
A Semantic Bridge
Between Executable Specifications

and Formal Verification Tools

Ciprian TEODOROV
https://teodorov.github.io/

ciprian.teodorov@ensta.fr

P4S, Lab-STICC, UMR CNRS 6285

www.obpcdl.org

https://teodorov.github.io/
mailto:ciprian.teodorov@ensta.fr
http://www.obpcdl.org/

ETMF'24 2

Academia @ Lab-STICC, ENSTA Bretagne, Brest
[23-…] Full Professor
[15-23] Associate professor
 Lead the OBP2 Semantic Diagnosis & Formal Verification Lab. (http://www.obpcdl.org/)

[13-15] Postdoc
 Verification MBSE, Concurrent system modeling, and verification (https://gemoc.org/)

Industry @ Dolphin Integration - Grenoble Area

[11-13] Electronics CAD engineer
 Compilation of VHDL, VHDL-AMS for mixed-signal simulation

PhD in Computer Science @ UBO – Brest
[08-11] Model-driven physical design for future nanoscale architectures

ensta-bretagne.fr/teodorov

http://www.obpcdl.org/
https://gemoc.org/
http://ensta-bretagne.fr/teodorov

The Road Today

1. Executable specifications & behavior analysis monitors

2. The shy semantics and the inaccessible monitors.

3. G∀min∃: If the semantics opens up the monitors are interested.

4. When G∀min∃ experiences the real world.

5. Sum up and ways forward.

3/50

Context: Domain-specific languages

Domain-specific languages enable
abstractions (models) focused on the domain of

discourse.
tools (conceptual or computer-assisted)

adapted to the domain

Domain experts rely on a shared domain-specific language
to alleviate these problems.

General-purpose languages introduce accidental complexities.

4/50

Context: Executable specifications

• eXecutable Domain-Specific Languages (xDSL) for handling behaviors.
• Programming languages = prescriptive xDSLs

 force the computer to perform some behavior.

• Thinking above the code [1], specifying, requires a problem-oriented mindset

• Executable-Specifications capture the behavior to study it in captivity
• Descriptive xDSL that reflects how the object behaves

[1] Leslie Lamport: Thinking Above the Code
[2] (https://www.merriam-webster.com/dictionary/descriptive)

Descriptive [2]:
• presenting observations about the characteristics of something
• factually grounded or informative rather than normative, prescriptive or emotive

5/50

https://www.youtube.com/watch?v=-4Yp3j_jk8Q
https://www.merriam-webster.com/dictionary/descriptive

a Zoo of Executable Specification Languages

Physical processes

• Calculus [Newton and Leibniz]

Temporal logic

• LTL

• CTL*

• Temporal Logic of Actions (TLA+)

Computable functions

• Lambda calculus

• Turing machines

Automata

• NFA

• PDA

• Statecharts

Concurrency

• Petri nets

• CSP – Hoare

• Actor models – Hewitt

HDLs

• VHDL[-AMS]

• [System-]Verilog[-A]

AND

x in

y in

o out

AND

6/50

Terminology

Language monitoring[KHC91] is the process of observing
 the execution of a computer program
expressed in a given programming language.

[KHC91] Amir Kishon, Paul Hudak, and Charles Consel. 1991. Monitoring semantics: a formal framework for specifying, implementing, and

reasoning about execution monitors. In Proceedings of the ACM SIGPLAN 1991 conference on Programming language design and

implementation (PLDI '91). Association for Computing Machinery, New York, NY, USA, 338–352. https://doi.org/10.1145/113445.113474

7/50

http://dx.doi.org/10.1145/113445.113474

Terminology: In our context

In the following:

 the tools that enable this process will be referred to as:

 language monitors, or simply monitors

 runtime monitors are a subclass of language monitors

Language monitoring[KHC91] is the process of observing
 the behavior of an executable specification
expressed in a given specification language.

8/50

a Zoo of Language Monitors

Executor

Runtime Monitor

• Monilogger [7]

Debugger

• Moldable [1]

• Omniscient [2]

• Multiverse [3]

Profiler

• MetaSpy [4]

• DSProfile [5]

Tracer

• Monilogger [7]

Model-checker

• LTSmin [6]
Testing, Coverage,

Fault Localization [8]

9/50

[1] Chiş et al. ”The Moldable Debugger: A Framework for Developing Domain-Specific Debuggers.” SLE 2014.

[2] Bousse et al. “Omniscient Debugging for Executable DSLs.” JSS 2018.
[3] Torres Lopez et al. "Multiverse debugging: Non-deterministic debugging for non-deterministic programs." ECOOP 2019.
[4] Bergel et al. "Domain-specific profiling." TOOLS 2011.

[5] Sloane et al. "Domain-specific program profiling and its application to attribute grammars and term rewriting." SCP 2014.
[6] Kant et al. ”LTSmin: High-Performance Language-Independent Model Checking.” TACAS 2015.
[7] Leroy et al. “Monilogging for executable domain-specific languages.” SLE 2021

[8] Khorram et al. “From Coverage Computation to Fault Localization: A Generic Framework for Domain-Specific Languages.“ SLE 22

Manuel Wimmer
Keynote @ MLE’23

Program Verification Tools [1]

[1] Sophie Lathouwers and Vadim Zaytsev. 2022. Modelling program verification tools for software

engineers. In Proceedings of the 25th International Conference on Model Driven Engineering Languages and

Systems (MODELS '22). Association for Computing Machinery, New York, NY, USA, 98–108.

https://doi.org/10.1145/3550355.3552426

tool papers from TACAS 2016–2021
all papers from CAV 2017–2021

https://slebok.github.io/proverb/

http://dx.doi.org/10.1145/3550355.3552426
https://slebok.github.io/proverb/

Questions to ponder

Does your favorite specification language:

• has a debugger? Can it go back in time?

• comes with a model-checker?

• offers support for random testing?

Why do we still lack these basic tools for so many practically

important specification languages?

11/50

Sustainability?
How to write code that survives?

Languages

Monitors

Platforms

How to bridge the gap between
 the specification languages
and the language monitors
running on ever more heterogeneous platforms?

12/50

2. The Shy Semantics
and the Inaccessible Monitors.

• Understanding the problem

• Looking for high-level solutions

13/50

gap

gap

Many semantics Many Monitors

14/50

Formal
Semantics

Executable
Specification

Monitor 2

Model 2

Result 2

Monitor 1

Model 1

Result 1

Monitor 3

Model 3

Result 3

Processor

codeExecutable
Semantics

Processor

equivalence
needed

transformation
| compilation

interprets

gives
meaning

A#1

A#2

A#3

A#4

A#5

A#6

A#7

V. BESNARD, “EMI: Une approche pour unifier l’analyse et l’exécution embarquée à l’aide d’un interpréteur de modèles pilotable”,
Application aux modèles UML des systèmes embarqués, Ph.D. Thesis, Dec. 2020.

Spin [Hol97]

Divine [Bar+17]

SPOT [DP04], LTSmin [Kan+15]

Java PathFinder [Bra+00]

AnimUML [MODELS’20]

EMI [SoSyM’21]

P#1 Semantic gap between design model and analysis
model

P#2 Semantic gap between design model and
executable code

P#3 Equivalence problems between the analysis model
and executable code

, IF [Dragomir+22]

15/50

A#1

A#2

A#4

A#5

A#7

A#1 A#2 A#3 A#4 A#5 A#6 A#7

P#1 ✘ ✘ ✓ ✓ ✓ ✓ ✓

P#2 ✘ ✘ ✘ ✘ ✘ ✓ ✓

P#3 ✘ ✘ ✘ ✘ ✘ ✘ ✓

A#3 A#6

V. BESNARD, “EMI: Une approche pour unifier l’analyse et l’exécution embarquée à l’aide d’un interpréteur de modèles pilotable”,
Application aux modèles UML des systèmes embarqués, Ph.D. Thesis, Dec. 2020.

16/50

3. G∀min∃: If
the Semantics Opens Up the
Monitors are Interested.
• Requirements

• G∀min∃ Semantic Language Interface

• An illustration

17/50

Execution & Monitoring

Subject Language

Make it simple

18/50

Semantic
Language

Interface (SLI)
MonitorSemantics

Syntax
Definition

Model
providesA

conformsTo

interprets dependsOn

Properties
(metrics)

computes

Q1: What is the SLI interface?

Q2: How to build the monitors?

Execution & Monitoring

Subject Language

SLI Goals

19/50

Semantic
Language

Interface (SLI)
MonitorSemantics

Syntax
Definition

Model
providesA

conformsTo

interprets dependsOn

Properties
(metrics)

computes

[G01] Completeness
[G02] Non-Interference

[SLE’16]

[G05] Composability
[G06] Portability
[G07] Genericity
[G08] Unanticipated Monitoring
[G09] Ease the Integration

[G03] Break the Rules
[G04] Minimize the Gap

gap

20/50

gap

Formal
Semantics

Executable
Specification

Executable
Semantics

Processor

interprets

gives
meaning

20/50

Semantic
Language

Interface (SLI)
Monitor 3

Model 3

Result 3

Semantic
Language

Interface (SLI)

One semantics Many Monitors

A#7

Monitor 1

Model 1

Result 1

Monitor 2

Model 2

Result 2

Connect the semantics
not the syntax!

Execution & Monitoring

Monitor

Subject Language

Monitor Structure

21/50

Semantic
Language

Interface (SLI)

Monitoring
Bridge

Semantics

Syntax
Definition

Model
providesA

conformsTo

interprets dependsOn

Execution
Controler

Sequencer
Emptiness

Checker
Interactive

runs

Properties
(metrics)

computes

G∀min∃ Semantic Language Interface (SLI)
SLI {
 semantics: (C A) {
 initial: set C
 actions: C → set A
 execute: A → C → set C
 }

 evaluate: E → (C x A x C) → V -- questions

 reduce: R → C → ⍺ -- reductions

 π: (C A V ⍺ T) {…} -- projections
}

Generic Types:

22/50

execution step

Configuration:

Example CEK-style
C ≜ ⟨control, env, [Frame]⟩

Action:

Example CEK-style
A ≜ from-predicate ⟶ to-C

Expression Value

Similar semantic approaches:

Lamport L. “The temporal logic of actions.” TOPLAS. 1994 https://doi.org/10.1145/177492.177726

Charguéraud, et al. “Omnisemantics: Smooth Handling of Nondeterminism.” TOPLAS. 2023, https://doi.org/10.1145/3579834

https://doi.org/10.1145/177492.177726
http://dx.doi.org/10.1145/3579834

Expression

CEK-style
Semantics

SLI

interprets

Sequencer(sli) {
 current = sli.initial.any
 while (current != NULL) {
 action = sli.actions(current).any
 if (actions == NULL) break;
 current= sli.execute(action,current).any
 }
}

• If sli exposes a deterministic semantics → exactly one sequence
 <=>
 ∀ a c, |initial| = |actions c| = |execute a c| = 1

Sequencer

execute

23/50

SLI Semantics for a CEK-style abstract machine
rules: { lookup, app, arg, body, … }

SLI.semantics: (C A) {
 initial: set C := {⟨exp, ∅, []⟩}

 actions: C → set A
 | c => rules.where(r => r.enabledIn c)

 execute: A → C → set C
 | r c => { r.applyIn c }
}

Example CEK-style
C ≜ ⟨control, env, [Frame]⟩

A ≜ from-predicate ⟶ to-C

4. When G∀min∃ experiences
 the real world.

24/50

• Some experiences unravel reusable monitoring bridges
• Exploring hardware execution
• Multiverse debugging made simple and more powerful
• Transfer to commercial products -- OBP2 inside
• Transfer to future practitioners -- From zero to model-checker

Semantic
Language
Interface

Projects:
ONEWAY (DGAC)

Ker-SEVECO (R.Bretagne,EU)

JoinSafeCyber (AID)

VeriMoB (RAPID)

EASE4SE (RAPID)

DEPARTS (PIA)

GeMoC (ANR)

Safety & Liveness
Temporal Requirements

FiacreTLA+

AEFDT

EMI-UMLAnimUML

Matthias
PASQUIER
2024

Emilien
FOURNIER
2022

Valentin
BESNARD
2020

Luka
LE ROUX
2018

Vincent
LEILDE
2019

Nicolas
SUN
2022

J.C. ROGER B. DROUOT

T. BOLLENGIER

F. GOLRA

OBP2 Research Vehicle

Commercial Products [PragmaDEV] Academic Prototypes [in-house] Reuse [OTS]

2015-2025

L.LE ROUX

http://www.obpcdl.org/bare-metal-uml/
https://animuml.kher.nl/AnimUML.html

Model-checker

AEFD
Semantics

SLI

Emptiness
Checker

⨯
SLI

Property
Semantics

SLI

interprets

interprets

verify

Safety
Specification

PhD Luka
LE ROUX

26/50

AEFD
Specification

PIA DEPARTS

⨯
SLI

Language-agnostic
synchronous composition operator

Model-checker

CDL Prop
Specification

Emptiness
Checker

⨯
SLI

CDL
Semantics

SLI
interprets

SLI

Verification
Guide

Guide
Semantics

SLI⨯ interprets

Fiacre
Specification

Fiacre
Semantics

SLI

interprets

verify

PhD Luka
LE ROUX

PastFree[ze]
Checker

Partially Bounded
Context-Aware Verification,

27/50

PIA DEPARTS

Past-Free[ze] Reachability Analysis: Reaching Further

with DAG-directed Exhaustive State-space Analysis.

[STVR’16]

[SEFM’19]

Model-checker

Executable
Specification

Semantics SLI

Temporal
Specification

Emptiness
Checker

⨯
SLI

Property
Semantics

SLI

interprets

interprets

verify

execute

Sequencer

28/50

Bare-metal STM32 - ARM A9

Model-checker

UML
Specification

EMI
Semantics

SLI

GPSL
Specification

Emptiness
Checker

⨯
SLI

GPSL
Semantics

SLI

interprets

interprets

Sequencer

PhD Valentin
BESNARD

Unified LTL Verification and

Embedded Execution of
UML Models,

29/50

[MODELS’18]

Formalization in
L∃∀N Theorem Prover

Bare-metal STM32 - ARM A9

Model-checker

PUSM
Specification

Emptiness
Checker

⨯
SLI

PUSM EMI
Semantics

SLI
interprets

Scheduler SLI

Scheduling
Policy

UML
Specification

EMI
Semantics

SLI

interprets interprets

Sequencer

PhD Valentin
BESNARD

30/50

Unified verification and monitoring of

executable UML specifications.

A transformation-free approach.

[SoSyM’21].
Formalization in

L∃∀N Theorem Prover

Bare-metal STM32 - ARM A9

Model-checker

PUSM
Specification

Emptiness
Checker

⨯
SLI

PUSM EMI
Semantics

SLI
interprets

Scheduler SLI

Scheduling
Policy

UML
Specification

EMI
Semantics

SLI

interprets interprets

UML
Environment

EMI
Semantics

SLI ||
SLIinterprets

Sequencer

PhD Valentin
BESNARD

31/50

Unified verification and monitoring of

executable UML specifications.

A transformation-free approach.

[SoSyM’21].
Formalization in

L∃∀N Theorem Prover

||
SLI

Language-agnostic
asynchronous composition
operator

Bare-metal STM32 - ARM A9

Model-checker

PUSM
Specification

Emptiness
Checker

⨯
SLI

PUSM EMI
Semantics

SLI
interprets

Scheduler SLI

Scheduling
Policy

UML
Specification

EMI
Semantics

SLI

interprets interprets

UML
Environment

EMI
Semantics

SLI ||
SLIinterprets

Filter

SLI

Filtering
Policy

interprets

Sequencer

PhD Valentin
BESNARD

32/50

Unified verification and monitoring of

executable UML specifications.

A transformation-free approach.

[SoSyM’21].
Formalization in

L∃∀N Theorem Prover

Model-checker

Bare-metal STM32 - ARM A9

PUSM
Specification

Emptiness
Checker

⨯
SLI

PUSM EMI
Semantics

SLI
interprets

Scheduler SLI

Scheduling
Policy

UML
Specification

EMI
Semantics

SLI

interprets interprets

Sequencer

UML
Environment

EMI
Semantics

SLI ||
SLIinterprets

PUSM Monitor
Specification

⨯ SLI

PUSM EMI
Semantics

SLI

interprets

Acceptance
Asserter

Sequencer

Filter

SLI

Filtering
Policy

PhD Valentin
BESNARD

interprets

33/50

Verifying and Monitoring UML Models with

Observer Automata. [MODELS’19].

Unified verification and monitoring of

executable UML specifications.

A transformation-free approach.

[SoSyM’21].
Formalization in

L∃∀N Theorem Prover

4. When G∀min∃ experiences
 the real world.

34/50

• Some experiences unravel reusable monitoring bridges
• Exploring hardware execution
• Multiverse debugging made simple and more powerful
• Transfer to commercial products -- OBP2 inside
• Transfer to future practitioners -- From zero to model-checker

Zynq XC7Z020-CLG484

Artix-7 FPGA

VHDL
Model

SLI
Menhir
VCore

ARM A9

Zynq XC7Z020-CLG484

Artix-7 FPGA

EMI
Semantics

SLI
Menhir
VCore

UML
Specification

DVE C
Semantics

SLI
Menhir
VCore

ARM A9

Zynq XC7Z020-CLG484

Artix-7 FPGA

STM32F4 Discovery

ARM A9 x64

Workstation

EMI
Semantics

SLI

UML
Specification

GPSL
Properties

Virtex UltraScale+ XCVU37P FPGA

DVE
Specification

VHDL
Model

SLI
Dolmen
VCore

DVE2VHDL

DVE
Properties

PhD Emilien
FOURNIER

Région Bretagne
CPER CyberSSI

[DSD’20]

[FPL’21]

[DATE’22]

35/50

PhD Valentin
BESNARD

From Embedded
to Hardware Execution

Guided by TLA+ formalization

Virtex FPGA• Swarm of 32 deeply pipelined verification cores

• Distributed control architecture, for large SSI-FPGAs

• 4874x average speedup over software (Divine 3)

874 X

271 X

7545 X

2552 X
5828 X

47 X

11 X

359 X

8172 X

23091 X

1E-2

1E-1

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

Bake
ry

6pro
p2

Bake
ry

6pro
p3

Bake
ry

7pro
p2

Bake
ry

7pro
p3

Bake
ry

8pro
p3

Ele
va

to
r4

pro
p2

Ele
va

to
r4

pro
p3

Ip
ro

to
co

ls5
pro

p4

Sz
ym

ansk
i3

pro
p3

Sz
ym

ansk
i4

pro
p3

Dolmen[19,12] Dolmen[19,19]

Maction

Maction

Maction

Maction

Maction

Maction

Propaction

Propaction

Propaction

Propaction

Frontier

Pred

MixerKnown

distribute serialize distribute serialize

Dolmen: 1st Hardware Swarm Engine
for Both Safety & Liveness Verification

Région Bretagne
CPER CyberSSI

PhD Emilien
FOURNIER

[DATE’22]

36/50

4. When G∀min∃ experiences
 the real world.

37/50

• Some experiences unravel reusable monitoring bridges
• Exploring hardware execution
• Multiverse debugging made simple and more powerful
• Transfer to commercial products -- OBP2 inside
• Transfer to future practitioners -- From zero to model-checker

Multiverse Debugger
Semantics

run2breakpoint

step

jump

select

SLI

Temporal
Breakpoints

Reduction

[SLE’23]

[MODELS’22]

PhD Matthias
PASQUIER

AnimUML
Specification

AnimUML
Semantics

SLI

interprets

Interactive
Controler 38/50

1 2 3

4

7

5 6

9

8

User

uses

Non-trivial Monitor Composition

Scalability

+Expressivity, no instrumentation

Formalization in
L∃∀N Theorem Prover

Language-agnosticSLI

Multiverse Debugger
Semantics

run2breakpoint

step

jump

select

SLI

Temporal
Breakpoints

Reduction

[SLE’23]

[MODELS’22]

PhD Matthias
PASQUIER

AnimUML
Specification

AnimUML
Semantics

SLI

interprets

Interactive
Controler 39/50

1 2 3

4

7

5 6

9

8

User

uses

Non-trivial Monitor Composition

Scalability

+Expressivity, no instrumentation

Formalization in
L∃∀N Theorem Prover

Language-agnosticSLI

40/50
https://github.com/ESEO-Tech/AnimUML

Designing, Animating, and Verifying
Partial UML Models [MODELS’20].

AnimUML

Branching
history

Coverage
as heatmap overlay

https://github.com/ESEO-Tech/AnimUML

4. When G∀min∃ experiences
 the real world.

41/50

• Some experiences unravel reusable monitoring bridges
• Exploring hardware execution
• Multiverse debugging made simple and more powerful
• Transfer to commercial products -- OBP2 inside
• Transfer to future practitioners -- From zero to model-checker

Model-checker

Emptiness
Checker

⨯
SLI

SLI

RAPID VeriMoB
DGAC OneWay

interpretsGPSL
Semantics

GPSL
Specification

42/50

[ERTS’20]

[CSD&M’20]

43/50

inside

Successful transfer to industry lead to
- Adoption in new products – PROCESS for BPMN
- Empowering the practitioners – coverage, unreachable paths, …
- Retrofitting existing products – STUDIO for SDL

4. When G∀min∃ experiences
 the real world.

• Some experiences unravel reusable monitoring bridges
• Transfer to commercial products -- OBP2 inside
• Exploring hardware execution
• Multiverse debugging made simple and more powerful
• Transfer to future practitioners -- From zero to model-checker

44/50

Z2MC
Safety & Liveness

From Zero to Model-
Checker in 28 Hours

Master-level class at ENSTA Bretagne
the last 2 years
seven 4-hour sessions

45/50

SLI

Reachability

⨯
SLI

eDSL
Dependent
Semantics

SLI
interprets Python eDSL

Specification

eDSL
Semantics

interprets

Python eDSL
Model

Büchi
emptiness
checking

1. Model-independent graph traversal
2. Predicate-based search and witness construction
3. SLI by refactoring the graph API
4. Lambda-based guard-action eDSL with SLI semantics
5. Dependent SLI semantics
6. Step-based synchronous composition
7. Büchi emptiness checking

Configuration
Predicate

searches

Transfer to
Future Practioners

5. Sum Up & Ways Forward
Conclusion

Major Breakthroughs

Perspectives

Track Record

46/50

Languages

Monitors

Platforms

47/50

industrial: BPMN, SDL
reuse: TLA+, Fiacre
academic: UML, AEFD

Model-checker
Multiverse Debugger
Runtime Monitors

G∀min∃ = a way to bridge the gap between
 the specification languages
and the language monitors
running on ever more heterogeneous platforms?

embedded: Bare-metal
hardware: FPGA

Major Contributions

A sustainable & composable approach for language monitoring

 simple and versatile, the SLI offers a radically better cost structure
 step-based evaluation plays a major role

1st Hardware Swarm Engine for Both Safety and Liveness Verification

 pipelined reformulation of the verification architecture

Established a continuum between debugging and model-checking

 language-agnostic under-approximations for scalability
 temporal breakpoints for expressivity without instrumentation

48/50

Sch

Mon

MC
0

D

MC
1

MC
2

Language
Definition

DSL Model

C

T

OD MD
SLI

Meta
Language

To
o

l F
am

ily

Family members

Sch

Reuse based on
Confluent Tool Requirements

Hypothesis:
black box semantics
-> any meta-language

Pivot
Langugage

Pivot
Model

DSL Model

Meta
Langugage

Language
Definition

DSL Model

T C D

T C D

Reuse based on
Pivot Language

Reuse based on
Meta-Language

Manuel Wimmer
Keynote @ MLE’23

Meta
Language

Meta
Language

Meta
Language

50/50

Generalizing the G∀min∃ language monitoring
for the future of specification-driven engineering.

Ways Forward

51/50

Composition?

Language-agnostic?
 Without redoing the language

Collaborative Live Modelling

Joeri EXELMANS

[…]

[SoSyM’24]

[MLE’23]

Platform-induced
abstraction

Model-checker 52/50

Ways Forward

SLISemantics

interprets

Specification

SLI

Timing Spec

interprets

Property

Emptiness
Checker

⨯
SLI

Property
Semantics

SLI
interprets

Timed

How to obtain a timed automata
abstraction on-the-fly?

1st successful step: DGAC ONEWAY
Timed BPMN without transformations

Platform constraints

Subject Language

Model-checker 53/50

Ways Forward

SLISemantics A

interprets

Spec A

Property

Emptiness
Checker

⨯
SLI

Property
Semantics

SLI
interprets

Can the SLI be used for defining
semantic-level operators?

SLISemantics B

interprets

Spec B SLI

Composition
Policy

interprets

Composer

||
SLI

Language-agnostic
asynchronous composition
operator

Modular semantics and proofs

Composition algebras: channel, clocks, events

Model-checker 54/50

Ways Forward

SLISemantics A

interprets

Spec A

Property

Emptiness
Checker

⨯
SLI

Property
Semantics

SLI
interprets

Filtering
Policy

SLISemantics B

interprets

Spec B SLI

Composition
Policy

interprets

Composer SLI

Abstraction
Spec

interprets

abstraction

1st successful step: DGAC ONEWAY
Timed BPMN

How to maximize semantic reuse for
cheaper overapproximations?

Can the SLI help to bring Modular SOS
[1] to practice?

[1] Peter D. Moses, “Foundation of Modular SOS”,
Mathematical Foundations of Computer Science 1999, Lecture
Notes in Computer Science, vol 1672. Springer.

Modular semantics and proofs

55/50

Model-checker

SLISemantics

interprets

Specification

Property

Sequencer

⨯
SLI

Property
Semantics

SLI
interprets

SLI

Emptiness
checker

Ways Forward
1st successful step: PhD E. FOURNIER
TLA+ formalization of reachability
 subsuming explicit and symbolic
traversals

Does the separation
execution controller -- algorithm logic
simplifies algorithm design and analysis?

Modular semantics and proofs

56/50

Generalizing the G∀min∃ language monitoring
for the future of specification-driven engineering.

How to get a provably sound language-agnostic
portfolio-based diagnosis toolkit?
Will it be fast enough?

How to standardize the SLI?
• Harmonization with the LSP and Debug Adapter Protocol

Ways Forward

How software industry revolution is changing our lives?

s

Source: 5 mins of google search “software revolution”

Are live specification environments
the next revolution?

Let’s get cracking,
and Talk About It.

https://yourstory.com/mystory/how-the-revolution-in-software-industry-is-changin

	Default Section
	Dia 1: A Semantic Bridge Between Executable Specifications and Formal Verification Tools
	Dia 2
	Dia 3: The Road Today

	Context
	Dia 4: Context: Domain-specific languages
	Dia 5: Context: Executable specifications
	Dia 6: a Zoo of Executable Specification Languages
	Dia 7: Terminology
	Dia 8: Terminology: In our context
	Dia 9: a Zoo of Language Monitors
	Dia 10: Program Verification Tools [1]
	Dia 11: Questions to ponder
	Dia 12: How to bridge the gap between the specification languages and the language monitors running on ever more heterogeneous platforms?

	Problem
	Dia 13: 2. The Shy Semantics and the Inaccessible Monitors.
	Dia 14: Many semantics Many Monitors
	Dia 15
	Dia 16

	Contributions
	Dia 17: 3. G∀min∃: If the Semantics Opens Up the Monitors are Interested.
	Dia 18: Make it simple
	Dia 19: SLI Goals
	Dia 20: One semantics Many Monitors
	Dia 21: Monitor Structure
	Dia 22: G∀min∃ Semantic Language Interface (SLI)
	Dia 23
	Dia 24: 4. When G∀min∃ experiences the real world.
	Dia 25
	Dia 26
	Dia 27
	Dia 28
	Dia 29
	Dia 30
	Dia 31
	Dia 32
	Dia 33
	Dia 34: 4. When G∀min∃ experiences the real world.
	Dia 35
	Dia 36
	Dia 37: 4. When G∀min∃ experiences the real world.
	Dia 38
	Dia 39
	Dia 40
	Dia 41: 4. When G∀min∃ experiences the real world.
	Dia 42
	Dia 43
	Dia 44: 4. When G∀min∃ experiences the real world.
	Dia 45: From Zero to Model-Checker in 28 Hours
	Dia 46: 5. Sum Up & Ways Forward
	Dia 47: G∀min∃ = a way to bridge the gap between the specification languages and the language monitors running on ever more heterogeneous platforms?
	Dia 48: Major Contributions
	Dia 49
	Dia 50: Ways Forward
	Dia 51
	Dia 52: Ways Forward
	Dia 53: Ways Forward
	Dia 54: Ways Forward
	Dia 55: Ways Forward
	Dia 56: Ways Forward

