Relating (Multi-Paradigm) Modelling Concepts

Joachim Denil and Hans Vangheluwe

Tuesday 25 March 2025

Multi-* == Ambitious

MULTI - COMPONEN / ARCHITER UNG ALIGN DIEW (THE SPACE -) @FORMALISM -(ousidency (Tipe B) FIDE (IV) ADEN (OUSIDENCY E) A 135 (KANIDON) Work FIDW/ Cycle B) FIDE (IV) ADEN (COULDAD DRAWN) B) DEVOLUTION _ SVAKEHOLDER MADUCIÈNE LEVEL ----DEDUCIÈNE DURPOSE PRAGMATIKS B PRODUCT (FAMILIES) AV PEG. DO. REN B DOMAIN PEG. DO. REN B DOMAIN PROSOUNCE/ B DOMAINATIO/PHANDIG/WOMED UNW TRITT - KULTI FOR - PLATFORM @ VENSION tom. / Smith / Bodrett B PHONENANCE. - Phase (life-cycle)

Allgemeine Modelltheorie

1973

"Model" Features

mapping feature	A model is based on an original. ⁴
reduction feature	A model only reflects a (relevant) se- lection of an original's properties.
pragmatic feature	A model needs to be usable in place of an original with respect to some pur- pose.

To an observer B, an object A* is a model of an object A to the extent that B can use A* to answer questions that interest him about A.

Matter, Mind and Models

	Real-World Model	Virtual Model	
Real-World SuS	Image: state		
Virtual SuS			

	Real-World Model	Virtual Model	
Real-World SuS			
Virtual SuS			

	Real-World Model		Virtual Model
Real-World SuS			
Virtual SuS	$egin{aligned} rac{dx}{dt} &= lpha x - eta xy, \ rac{dy}{dt} &= -\gamma y + \delta xy, \end{aligned}$		

	Real-World Model		Virtual Model	
Real-World SuS				Timer < 10 51 51 52 52 52 52 52 52 52 52 52 52
Virtual SuS	$egin{aligned} rac{dx}{dt}&=lpha x-eta xy,\ rac{dy}{dt}&=-\gamma y+\delta xy, \end{aligned}$			

Triangle of Reference, Semiotic Triangle

Figure taken from page 11, <u>The Meaning of Meaning: A Study of the Influence of Language upon Thought and of the Science of Symbolism</u>, 1923, was coauthored by <u>C. K. Ogden</u> and <u>I. A. Richards</u>, <u>Magdalene College</u>, <u>University of Cambridge</u>

kinos reentol symbol representation 1 neferent concept nde THOUGHT)

Physics L rentsl kings SUMBOL representation nde - referent CONCEPT THOUGHT (MY Rep (23.5)

Moody "Physics of Notation": communication theory

purpose of modelling: substitutability (engineering), explainability (science)

Bernard P. Zeigler. Multi-faceted Modelling and Discrete-Event Simulation. Academic Press, 1984.

A Resistor Model's Validity Range

Abstract (In)Validity Frame

The (possibly infinite) **Set of Experiments** *e* for which the **Distance** *d* between the obtained (computed) **Properties of Interest Pol** from *e* carried out in the **REAL** world and *e* carried out in the **VIRTUAL** world is (larger)smaller than a **treshold** *Tr*.

$$AVF_{\mu_n} \cup AIF_{\mu_n} = \mathbb{U}_{\mu_n}$$

$$AVF_{\mu_n} \cap AIF_{\mu_n} = \emptyset$$

Thanks to Rhys Goldstein for the notion of abstract frame **AUTODESK**.

Concrete (In)Validity Frame

- Concrete Validity Frame (CVF) The finite set of **performed experiments** in which a model is valid
- Concrete Invalidity Frame (CIF) The finite set of **performed experiments** in which a model is invalid

$$CVF_{\mu_n} \cap CIF_{\mu_n} = \emptyset$$

Rakshit Mittal, Raheleh Eslampanah, Lucas Lima, Hans Vangheluwe and Dominique Blouin. Towards an Ontological Framework for Validity Frames. In the 20th MoDeVVa workshop at MoDELS 2023.

Explicit Modelling of Modelling Languages/Formalisms (++ debugging)

Using the most appropriate formalism(s)

1. for $\{0 \le z \le z_f - \sigma\}$:

$$\frac{\partial X(z,t)}{\partial t} = -\left[(1 - nX(z,t)) v_0 e^{-nX(z,t)} + \frac{Q_0(t)}{A} \right] \frac{\partial X(z,t)}{\partial z} + D_0 \frac{\partial^2 X(z,t)}{\partial z^2};$$

2. for $\{z_f - \sigma < z < z_f + \sigma\}$:

$$\frac{\partial X(z,t)}{\partial t} = -\left[(1 - nX(z,t)) v_0 e^{-nX(z,t)} + \frac{Q_u(t)}{A} \right] \frac{\partial X(z,t)}{\partial z} + X_f(t) \frac{Q_f(t)}{A} \frac{1}{2\sigma} + D_0 \frac{\partial^2 X(z,t)}{\partial z^2};$$

3. for $\{z_f + \sigma \leq z \leq L\}$:

$$\begin{aligned} \frac{\partial X(z,t)}{\partial t} &= -\left[\left(1 - nX(z,t)\right) v_0 \, e^{-nX(z,t)} + \frac{Q_n(t)}{A}\right] \frac{\partial X(z,t)}{\partial z} \\ &+ D_0 \, \frac{\partial^2 X(z,t)}{\partial z^2}. \end{aligned}$$

purpose of modelling: substitutability (engineering), explainability (science)

Bernard P. Zeigler. Multi-faceted Modelling and Discrete-Event Simulation. Academic Press, 1984.

> ExpResRW POI RU/Eup MODELING Thomysh - POIThousht CONSTINALIZATION Lyp d (Par, Parate THOUGHT d (PoIxw, POI) 22 Fidelity CAPTURED BY Joce Vol:dit, ANALYTICAL MCDEL ALIDOF Approximation Accuracy= = d COMPUTATIONAL > ExpRes >> POLCM MODEL 0. /Exp

Abstraction is orthogonal!

Template for

- abstraction
- refinement
- validity

Multi-*

AIR -----MULTI - COMPONEN / ARCHEREN ARGY DUIEW (THE, SPACE -) @FURMALISM -(owsistency Differ D ABSTRACTION (owsistency Differ D FIDELITU APPROXIMATION Work FIOW/Cycle D FIDELITU ADLE IN CONTRACTION DEVOLUTION _ SVAKEHOLDER MAPUCIÈNE LEVES DEDUCIÈNE DURPOSE / POT PRAGMATICS B PRODUCT (FAMILIES) Pro REG. 06. Min B DOMAIN REG. 06. Min B DOMAIN PROSONNEL B CONCEPTUMINATIO (PHALOSIE-/WOMEN PROSONNEL B CONCEPTUMINATIO (PHALOSIE-/WOMEN UNIT - PLATFORM @ VENSION tom. = PHONE NANCE / WANT BOJERT - Phase (life-cycle)

Abstraction

- For performance (scale-ability)
- For insight

Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds.

TOWARDS ADAPTIVE ABSTRACTION IN AGENT BASED SIMULATION

University of Corsica Pasquale Paoli Corte, 20250, FRANCE

Simon Van Mierlo Hans Vangheluwe

Department of Mathematics and Computer Science University of Antwerp - Flanders Make Middelheimlaan 1 Antwerp, 2020, BELGIUM

properties P

AIR -----MULTI - COMPONEN / ARCHUTER UNE ALIGN DIEW SCALE (THE SPACE -) @FURMALISM -(DUSISTENCY DA 1351 RANIDON (DUSISTENCY DA 135 RANIDON WORKFIOW/LIFFE DE FIDE [11 U ASLE IN WORKFIOW/LIFFE DE MODELLEN (CLULAS DRANSUL) DEVOLUTION _ SVAKEHOLDER MAPUCIÈNE LEVES DEDUCIÈNE DURPOSE / POT PRAGMATICS B PRODUCT (FAMILIES) Pro REG. 06. Min B DOMAIN REG. 06. Min B DOMAIN PROSONNEL B CONCEPTUMINATIO (PHALOSIE-/WOMEN PROSONNEL B CONCEPTUMINATIO (PHALOSIE-/WOMEN UNIT - PLATFORM @ VENSION tom. = PHEVENANCE / WANT BEJERT - Phase (life-cycle)

Formalism Transformation Graph (FTG)

Bran Selić: "fragmentation problem"

Formalism Transformation Graph (FTG)

Caveat: proving semantics/property preservation of a single transformation (denoted by a blue arrow) may take at least one PhD thesis!

state trajectory data (observation frame)

Hans Vangheluwe and Ghislain C. Vansteenkiste. A multi-paradigm modeling and simulation methodology: Formalisms and languages. In European Simulation Symposium (ESS), pages 168 – 172. Society for Computer Simulation International (SCS), October 1996. Genoa, Italy.

state trajectory data (observation frame)

FUNCTIONAL MOCK•UP NTERFACE

FMU₂

Model

Solver

FMUN Model

> Solver 9

. . .

FMU₁

Master

Model

Solver

Q

Cláudio Gomes, Casper Thule, David Broman, Peter Gorm Larsen, and Hans Vangheluwe.

Co-simulation: A survey. ACM Computing Surveys (CSUR), 51(3):49:1-49:33, 2018.

co-simulation

AIR -----MULTI - COMPONEN / ARCHITER UNE ALIGN Q VIEW (THE, SPACE .-) @FURMALISM -(DWSistency BABSTRANIDON (DWSistency APPROXIMATION WORKFIOW/LIFE B FIDELITU ASLE IN WORKFIOW/LIFE B MODELLEN (COLLANDRAND) DEVOLUTION _ SVAKEHOLDER MADUCIÈNE LEVES -----DEDUCIÈNE DURPOSE PRAGMATICS B PRODUCT (FAMILIES) AN (PRAGMATICS B PRODUCT (FAMILIES) AN (PRODUCT (FAMILIES) AN (PROSOUNCE/ PROSOUNCE/ TRAT - KULTI FOR - PLATFORM @ VENSION tom. = PHONE NANCE / WANT BOJERT - Phase (life-cycle)

Wireless Home Entertainment System

Multiple (consistent !) Views (in \neq Formalisms)

E. Guerra, P. Diaz and J. de Lara, A formal approach to the generation of visual language environments supporting multiple views. 2005 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC'05), Dallas, TX, USA, 2005, pp. 284-286, doi: 10.1109/VLHCC.2005.6.

View: Protocol Statechart

Model consistency as a heuristic for eventual correctness

Istvan David ^{a,*}, Hans Vangheluwe ^{b,c}, Eugene Syriani ^a

AIR -----MULTI - COMPONEN / ARCHUTER UNE ALIGN DUIEW (THE, SPACE -) @FURMALISM -(DWSistency BABSTRANIDON (DWSistency APPROXIMATION WORKFIOW/LIFE B FIDELITU ASLE IN WORKFIOW/LIFE B MODELLEN (COLLANDRAND) DEVOLUTION _ SVAKEHOLDER MADUCIÈNE LEVES -----DEDUCIÈNE DURPOSE PRAGMATICS B PRODUCT (FAMILIES) Pro- 1 PRAGMATICS B PRODUCT (FAMILIES) Pro- 1 PRO- REN B DOMAIN PRO- REN B DOMAIN PRO- SOURCE/ B CONCEPTUMINATIO/PANDIG-/WOMEN PRO- SOURCE/ B CONCEPTUMINATIO/PANDIG-/WOMEN TRIT - KULTI FOR - PLATFORM @ VENSION tom. = PHONE NANCE / WANT BOJERT - Phase (life-cycle)

Designing Requirements/Property Languages

B. Meyers, R. Deshayes, L. Lucio, E. Syriani, H. Vangheluwe, and M. Wimmer. ProMoBox: A Framework for Generating Domain-Specic Property Languages. In Software Language Engineering (SLE), Vasteras, Sweden, LNCS vol. 8706, pp. 1-20. Springer. September 2014.

Designing Requirements/Property Languages

B. Meyers, R. Deshayes, L. Lucio, E. Syriani, H. Vangheluwe, and M. Wimmer. ProMoBox: A Framework for Generating Domain-Specic Property Languages. In Software Language Engineering (SLE), Vasteras, Sweden, LNCS vol. 8706, pp. 1-20. Springer. September 2014.

Designing DS Requirements/Property Languages

B. Meyers, H. Vangheluwe, J. Denil and R. Salay, "A Framework for Temporal Verification Support in Domain-Specific Modelling," in IEEE Transactions on Software Engineering. doi:10.1109/TSE.2018.2859946

