Renault Group

Approach proposition for automatic simulation models selection based on their representativity levels

Yara Hallak

Laurent Pautet, Dominique Blouin, LTCI, Telecom Paris

Baptiste Laborie, Layale Saab, TCR

MSDL Research Day 25 mars 2025

Introduction

- CYBER PHYSICAL SYSTEMS (VEHICLES) ARE INCREASINGLY COMPLEX TO BUILD AND MAINTAIN ON BOTH CYBER/SOFTWARE AND PHYSICAL/HARDWARE LEVELS.
- EXPERIMENTING AND ANALYSING ONLY PHYSICAL PROTOTYPES IS UNFEASIBLE (COST, TIME, RESOURCES).
- SIMULATION-BASED APPROACHES ARE ESSENTIEL FOR DEVELOPING AND TESTING SYSTEMS BEFORE USING PHYSICAL PROTOTYPES.
- A COMPLEX SYSTEM IS DIVIDED INTO SUB-SYSTEMS THAT ARE MODELED.

Problematic

For a simulation experiment:

- **DEFINE THE SIMULATION NEED/REQUEST**
- **BUILD THE SIMULATION PLATFORM:** SIMULATION ARCHITECTURE FROM MBSE (MODEL BASED SYSTEM ENGINEERING)
- CONDUCT THE SIMULATION AND EVALUATE IT

OUR QUESTION HOW TO CHOOSE THE RIGHT MODELS? TO ANSWER THIS SIMULATION NEED

Renault

MATURITY:

IS THE DIGITAL/NUMERICAL METHODOLOGY FOLLOWED READY TO A CERTAIN POINT THAT IT CAN BE USED ENTIRELY WITHOUT HAVING PHYSICAL TRIES?

VALIDITY:

ARE THE SIMULATION RESULTS WELL CORRELATED WITH THE REAL-WORLD SYSTEM RESULTS ACCORDING TO A PROPERTY OF INTEREST?

REPRESENTATIVITY:

DOES THE MODEL CAPTURE ALL THE REAL-WORLD SYSTEM PROPERTIES. AND CAN HAVE THE REAL SYSTEM BEHAVIOR?

4

Renault

INSPIRED BY NASA CREDIBILITY ASSESSMENT SCALE (CAS)

EXAMPLE:

	Category	Behavior Simulation	Climate Representation	Food preferences		
Levels	Level 3	The penguin model waddles and slides on its belly, as in real life	The model places the penguin in cold, sub-zero temperatures	The penguin model only eats fish, as expected in reality	Categorie	
	Level 2	The penguin model waddles, but sometimes flies	The model places the penguin in cool, but not freezing conditions	The penguin model eats both fish and berries		
	Level 1	The penguin model barks like a dog	The model places the penguin in tropical temperatures	The penguin model prefers cat food		

Renault

Factor	Functions	Code	Interfaces	Completeness	Experts Review	Developer	Use History
	coverage	Verification	existence	Complexity level		confidence	
	1 Development Evidence		Complexity level	2 Supporting Evidence			
Level							
Level 3	All required	No numerical	The exact number	Model is	Extensive experience	Advanced	Model used with
	functions are	error to small	of interfaces exist	predictive	in this M&S domain		successful simulation
	covered in	errors	and are typed				results multiple times
	the model		correctly				
	with all						
	parameters in						
	consideration						
Level 2	All required	Formal	Extra interfaces	Model is	Formal experience in	Intermediate	Model used with
	functions are	numerical	exist and are	comparative	this M&S domain		successful simulation
	covered in	errors	typed correctly				results one time
	the model	estimation					
Level 1	Some	Model passes	Not all interfaces	Model in	Expert in another M&S	Beginner	Model used with
	required	some tests with	exist	development	domain		unsuccessful
	functions are	modification					simulation results
	missing from	need					
	the model						
Level 0	Insufficient	Insufficient	Insufficient	Insufficient	No review	Not Confident	Model was never used
	Evidence	Evidence	Evidence	Evidence			

3 Performance Evidence : Resources, time

Renault

RAS + Goal Claim network

Renault

Conclusion & Future Steps

- TEST & EVALUATE THE APPROACH ON AN EXAMPLE USING AADL (ARCHITECTURE ANALYSIS AND DESIGN LANGUAGE) AND ALISA (ARCHITECTURE LED INCREMENTAL SYSTEM ASSURANCE)
- IMPROVE THE SIMULATION ARCHITECTURES
- BUILD PRECISE SIMULATION PLATFORMS THAT ARE NOT OVER-DIMENSIONED OR UNDER-DIMENSIONED
- GIVE MORE ACCURATE RESULTS CLOSER TO REAL WORLD RESULTS
- PREVENT TIME LOSS.

Renault

RG

References

- BABULA, M. ET AL. NASA STANDARD FOR MODELS AND SIMULATIONS: CREDIBILITY ASSESSMENT SCALE. IN 47TH AIAA AEROSPACE SCIENCES MEETING INCLUDING THE NEW HORIZONS FORUM AND AEROSPACE EXPOSITION (AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS, ORLANDO, FLORIDA, 2009). DOI:10.2514/6.2009-1011.
- GIANNOULIS, C., SNYGG, J., STRÖMBÄCK, P., HELLMANS, R., & HEDEN, H. EXERCISING GM-VV: VERIFICATION AND VALIDATION OF A MISSILE MODEL. DEPARTMENT OF COMPUTER AND SYSTEMS SCIENCES, STOCKHOLM UNIVERSITY; DEPARTMENT OF INFORMATION AND AERO SYSTEMS, SWEDISH DEFENCE RESEARCH INSTITUTE (FOI).

Renault

Thank you