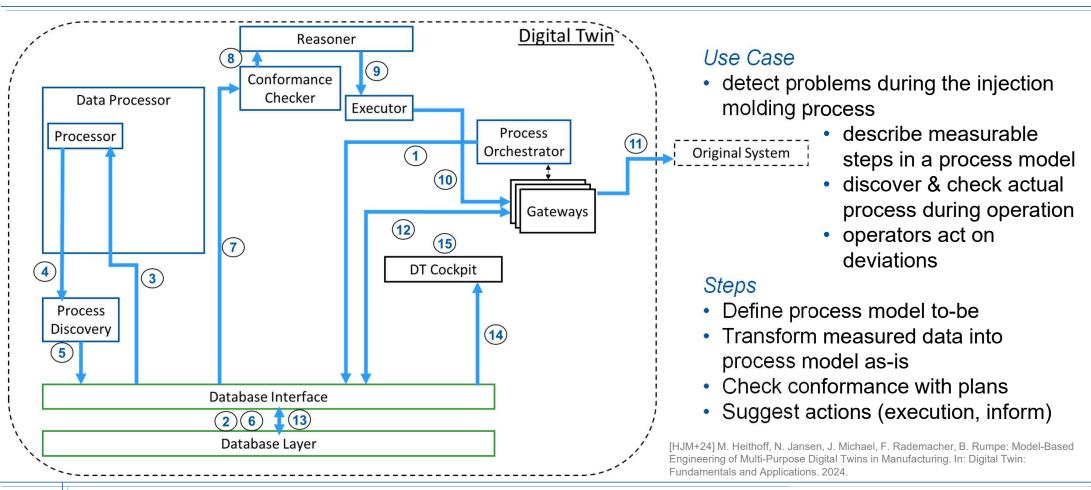

Complex Systems Example | Injection Molding Machine

Challenges


- Highly relevant *context*
- Large amount of data
- Heterogeneous data
- Long life span
- *Real-time* updates
- Changing reality

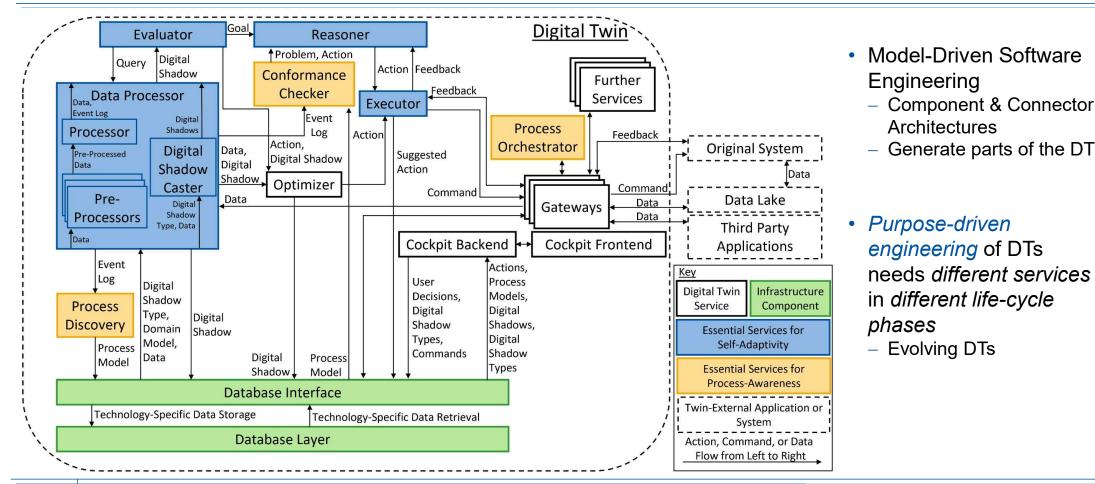
Opportunities

- Reuse system models of CPS
- Data-driven model creation



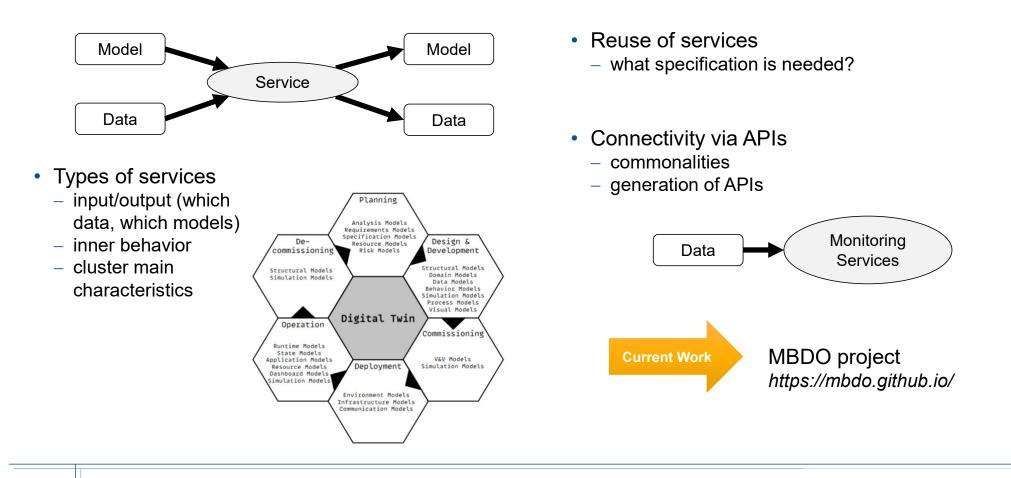
UC1: Monitoring and Providing Information to Human Operators

Software Engineering | RWTH Aachen



UC5: Process Analysis

Software Engineering | RWTH Aachen

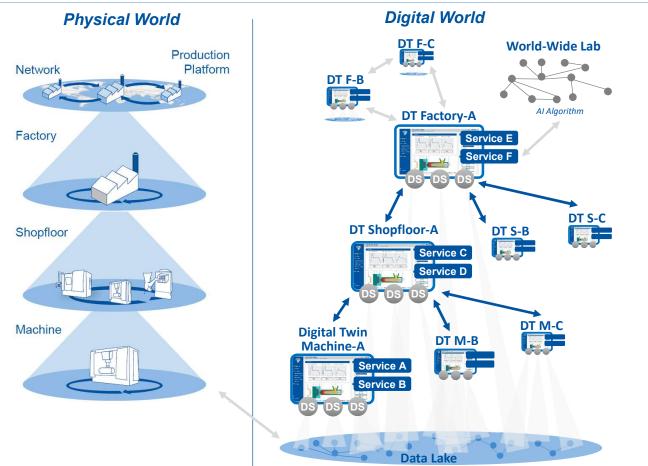


Some (Important) Digital Twin Services

Software Engineering | RWTH Aachen

SE software Engineering RWTHAACHEN UNIVERSITY

Characterizing Services in Digital Twin Architectures



Integration, Composition and Complexity Handling of Digital Twins

Digital Twin Systems-of-Systems in the Production Domain

Current digital twins

- developed for various levels of the real world
- developed and used by different organizational units
- serve different purposes, e.g,
 - analysis, control, behavior prediction,...
- used at different times relative to the represented system, e.g.,
 - before it exists: explore design space
 - during runtime: optimize behavior

. . .

Identified 15 challenges (up to now)

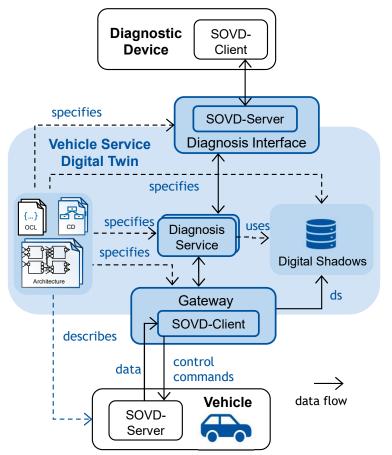
Software Engineering | RWTH Aachen

Integration Challenges | Overview

Horizontal integration of DT parts	Protection of intellectual property	Hierarchical functional abstraction
Vertical composition of DTs	Privacy aspects of data	Composition of interfaces DT2DT and DT2CPS
Composition of DTs for different perspectives	Rights and roles in the integrated DT	Interoperability of models and simulation environments
Connection of independently developed systems to a system-of-system	Composition of heterogeneous DT implementations	Integration of graphical user interfaces
Different lifecycle representations of the original system	Conflicting constraints and requirements	Heterogeneous technology-stack and different distribution patterns of DTs

[MPRW22] M J. Michael, J. Pfeiffer, B. Rumpe, A. Wortmann: Integration Challenges for Digital Twin Systems-of-Systems. SeSoS 2022.

Software Engineering | RWTH Aachen

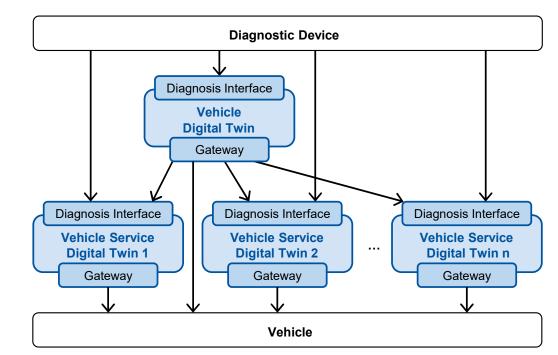

AUTOtech.agil: Model-Driven Digital Twin for Vehicle Diagnostics

Model-driven generation of the DT

 services, Software Oriented Vehicle Diagnosis (SOVD)-compliant interfaces, data containers for digital shadows

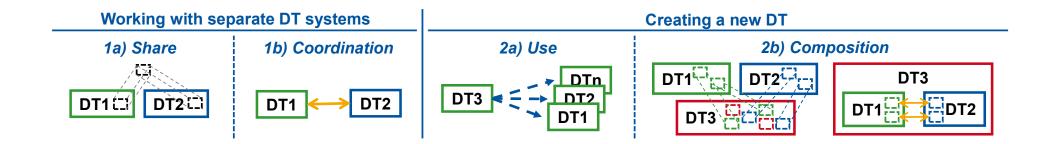
- architecture models for vehicle service structure and behavior
 - used to simulate expected behavior according to specification
 - comparison of real vs expected behavior
- CDs + OCL to model
 - function classes for input/output data and function relations (storage of Digital Shadows)
 - classes of software errors for generation of predefined error-class specific diagnosis queries
- · Pre-processing data in the vehicle services
 - aggregating raw data for regular transmission
 - detailed raw data on-demand

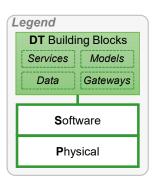
[HKM+23] M. Heithoff, M. Konersmann, J. Michael, B. Rumpe, F. Steinfurth: *Challenges of Integrating Model-Based Digital Twins for Vehicle Diagnosis*. In: ModDiT Workshop at MODELS 2023



Software Engineering | RWTH Aachen

AUTOtech.agil: Hierachical Digital Twin Control Flow


- Receive data from vehicle through gateway
- Send control commands to original system
- Service data saved in respective vehicle service DTs
- Vehicle DT controls vehicle service DTs
 - contains orchestrator DT service to enable diagnosis of service orchestration
 - contains function DT service for each vehicle function involving multiple vehicle services
- SOVD-compliant interfaces enable DT operator to connect via diagnostic device
- Send diagnosis queries to both the vehicle DT and single service DTs



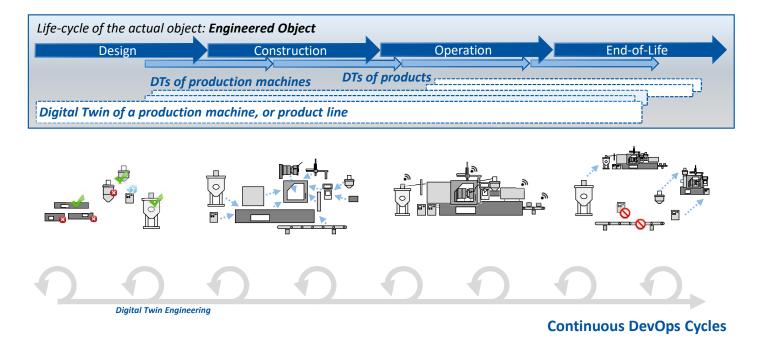
[HKM+23] M. Heithoff, M. Konersmann, J. Michael, B. Rumpe, F. Steinfurth: Challenges of Integrating Model-Based Digital Twins for Vehicle Diagnosis. In: ModDiT Workshop at MODELS 2023

Kinds of Integration

- More complex
 - when splitting it up in concrete building blocks &
 - within different types of one building block

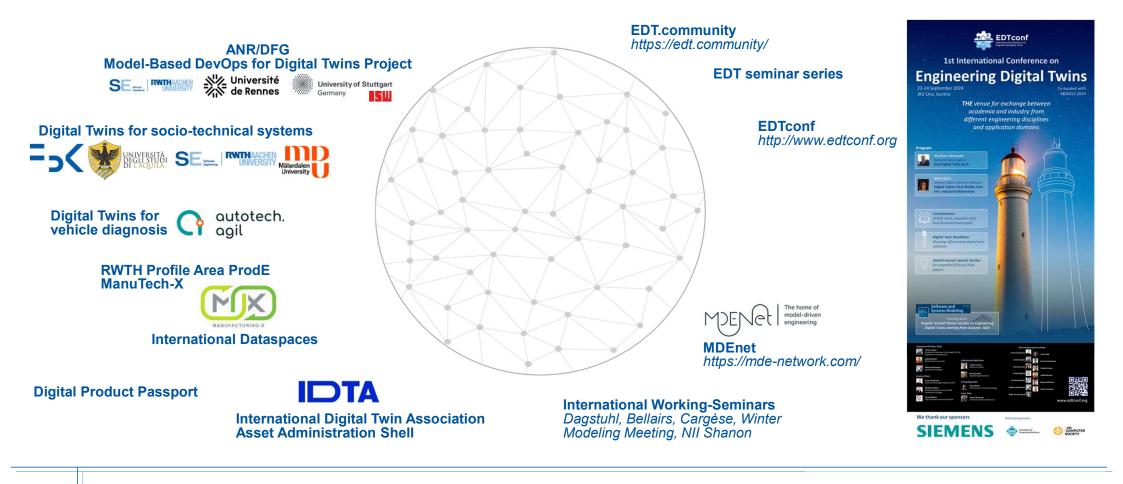
Current Work

Ongoing discussions, e.g., with B. Combemale, J. Kienzle, G. Mussbacher



Evolving Digital Twins and CPS

- Purpose-driven engineering of DTs
 - need *different services* in *different life-cycle phases*
 - want to answer different questions
- CPS is adapted
 - *manufacturer* adapts the system
 - autonomous self-adaptation
 - user wishes to adapt the system behavior
 - *external regulations* make adaption necessary


Challenges

- Services of a Digital Twin are intensively connected to the CPS
- Development cycles/methods for CPS and IT differ radically

Research on Digital Twin Engineering Embedded in International Networks

Software Engineering | RWTH Aachen

International Conference on Engineering Digital Twins (EDTconf) established 2024

1st Edition 23.-24. September 2024 JKU Linz, Austria

Nicolaus Hanowski European Space Agency ESA Digital Twin Earth

Katia Gatti Siemens Digital Industries Software Digital Twins: First Strides Into the Industrial Metaverse

Next Edition: October 2025

Ann Arbor, Michigan, USA

IEEE/ACM conference MODELS 2025

Co-located with

Contributions:
 24 full, short, exemplar and tool demonstration paper

Digital Twin Roadshow Showing-off amazing digital twin solutions

SoSyM Journal Special Section for extended EDTconf 2024 papers

General and PC Co-Chairs 2025 Romina Eramo, Manuel Wimmer, Steffen Zschaler

General and PC Co-Chair 2024 Chair of the Steering Committee Judith Michael

www.edtconf.org

Software Engineering | RWTH Aachen

- Engineering methods to create DTs are still under research
- Model-based approaches support complexity reduction, reuse, evolvement,...
- There is a lot to do...

together?

M michael@se-rwth.de
✓ X @ ★ in

Selected References

Digital Twins

- [KMWZ25] R. Kimmel, J. Michael, A. Wortmann, J. Zhang: *Digital Twins for Software Engineering Processes*. In: ICSE '25 (NIER).
- [ZEH+25] J. Zhang, C. Ellwein, M. Heithoff, J. Michael, A. Wortmann: *Digital Twin and the Asset Administration Shell: An Analysis of 3 AASs Types and their Feasibility for Digital Twin Engineering*. In: SoSyM, 2025.
- [HJM+24] M. Heithoff, N. Jansen, J. Michael, F. Rademacher, B. Rumpe: *Model-Based Engineering of Multi-Purpose Digital Twins in Manufacturing*. In: Digital Twin - Fundamentals and Applications. Springer, 2024.
- [BBM+24] F. Bonetti, A. Bucchiarone, J. Michael, A. Cicchetti, A. Marconi, B. Rumpe: *Digital Twins of Socio-Technical Ecosystems to Drive Societal Change*. In: SAM'24 at MODELS.
- [MDB24] J. Michael, I. David, D. Bork: *Digital Twin Evolution for Sustainable Smart Ecosystems*. In: ME workshop at MODELS'24.
- [MBD+24] J. Michael, J. Blankenbach, J. Derksen, B. Finklenburg, R. Fuentes, T. Gries, S. Hendiani, S. Herlé, S. Hesseler, M. Kimm, J. Kirchhof, B. Rumpe, H. Schüttrumpf, G. Walther: *Integrating models of civil structures in digital twins: State-of-the-Art and challenges*. In: Journal of Infrastructure Intelligence and Resilience 3(3), 2024.
- [MSW24] J. Michael, M. Schwammberger, A. Wortmann: *Explaining Cyber-Physical System Behavior with Digital Twins*. In: IEEE Software 41(1). 2024
- [CJP+23] B. Combemale, J. Jézéquel, Q. Perez, D. Vojtisek, N. Jansen, J. Michael, F. Rademacher, B. Rumpe, A. Wortmann, J. Zhang: *Model-Based DevOps: Foundations and Challenges*. In: ModDiT Workshop at MODELS 2023
- [HKM+23] M. Heithoff, M. Konersmann, J. Michael, B. Rumpe, F. Steinfurth: Challenges of Integrating Model-Based Digital Twins for Vehicle Diagnosis. In: ModDiT WS at MODELS 2023

- [HHMR23] M. Heithoff, A. Hellwig, J. Michael, B. Rumpe: *Digital Twins for Sustainable Software Systems*. In: GREENS 2023
- [FHM+23] S. Fur, M. Heithoff, J. Michael, L. Netz, J. Pfeiffer, B. Rumpe, A. Wortmann: Sustainable Digital Twin Engineering for the Internet of Production. In: Digital Twin Driven Intelligent Systems and Emerging Metaverse, 2023.
- [MNN+22] J. Michael, I. Nachmann, L. Netz, B. Rumpe, S. Stüber: Generating Digital Twin Cockpits for Parameter Management in the Engineering of Wind Turbines. Modellierung'22
- [BMR+22] D. Bano, J. Michael, B. Rumpe, S. Varga, M. Weske: *Process-Aware Digital Twin* Cockpit Synthesis from Event Logs. Journal of Computer Languages (COLA) 70, 2022.
- [DHM+22] M. Dalibor, M. Heithoff, J. Michael, L. Netz, J. Pfeiffer, B. Rumpe, S. Varga, A.
 Wortmann: *Generating Customized Low-Code Development Platforms for Digital Twins*. Journal of Computer Languages (COLA) 70, 2022.
- [MPRW22] J. Michael, J. Pfeiffer, B. Rumpe, A. Wortmann: Integration Challenges for Digital Twin Systems-of-Systems. SESoS'22
- [BHK21] T. Brockhoff, M. Heithoff, I. Koren, J. Michael, J. Pfeiffer, B. Rumpe, M.S. Uysal, W. M. P. van der Aalst, A. Wortmann: *Process Prediction with Digital Twins*. Models@runtime'21
- [DMR+20] M. Dalibor, J. Michael, B. Rumpe, S. Varga, A. Wortmann: *Towards a Model-Driven* Architecture for Interactive Digital Twin Cockpits. ER'20.
- [KMR+20] J. C. Kirchhof, J. Michael, B. Rumpe, S. Varga, A. Wortmann: *Model-driven Digital Twin* Construction: Synthesizing the Integration of Cyber-Physical Systems with Their Information Systems. MODELS'20.

Selected References

Modeling in Industry 4.0

- [KJM+24] I. Koren, M. Jarke, J. Michael, M. Heithoff, L. Tacke Genannt Unterberg, M. Stachon, B.
 Rumpe, W. van der Aalst: Navigating the Data Model Divide in Smart Manufacturing: An Empirical Investigation for Enhanced AI Integration. In: EMMSAD'24.
- [BDJ+22] P. Brauner, M. Dalibor, M. Jarke, I. Kunze, I. Koren, G. Lakemeyer, M. Liebenberg, J. Michael, J. Pennekamp, C. Quix, B. Rumpe, W. van der Aalst, K. Wehrle, A. Wortmann, M. Ziefle: *A Computer Science Perspective on Digital Transformation in Production*. ACM TIOT 3, 2022
- [FMR+22] K. Feichtinger, K. Meixner, F. Rinker, I. Koren, H. Eichelberger, T. Heinemann, J. Holtmann, M. Konersmann, J. Michael, E.- M. Neumann, J. Pfeiffer, R. Rabiser, M. Riebisch, K. Schmid: *Industry Voices on Software Engineering Challenges in Cyber-Physical Production Systems Engineering*. In: ETFA'22, IEEE, 2022.

Digital Shadows

- [MKD+23] J. Michael, I. Koren, I. Dimitriadis, J. Fulterer, A. Gannouni, M. Heithoff, A. Hermann, K. Hornberg, M. Kröger, P. Sapel, N. Schäfer, J. Theissen-Lipp, S. Decker, C. Hopmann, M. Jarke, B. Rumpe, R. Schmitt, G. Schuh: *A Digital Shadow Reference Model for Worldwide Production Labs.* In: Internet of Production: Fundamentals, Applications and Proceedings, 2023.
- [BBD+21] F. Becker, P. Bibow, M. Dalibor, A. Gannouni, V. Hahn, C. Hopmann, M. Jarke, I. Koren, M. Kröger, J. Lipp, J. Maibaum, J. Michael, B. Rumpe, P. Sapel, N. Schäfer, G. J. Schmitz, G. Schuh, and A. Wortmann: *A conceptual model for digital shadows in industry and its application*. ER'21

Modeling Communities

 [MBWM24] J. Michael, D. Bork, M. Wimmer, H. Mayr: Quo Vadis Modeling? Findings of a Community Survey, an Ad-hoc Bibliometric Analysis, and Expert Interviews on Data, Process, and Software Modeling. In: SoSyM 23(1), 2024.

MontiGem

- [BGK+24] C. Buschhaus, A. Gerasimov, J. Kirchhof, J. Michael, L. Netz, B. Rumpe, S. Stüber: Lessons learned from applying model-driven engineering in 5 domains: The success story of the MontiGem generator framework. In: Journal Science of Computer Programming 232, 2024.
- [NMR24] L. Netz, J. Michael, B. Rumpe: From Natural Language to Web Applications: Using Large Language Models for Model-Driven Software Engineering. In: Modellierung 2024.
- [BDMN+24] N. Baumann, J. Diaz, L. Michael, H. Nqiri, J. Reimer, B. Rumpe: Combining Retrieval-Augmented Generation and Few-Shot Learning for Model Synthesis of Uncommon DSLs. In: Modellierung 2024 Workshops.
- [GLM+24] A. Gerasimov, P. Letmathe, J. Michael, L. Netz, B. Rumpe: *Modeling Financial, Project and Staff Management: A Case Report from the MaCoCo Project.* In: EMISAJ 19, 2024.
- [DMM+22] I. Drave, J. Michael, E. Müller, B. Rumpe, S. Varga: *Model-Driven Engineering of Process-Aware Information Systems*. Springer Nature Computer Science, 2022.
- [DGM+21] I. Drave, A. Gerasimov, J. Michael, L. Netz, B. Rumpe, S. Varga: *A Methodology for Retrofitting Generative Aspects in Existing Applications*. JOT 20, 2021
- [GMN+20] A. Gerasimov, J. Michael, L. Netz, B. Rumpe, S. Varga: *Continuous Transition from Model-Driven Prototype to Full-Size Real-World Enterprise Information Systems*. AMCIS'20

Publications

se-rwth.de/publications

Current

Software Engineering | RWTH Aachen