
Interpolation with GAMS

Erwin Kalvelagen
erwin@gams.com

January 26, 2002

1 Introduction

Interpolation of tabular data and the implementation of piecewise (non)linear
functions is not straightforward in GAMS. In this paper we will discuss some
possible implementations using a number of examples.

Mixed-integer programming can be used to implement one-dimensional in-
terpolation using an advanced technique called Special Ordered Sets of type 2
(SOS2 sets). The advantage of using this method is that one can use a MIP
solver provided the rest of the model is linear and that one can get global solu-
tions (or a solution within a certain tolerance from the global optimum). If other
nonlinearities are present, this method is less attractive: the problem becomes
an MINLP and global solutions can only be found in special cases.

2 Special Ordered Sets

Suppose we have tabular data for a scalar function y = f(x) for a given interval
x ∈ [xlo, xup]. Let’s denote this data by (x̄k, ȳk). We introduce variables λk

with:

X =
∑

k

λkx̄k (1)

Y =
∑

k

λkȳk (2)∑
k

λk = 1 (3)

max 2 adjacent λ’s nonzero (4)
λk ≥ 0 (5)

xlo ≤ X ≤ xup (6)

Equation (1) is called the reference row. Equation (2) is known as the function
row, and equation (3) is the convexity row.

1

The λk variables form a Special Order Set of Type 2. In a SOS2 set only
two adjacent variables of the set can assume non-zero values.

SOS2 variables can be implemented in GAMS using the SOS2 variable type:

sos2 variables lambda(k);

The exact definition of SOS2 variables is solver specific, especially in special
cases where nonzero lower bounds are used. In the above case we have added
λk ≥ 0, which only leaves the “max two adjacent lambda’s are nonzero” which
is shared by all solvers that have SOS2 facilities.

OO

y

// x

•

ȳk−1

x̄k−1

•

ȳk

x̄k

•

ȳk+1

x̄k+1

•

ȳk+2

x̄k+2

������������

44
44

44
44

44
44

44
4

ooooooooo

Figure 1: Linear interpolation

2.1 Example: Local optima

This example will demonstrate the problem of finding local minima using a
local solver. In this case we use CONOPT2, but other local solvers show similar
behavior.

Consider the problem:

P1 minimize
x

x6 + 4x5 − 10x4 − 20x3

−5 ≤ x ≤ 5

2

When implemented as an NLP only local solutions can found, depending on
the starting point.

Figure 2: Global minimization of problem P1

The GAMS model looks like:

variables z,x;

equations e;

e.. z =e= power(x,6) + 4*power(x,5) - 10*power(x,4) - 20*power(x,3);

x.lo = -5;

x.up = 5;

x.l = 0;

model m /all/;

solve m using nlp minimizing z;

Depending on the starting point we get different solutions:
Table 2.2 shows the results with the NLP solver CONOPT when we use

different starting points (denoted by x0). The columns x∗ and f∗ are the optimal
solutions found. As can be seen the results are rather unpredictable. In general
starting close to a local optimum will lead the algorithm to that point, but in

3

x0 x∗ f∗

-5 -4.339 -1389.357
-4 -4.339 -1389.357
-3 -4.339 -1389.357
-2 -4.339 -1389.357
-1 2.102 -130.572
0 0 0
1 2.102 -130.572
2 2.102 -130.572
3 -4.339 -1389.357
4 2.102 -130.572
5 2.102 -130.572

Table 1: Results for problem P1 for different starting points

some cases the algorithm will not move at all (starting from x0 = 0.0) or will
jump over the closest local optimum (starting from x0 = 3).

2.2 Example: SOS2 implementation

Consider the problem:

P2 maximize
x

y

subject to y = x4 − 3x3 − 1.5x2 + 10x
y = −20x + 100
−5 ≤ x ≤ 5

The NLP model using a (default) starting point of x0 = 0.0 will cause the
NLP solver CONOPT to converge to x∗ = 3.395, y∗ = 32.105.

variables y,x;

equations e1,e2;

e1.. y =e= power(x,4) - 3*power(x,3) - 1.5*power(x,2) + 10*x;

e2.. y =e= -20*x+100;

x.lo = -5;

x.up = 5;

y.l = 0;

x.l = 0;

model m /all/;

solve m using nlp maximizing y;

4

Figure 3: Two feasible points in problem P2

Using a SOS2 implementation we can find a close solution to the global
optimum. There are two sources for error: the linear approximation, and the
integer optimality tolerances as set by the options OPTCR and OPTCA. The linear
approximate solution can be refined by passing the optimal integer solution to
an NLP solver. The integer solution will be close to the global optimum, so
there is good hope the NLP solver will converge to that solution.

set k /k0*k100/;

parameter xbar(k), ybar(k);

xbar(k) = -5 + (ord(k)-1)*0.1;

ybar(k) = power(xbar(k),4) - 3*power(xbar(k),3) - 1.5*power(xbar(k),2) + 10*xbar(k);

display xbar,ybar;

variables y,x;

sos2 variables lambda(k);

equations refrow, funrow, convexity, e1, e2;

refrow.. x =e= sum(k, lambda(k)*xbar(k));

funrow.. y =e= sum(k, lambda(k)*ybar(k));

5

convexity.. sum(k, lambda(k)) =e= 1;

e1.. y =e= power(x,4) - 3*power(x,3) - 1.5*power(x,2) + 10*x;

e2.. y =e= -20*x+100;

lambda.lo(k) = 0;

x.lo = -5;

x.up = 5;

option optcr=0;

option optca=0;

option mip=cplex;

option nlp=conopt2;

model m1 /refrow, funrow, convexity, e2/;

solve m1 using mip maximizing y;

model m2 /e1,e2/;

solve m2 using nlp maximizing y;

model x∗ y∗

MIP model m1 -3.243 164.851
NLP model m2 -3.244 164.874

Table 2: Results for problem P2

Notice that it is not needed to pass an initial solution to the MIP solvers.
LP/MIP solvers are in general not capable of dealing with level values, although
for large models it may be beneficial to specify an advanced basis (this can be
accomplished by setting the marginal values). For MIP models, in many cases
the time it takes to solve the initial LP is negligible, in which case using an
advanced basis is not beneficial.

It is noted that this SOS2 implementation implements a “grid search” and
thus sharp spikes may be missed altogether if the grid is too coarse.

2.3 Example: a discount schedule I

In some cases a piecewise linear function results naturally from the problem
definition. A good example is a discount schedule. As a basis we use the
transportation model from the User’s Guide:

$Title A Transportation Problem (TRNSPORT,SEQ=1)

$Ontext

This problem finds a least cost shipping schedule that meets

requirements at markets and supplies at factories.

References: Dantzig, G B, Linear Programming and Extensions

6

Princeton University Press, Princeton, New Jersey, 1963,

Chapter 3-3.

This formulation is described in detail in Chapter 2

(by Richard E. Rosenthal) of GAMS: A Users’ Guide.

(A Brooke, D Kendrick and A Meeraus, The Scientific Press,

Redwood City, California, 1988.)

The line numbers will not match those in the book because of

these comments.

$Offtext

Sets

i canning plants / seattle, san-diego /

j markets / new-york, chicago, topeka / ;

Parameters

a(i) capacity of plant i in cases

/ seattle 350

san-diego 600 /

b(j) demand at market j in cases

/ new-york 325

chicago 300

topeka 275 / ;

Table d(i,j) distance in thousands of miles

new-york chicago topeka

seattle 2.5 1.7 1.8

san-diego 2.5 1.8 1.4 ;

Scalar f freight in dollars per case per thousand miles /90/ ;

Parameter c(i,j) transport cost in thousands of dollars per case ;

c(i,j) = f * d(i,j) / 1000 ;

Variables

x(i,j) shipment quantities in cases

z total transportation costs in thousands of dollars ;

Positive Variable x ;

Equations

cost define objective function

supply(i) observe supply limit at plant i

demand(j) satisfy demand at market j ;

cost .. z =e= sum((i,j), c(i,j)*x(i,j)) ;

supply(i) .. sum(j, x(i,j)) =l= a(i) ;

demand(j) .. sum(i, x(i,j)) =g= b(j) ;

7

Model transport /all/ ;

Solve transport using lp minimizing z ;

Display x.l, x.m ;

Now assume the shipping costs ci,j are subject to a discount, as follows:

from through discount
0 100 0%

100 200 20%
200 500 40%
500 1000 60%

> 1000 80%

Table 3: Discount schedule

Discounts are for shipments along the same link, and are implemented for
each case in the bracket. I.e. when shipping xi,j = 110 the first 100 cases are not
discounted and the subsequent 10 cases are discounted by 20%. I.e. the total
discount for this shipment is 1.81818...%. The advantage of this schedule is that
the cost function is continuous and piecewise linear. If we assume ci,j = 0.225
(this is the shipment cost from Seattle to New-York without discount), then the
total shipment cost along this link is depicted in figure 4.

The following model implements the transportation model yusing the above
discount schedule. It is noted that the order of the indices in λi,j,dp is important:
the last index is reserved for the SOS set.

Sets

i canning plants / seattle, san-diego /

j markets / new-york, chicago, topeka / ;

Parameters

a(i) capacity of plant i in cases

/ seattle 350

san-diego 600 /

b(j) demand at market j in cases

/ new-york 325

chicago 300

topeka 275 / ;

Table d(i,j) distance in thousands of miles

new-york chicago topeka

seattle 2.5 1.7 1.8

san-diego 2.5 1.8 1.4 ;

Scalar f freight in dollars per case per thousand miles /90/ ;

8

Figure 4: Shipment costs including discount

Parameter c(i,j) transport cost in thousands of dollars per case ;

c(i,j) = f * d(i,j) / 1000 ;

Variables

x(i,j) shipment quantities in cases

z total transportation costs in thousands of dollars ;

Positive Variable x ;

Equations

cost define objective function

supply(i) observe supply limit at plant i

demand(j) satisfy demand at market j ;

cost .. z =e= sum((i,j), c(i,j)*x(i,j)) ;

supply(i) .. sum(j, x(i,j)) =l= a(i) ;

demand(j) .. sum(i, x(i,j)) =g= b(j) ;

Model transport /all/ ;

Solve transport using lp minimizing z ;

9

Display x.l, x.m ;

set dp ’discount points’ /d0,d1,d2,d3,d4/;

table discount(dp,*) ’discount percentages’

from disc

d0 0 0

d1 100 20

d2 200 40

d3 500 60

d4 1000 80

;

display c;

parameter xbar(dp);

xbar(dp) = discount(dp,’from’);

parameter ybar(i,j,dp);

ybar(i,j,dp)=0;

loop(dp,

ybar(i,j,dp) = ybar(i,j,dp-1)+ [xbar(dp)-xbar(dp-1)]*(1-discount(dp-1,’disc’)/100)*c(i,j);

);

display xbar,ybar;

sos2 variables lambda(i,j,dp) ’order of indices is important’;

positive variables y(i,j) ’total shipment costs’;

equations

refrow(i,j)

funrow(i,j)

convexity(i,j)

cost2

;

refrow(i,j).. x(i,j) =e= sum(dp, lambda(i,j,dp)*xbar(dp));

funrow(i,j).. y(i,j) =e= sum(dp, lambda(i,j,dp)*ybar(i,j,dp));

convexity(i,j).. sum(dp, lambda(i,j,dp)) =e= 1;

cost2.. z =e= sum((i,j), y(i,j));

option optcr=0;

model m2 /supply, demand, refrow, funrow, convexity, cost2/;

solve m2 using mip minimizing z;

Note that in the calculation of ȳi,j,dp we use an explicit loop. This is needed
to enforce the order in which this assignment is executed: before we can calculate
ȳi,j,dp, ȳi,j,dp−1 should be known.

10

2.4 Example: a discount schedule II

Although the above schedule has the advantage of having monotonically in-
creasing shipping costs, the disadvantage is that it is somewhat complicated
to compute. A simpler scheme is to have a table with discounts on the whole
shipment. I.e. if we have the discounts as shown in table 2.4, the interpretation
is that a shipment of 110 cases gets a discount of 10%.

from through discount
0 100 0%

100 200 10%
200 500 20%
500 1000 30%

> 1000 40%

Table 4: Discount schedule II

The cost function is now discontinuous, as can be seen in figure 5.

Figure 5: Discontinuous discount function

This can be implemented using the fragment:

11

set dp ’discount points’ /d0*d7/;

table discount(dp,*) ’discount percentages’

from disc

d0 0 0

d1 100 0

d2 100 10

d3 200 10

d4 200 20

d5 500 20

d6 500 30

d7 1000 30

;

display c;

parameter xbar(dp);

xbar(dp) = discount(dp,’from’);

parameter ybar(i,j,dp);

ybar(i,j,dp)=xbar(dp)*c(i,j)*(1-discount(dp,’disc’)/100);

display xbar,ybar;

sos2 variables lambda(i,j,dp) ’order of indices is important’;

positive variables y(i,j) ’total shipment costs’;

equations

refrow(i,j)

funrow(i,j)

convexity(i,j)

cost2

;

refrow(i,j).. x(i,j) =e= sum(dp, lambda(i,j,dp)*xbar(dp));

funrow(i,j).. y(i,j) =e= sum(dp, lambda(i,j,dp)*ybar(i,j,dp));

convexity(i,j).. sum(dp, lambda(i,j,dp)) =e= 1;

cost2.. z =e= sum((i,j), y(i,j));

option optcr=0;

model m2 /supply, demand, refrow, funrow, convexity, cost2/;

solve m2 using mip minimizing z;

2.5 Solvers

Here are some results of different solvers on the above two models. All solvers
that support SOS2 sets perform about the same on these small models.

2.6 The reference row weights

Many solvers allow a reference row to be linked to the SOS variables. In the
GAMS links this information is lost: a dummy reference row is used where
needed and the actual reference row is just an LP row. To see what impact this

12

Solver Model Nodes Iterations
BDMLP I 96 211
BDMLP II 55 149
Cplex 7 I 131 177
Cplex 7 II 71 111
OSL 1 I 145 214
OSL 1 II 105 161
OSL 2 I 145 215
OSL 2 II 105 161
OSL 3 SOS2 not supported
XA SOS2 not supported
XPRESS I 61 86
XPRESS II 30 53

Table 5: Results

have we write out the problem as an MPS file. I only had access to a standalone
Cplex 6.5.1 system, so that is what I used.

To create an MPS file, the solver MPSWRITE can be used. However that
tool does not support SOS variable. So we used Cplex to generate the MPS file
and the SOS file.

We first show the MPS file for the problem, ignoring the SOS variables (the
SOS section is removed):

NAME

ROWS

N obj

L c1

L c2

G c3

G c4

G c5

E c6

E c7

E c8

E c9

E c10

E c11

E c12

E c13

E c14

E c15

E c16

E c17

E c18

E c19

E c20

E c21

E c22

E c23

13

E c24

COLUMNS

x1 c1 1 c3 1

x1 c6 1

x2 c1 1 c4 1

x2 c7 1

x3 c1 1 c5 1

x3 c8 1

x4 c2 1 c3 1

x4 c9 1

x5 c2 1 c4 1

x5 c10 1

x6 c2 1 c5 1

x6 c11 1

x7 obj 1 c24 1

x8 c18 1

x9 c6 -100 c12 -18

x9 c18 1

x10 c6 -200 c12 -31.5

x10 c18 1

x11 c6 -500 c12 -58.5

x11 c18 1

x12 c6 -1000 c12 -81

x12 c18 1

x13 c19 1

x14 c7 -100 c13 -12.24

x14 c19 1

x15 c7 -200 c13 -21.42

x15 c19 1

x16 c7 -500 c13 -39.78

x16 c19 1

x17 c7 -1000 c13 -55.08

x17 c19 1

x18 c20 1

x19 c8 -100 c14 -12.96

x19 c20 1

x20 c8 -200 c14 -22.68

x20 c20 1

x21 c8 -500 c14 -42.12

x21 c20 1

x22 c8 -1000 c14 -58.32

x22 c20 1

x23 c21 1

x24 c9 -100 c15 -18

x24 c21 1

x25 c9 -200 c15 -31.5

x25 c21 1

x26 c9 -500 c15 -58.5

x26 c21 1

x27 c9 -1000 c15 -81

x27 c21 1

x28 c22 1

x29 c10 -100 c16 -12.96

x29 c22 1

x30 c10 -200 c16 -22.68

x30 c22 1

x31 c10 -500 c16 -42.12

14

x31 c22 1

x32 c10 -1000 c16 -58.32

x32 c22 1

x33 c23 1

x34 c11 -100 c17 -10.08

x34 c23 1

x35 c11 -200 c17 -17.64

x35 c23 1

x36 c11 -500 c17 -32.76

x36 c23 1

x37 c11 -1000 c17 -45.36

x37 c23 1

x38 c12 1 c24 -1

x39 c13 1 c24 -1

x40 c14 1 c24 -1

x41 c15 1 c24 -1

x42 c16 1 c24 -1

x43 c17 1 c24 -1

RHS

rhs c1 350 c2 600

rhs c3 325 c4 300

rhs c5 275 c18 1

rhs c19 1 c20 1

rhs c21 1 c22 1

rhs c23 1

BOUNDS

FR bnd x7

ENDATA

The SOS file looks like:

NAME gamsmodel

S2

x8 1

x9 2

x10 3

x11 4

x12 5

S2

x13 6

x14 7

x15 8

x16 9

x17 10

S2

x18 11

x19 12

x20 13

x21 14

x22 15

S2

x23 16

x24 17

x25 18

x26 19

x27 20

15

S2

x28 21

x29 22

x30 23

x31 24

x32 25

S2

x33 26

x34 27

x35 28

x36 29

x37 30

ENDATA

The SOS file has for every member of each set a weight. These weights form
the reference row. A rule normally imposed, is that the reference row values
for each set are strictly increasing. For GAMS/CPLEX this is done rather
artificially by incrementing a global counter for each SOS member. A proper
reference row implementation would be:

NAME y.mps

S2

x8 0

x9 100

x10 200

x11 500

x12 1000

S2

x13 0

x14 100

x15 200

x16 500

x17 1000

S2

x18 0

x19 100

x20 200

x21 500

x22 1000

S2

x23 0

x24 100

x25 200

x26 500

x27 1000

S2

x28 0

x29 100

x30 200

x31 500

x32 1000

S2

x33 0

x34 100

x35 200

16

x36 500

x37 1000

ENDATA

The results for the two SOS files are as follows:

Solver Model Nodes Iterations
Cplex 6.5.1 I, dummy weights 131 175
Cplex 6.5.1 I, reference row weights 92 112

Table 6: SOS2 weights

From the results in table 2.6 we see that the performance can increase by
using proper weights. Unfortunately, GAMS does not support any facility to
specify these. 1. Most likely the performance penalty will be small if the for an
evenly spaced grid.

It is noted that for model II, the weights can not be identical to the reference
row values, because they are not strictly increasing.

2.7 SOS2 variables modeled using binary variables

If a solver does not have SOS2 variables we can use binary variables. Let λ1...λk

form a SOS2 set. Then we can introduce binary variables δ1...δk−1, with:

λ1 ≤ δ1 (7)
λi ≤ δi−1 + δi for 2 ≤ i ≤ k − 1 (8)
λk ≤ δk−1 (9)

and

k∑
i=1

δi = 1 (10)

The GAMS implementation looks like:

Sets

i canning plants / seattle, san-diego /

j markets / new-york, chicago, topeka / ;

Parameters

a(i) capacity of plant i in cases

/ seattle 350

san-diego 600 /

1An experimental implementation of a nonlinear branch-and-bound code link by the author
allowed to set SOS weights by specifying unequal priorities to set-members

17

b(j) demand at market j in cases

/ new-york 325

chicago 300

topeka 275 / ;

Table d(i,j) distance in thousands of miles

new-york chicago topeka

seattle 2.5 1.7 1.8

san-diego 2.5 1.8 1.4 ;

Scalar f freight in dollars per case per thousand miles /90/ ;

Parameter c(i,j) transport cost in thousands of dollars per case ;

c(i,j) = f * d(i,j) / 1000 ;

Variables

x(i,j) shipment quantities in cases

z total transportation costs in thousands of dollars ;

Positive Variable x ;

Equations

cost define objective function

supply(i) observe supply limit at plant i

demand(j) satisfy demand at market j ;

cost .. z =e= sum((i,j), c(i,j)*x(i,j)) ;

supply(i) .. sum(j, x(i,j)) =l= a(i) ;

demand(j) .. sum(i, x(i,j)) =g= b(j) ;

set dp ’discount points’ /d0,d1,d2,d3,d4/;

table discount(dp,*) ’discount percentages’

from disc

d0 0 0

d1 100 20

d2 200 40

d3 500 60

d4 1000 80

;

display c;

parameter xbar(dp);

xbar(dp) = discount(dp,’from’);

parameter ybar(i,j,dp);

ybar(i,j,dp)=0;

loop(dp,

ybar(i,j,dp) = ybar(i,j,dp-1)+ [xbar(dp)-xbar(dp-1)]*(1-discount(dp,’disc’)/100)*c(i,j);

);

display xbar,ybar;

18

positive variables lambda(i,j,dp);

binary variables delta(i,j,dp);

positive variables y(i,j) ’total shipment costs’;

set dp1(dp);

dp1(dp)$(ord(dp)<card(dp)) = yes;

equations

refrow(i,j)

funrow(i,j)

convexity(i,j)

cost2

sos(i,j,dp)

sumdelta(i,j)

;

refrow(i,j).. x(i,j) =e= sum(dp, lambda(i,j,dp)*xbar(dp));

funrow(i,j).. y(i,j) =e= sum(dp, lambda(i,j,dp)*ybar(i,j,dp));

convexity(i,j).. sum(dp, lambda(i,j,dp)) =e= 1;

cost2.. z =e= sum((i,j), y(i,j));

sos(i,j,dp).. lambda(i,j,dp) =l= delta(i,j,dp-1) + delta(i,j,dp)$(dp1(dp));

sumdelta(i,j).. sum(dp1, delta(i,j,dp1)) =e= 1;

option optcr=0;

model m2 /supply, demand, refrow, funrow, convexity, cost2, sos, sumdelta/;

solve m2 using mip minimizing z;

Model II can be adapted in a similar manner. Results for this model are
depicted in table 2.7.

Solver Model Nodes Iterations
BDMLP I 108 566
BDMLP II 320 2840
Cplex 7 I 15 147
Cplex 7 II 7 80
OSL 1 I 94 341
OSL 1 II 183 651
OSL 2 I 140 445
OSL 2 II 186 816
OSL 3 I na 307
OSL 3 II na 759
XA I 45 237
XA II 128 877
XPRESS I 52 271
XPRESS II 109 652

Table 7: Results

19

2.8 Piecewise functions in AMPL

The modeling language AMPL has an interesting language extension to express
piecewise linear functions. If x is a variable, then the expression

<<{i in 1..n} b[i]; {i in 0..n} s[i]>> x

is a piecewise linear function with slope si if bi ≤ x ≤ bi+1. In addition AMPL
can use a .sosno and .ref suffix to indicate a SOS set and a breakpoint value
(reference row value).

3 Other approaches

Other approaches to implement interpolation are Least Squares Regression and
Splines. Both are discussed in http://www.gams.com/interface/fitpack.
pdf.

20

