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Abstract

Discrete Event system Specification (DEVS) were first introduced by Zeigler in 1976 as a rigorous basis
for discrete-event modelling. In this work we first present the classic formalism. An early prototype of a
DEVS Modeling and Simulation Package is then introduced. The work then finishes with examples that
illustrate the use of the package and shows some limitations of the classic formalism.

1 Design and Implementation

This version of the DEVS Modeling and Simulation Package has been implemented using Python, an inter-
preted, very high-level, object- oriented programming language. With built-in high-level data types and a
simple yet elegant syntax, Python is an ideal tool for rapid application development in many areas. The inter-
preter is freely available for all major platforms from the Python Language Website (at http://www.python.org),
and can be freely distributed. Extensive documentation on the language can be found on or through the same
site.

The package consists of two files, the first of which (DEVS.py) provides a class architecture that allows
hierarchical DEVS models to be easily defined. The simulation engine (SE) itself is implemented in the
second file (Simulator.py). Based on the DEVS simulator described in [1], it uses the same message-
passing mechanism. A detailed description of both the modelling architecture and the SE follows.

We should emphasize that the package described here is still an early prototype with important limita-
tions. For instance a model cannot be thoroughly validated using the present methods, and the modeler is
consequently encouraged to write model descriptions in dedicated files rather than using the interpreter in an
interactive manner. More importantly, the SE offers limited means to terminate a simulation and provides no
easy model-reinitialization possibilities yet. Further versions of the package will also support sets declara-
tions and extended type-checking as well as information methods to help debugging. Other improvements to
increase the tool’s robustness and conviviality will be suggested along the way.

1.1 Modelling Architecture

The modelling architecture implemented in DEVS . py is a canvas from which hierarchical DEVS models can
be easily described. It essentially consists in a number of classes arranged in such a way as to capture the
essence of hierarchical DEVS: a model is described in a dedicated file by deriving coupled- and/or atomic-
DEVS descriptive classes from this architecture, and arranging them in a hierarchical manner through com-
position. Methods and attributes form the standard interface that allows a SE — such as the one described
in the next sub-section — to interact with the instantiated DEVS model. Our main concerns in writing the
modelling architecture were twofold: remain as consistent as possible with the original hierarchical DEVS



definition, and maintain a flexible approach to DEVS description so as to encourage model reusability through
parameterization.

The class architecture is represented in Figure 1: BaseDEVS is the root class which provides basic func-
tionalities common to both atomic- and coupled- DEVS. It consists essentially in ports-related attributes and
methods, which is reasonable since sets of input and ouput ports are present in both formalisms. In a fur-
ther implementation, we project to derive the BaseDEVS class from a general MSO (Modeling and Simulation
Object) class that will mainly implement the extended type-checking. Sets and Ports classes will also be de-
rived from this broad class (the former class, inexistent in the current implementation, will allow the modeler
to define sets; the second class is implemented as an independant entity in the current version).
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Figure 1: Modelling class architecture

Methods addInPort and addOutPort are used to add (through composition) an input or output port to
the DEVS: they take no parameter and return a reference to the added port, which shall typically be saved
in the DEVS object local dictionary. For example, the following line of code in a DEVS’ descriptive class
constructor will add an input port to the DEVS, locally known as IN:

self.IN = self.addInPort ()

Whether the returned value is saved or not, a reference to the added port is appended to the attribute list
IPorts (or OPorts, in case of an output port). One will recognize in those lists the set of input (output) ports
of the DEVS’ definition.! The other port-related attributes, myInput and myOutput, are dictionaries of the
form {port_reference : message_on_port} storing the DEVS’ latest input and output configurations (an
unkeyed port is interpreted as the port being idle, i.e., holding the “null” message, or 0). In the current version
the actual message transfer from a DEVS to another is the SE’s reponsibility; however this might change as
we intend to review the transfer mechanism in order to simplify the model-simulator interface.

The parent attribute is a reference to the parent coupled-DEVS in the hierarchical representation of the
model (remains None for a root-DEVS). myID is an identification string assigned upon instantiation, consisting
of a unique integer preceded by the descriptive character A or C ( atomic- or coupled-DEVS, respectively);
the type method checks this character to return the type-string, either “ATOMIC” or “COUPLED ”. Finally,
condFlag is a boolean condition flag unused for the moment, but that should indicate whether the DEVS is
active or idle.

Referring back to Figure 1, we see that two classes are inherited from BaseDEVS to deal with the specifics
of atomic- and coupled-DEVS formalisms. These three classes are all abstract in that they cannot be directly

! Although the lists are accessible to the modeler, she will usually prefer the use of a local attribute, as in the previous example.



instantiated: a model is rather described by deriving descriptive classes from either the AtomicDEVS or
the CoupledDEVS class, providing them with a suitable constructor and eventually overriding the default
interface methods. Note that the constructors at every level up the class hierarchy have an active role, hence
a descriptive class’ constructor should always start by calling the parent class’ constructor.

The constructor of the At omicDEVS class merely initializes the myID attribute and provides a default initial
value for the DEVS’ fotal state, through the state and elapsed attributes. The rest of the class definition
consists mainly in default method declarations for the DEVS’ interface functions 8,y (extTransition), &
(intTransition), ta (timeAdvance) and A (outputFnc). These methods expect no parameter, and it is
up to the modeler to be consistent with the corresponding functions’ domain when overriding the methods
(i.e., all but the first method will typically access only the local state state attribute). Except for outputFnc
(which uses the poke method as described below), all the methods shall return a value compatible with the
corresponding function range.

Since default values are provided for both attributes and methods, the minimal atomic-DEVS descriptive
class is empty:

class MinimalAtomicDEVS (AtomicDEVS) :
pass

This atomic-DEVS is passive — it just remains in its default state forever. A more interesting example is a
generator, which sends a message (the integer 1 in this case) through its unique output port at constant time-
interval:

class SimpleGenerator (AtomicDEVS) :
def _ _init_ (self, n = 1):
AtomicDEVS.__init_ (self)
self.interval = n
self.message =1
self.OUT = self.addOutPort ()
def outputFnc(self):
self.poke (self.OUT, self.message)
def timeAdvance (self):
return self.interval

Note how the constructor is parameterizable, allowing the time- interval to be specified upon model instanti-
ation. The constructor first calls the parent class’ constructor, defines two local attributes and adds an output
port to the DEVS. Since the total state is not overridden, the DEVS starts with the default state and elapsed
attributes (None and 0., respectively). The DEVS having no input port, the extTransition function will
never be called and is not overridden: the default intTransition function is also used, which merely re-
turns the current state, and the timeAdvance method is specified to return the message-interval time. As
mentionned above, the outputFnc returns no value; instead it relies on the poke method to send message
(second parameter) through the OUT output port (first parameter). The companion method, peek,” returns the
message on the input port that is given as a unique parameter, and is used exclusively in the extTransition
function. Both poke and peek methods are defined in the AtomicDEVS class, and should not be overridden.

Whereas the main work in defining an atomic-DEVS descriptive class involves overriding interface meth-
ods, the CoupledDEVS class only has one such interface method, namely the tie-breaking select function
which takes as parameter a list of imminent sub-models (sorted in lexicographic order of their myID attributes)
and returns one of them. As opposed to atomic-DEVS, the role of coupled-DEVS is mainly “structural”, first
by occupying the inner nodes® in the hierarchical representation of a DEVS model (see figure 2), and by

2Those who have ever worked on old Commodore machines know where these names come from. . .
3Formally, a coupled-DEVS could occupy a leaf node in the hierarchical representation, but we cannot think of any reason why this
would be meaningful.



defining the couplings between its children’s and its own ports. Hence the heart of coupled-DEVS definition
is in the descriptive class’ constructor, where submodels and their couplings are described.

To help in this, the class has an interface attribute componentSet which corresponds to the set of com-
ponents {M; | d € D} and is a list of references to (atomic- or coupled-) sub-DEVS. The coupling sets
attributes IC, EIC and EOC (respectively, internal couplings, external input couplings and external output cou-
plings) each consists in sets of pair of pairs: the first pair referencing the component and the port the coupling
is beginning at, and the second referencing the component and the port the coupling is ending at.

The addSubModel method allows the modeler to add a sub-model (either an atomic- or coupled-DEVS)
to the coupled-DEVS. The method takes as a parameter an instance of the sub-model, sets that instance’s root
DEVS’ parent attribute to itself, and adds a reference to the instance in the local componentSet. A reference
is also returned which, as for ports, shall typically be saved in the local dictionary. Doing so provides the
modeler with an implicit set of component references D.

Coupling of ports is performed through the connectPorts method: it takes as a first parameter the port
the coupling is to begin at, and as a second parameter the port the coupling is to end at. The ports either
belong to the coupled-DEVS itself or to one of its sub-DEVS’, and some requirements must be met for a
coupling to be valid: namely, the method checks that

1. atleast one of the DEVS the ports belong to is a child of the coupled-DEVS, while the other is either the
coupled-DEVS itself or another of its children (to avoid loops). The DEVS’ “parenthood relationship”
uniquely determine the type of coupling, i.e., in which coupling set the coupling will be stored;

2. the types of the ports (either input or output) are consistent with the “parenthood” of the associated
DEVS. This validates the coupling determined above.

A coupling is rejected and an error message issued were a coupling invalid. Otherwise the coupling infor-
mation is stored in the appropriate coupling set. Of course, output ports can have any number of outgoing
couplings: but it might come as a surprise that input ports also can have more than a single incoming cou-
pling. The reason why it is possible is that whenever a pair of DEVS shall undergo an internal transition
synchronously (and thus send messages at the same time), the DEVS formalism specifies that the transitions
are actually performed sequentially at the same simulation time, by means of the select method.*

Although consistent with Zeigler’s definition, the coupling sets IC, EIC and EOC are not used by the
simulator, which instead relies on class Port’s inLine and outLine attributes to figure out couplings. These
are lists of references to the (possibly many) ports from which the port receives its messages, or to the
(possibly many) ports which receive messages from the port, respectively (while an atomic-DEVS output or
input port would only need to declare outLine or inLine, the dual nature of coupled- DEVS ports require
both attributes). The other Port attributes are hostDEVS, a reference to the DEVS the port belongs to, and
myID which is a unique identification string assigned upon instantiation similar to BaseDEVS’s eponymous
attribute: the unique integer in that case is preceded by the descriptive string “IN” or “OUT”. Accordingly, the
Port class also has a type method which either returns the string “INPORT” or “OUTPORT”.

Port is a rather simple class, but this shall change in further versions: we noted earlier that the class shall
be derived from a general MSO class that implements extended type-checking. This will allow us to implement
the actual message transfer at the Port level (rather than at the SE level). Also, the port’s state, which are
currently stored in input- and output- dictionaries (once again at the SE level) shall obviously be stored in the
ports objects themselves. We also project to implement couplings as objects, which would allow a modeler
to specify output-input transfer functions, a feature that should greatly enhance model reusability.

As for the atomic-DEVS, the minimal coupled-DEVS descriptive class is of no practical interest. So let’s
consider as an example instead the situation illustrated in Figure 2; we have a descriptive class SomeDEVS
for a DEVS (either atomic- or coupled-) with an input and output port locally known as IN and OUT. We

4The situation where the same DEVS has more than one of its output ports connected to another DEVS’ input port is of course a
degenerate case.



Parent

Figure 2: Simple Coupled-DEVS

want to connect the input port to the output port of the SimpleGenerator atomic-DEVS described above:
both DEVS must of course be children of the same coupled-DEVS for the coupling to be performed. The
coupled-DEVS descriptive class is defined below.

class Parent (CoupledDEVS) :}
def _ _init_ (self, x = 1):

CoupledDEVS.__init__ (self)
self.OUT = self.addOutPort ()
self.A = self.addSubModel (SimpleGenerator (x))
self.B = self.addSubModel (SomeDEVS () )
self.connectPorts(self.A.OUT, self.B.IN)
self.connectPorts (self.B.0OUT, self.OUT)

Note that the parameter to the constructor is used to parameterize the SimpleGenerator atomic-DEVS. As
for atomic-DEVS, the constructor first calls the parent class’ constructor. Note also that the coupled-DEVS
itself has an output port: the first coupling is an internal coupling, while the second is an external output
coupling. This is a complete definition for a coupled-DEVS descriptive class: while the select function
could very well be customized, the example here uses the default method which merely returns the first
DEVS in the imminent list.

Once all the descriptive classes in the hierarchical DEVS model have been defined, the whole model can
be build by instantiating the root DEVS (we will see in the next subsection that the instantiation usually takes
place when the simulator is itself being instantiated). This is possible since the hierarchical representation of
the model is build by composition rather than aggregation. Of course, nothing prevents the modeler to use
aggregation as in the following partial code:

class SomeAtomicDEVS (AtomicDevs) :

...
AtomicDEVSInstance = SomeAtomicDEVS ()

class SomeCoupledDEVS (CoupledDEVS) :
def __init_ (self):
CoupledDEVS.__init_ (self)
...
self.A = self.addSubModel (AtomicDEVSInstance)
...



But it is a good habit to avoid such constructs, since it would then be easy to destroy the tree structure by using
the same object twice ( descriptive classes, on the other hand, can be instantiated as many times as needed).
As a final warning we will note that recursive definitions are illegal, since they would be incompatible with
a tree structure: as a trivial example, a coupled-DEVS’ descriptive class SomeCoupledDEV cannot call in its
constructor the addSubModel method with an instance of SomeCoupledDEV. This is mentionned since such
recursive constructs will not be detected.

1.2 Simulation Engine

The Simulation Engine (SE) is the tool that simulates the behavior of a system given its model as specified in
the previous subsection. Since the SE is independent from the modelling architecture presented above, a clean
interface between the model and the simulator must be defined, which will allow alternative SEs (i.e., parallel
implementations) to be written. The particular SE we describe here is loosely based on the DEVS simulator
described in [1]. We emphasized at the beginning of section 1 that this prototype SE provides no model-
reinitialization methods: this implies that the simulator will always start a simulation using the current state
of amodel (i.e., the set of the total states of all the DEVS in the hierarchical model), regardless of the model’s
past history.

Root
Coordinator
Coupled Coupled
Model Solver
Coupled Atomic — Coupled Atomic
Model Model Solver Solver
Atomic Atomic —— Atomic Atomic
Model Model Solver Solver

Figure 3: Mapping a hierarchical model onto a hierarchical simulator

The main challenge in writing a SE for a hierarchical DEVS model consists in determining, at run-time,
the sequence (atomic- or coupled-) DEVS activation. As it turns out, the hierarchical representation of the
model (Figure 3), although it gives no information on the couplings, is an appropriate view to tackle the
problem by means of a message-passing mechanism?: in Zeigler’s words [1],

A hierarchical simulator for hierarchical DEVS coupled model models consists of devs-simulators
and devs-coordinators and uses four types of messages. An initialization method (i, 7) is sent at

5The transfer of messages (data) from port to port shall not be confused with the passing of messages (control) from solver to solver.



the initialization time from the parent simulator object to all its subordinates, to synchronize
their clocks. The scheduling of events is done by the internal state transisiton message (x, ¢) and
are sent from the coordinator to its imminent child. An output message (y, 7) is sent from the
subordinates to their parents to notifiy them of output events. The input message (x, ¢) is sent
from the coordinator to its subordinates to cause external events.

AtomicSolver CoupledSolver
+receive (aDEVS:AtomicDEVS, msg:dictionary): dictionar +receive (cDEVS:CoupledDEVS, msg:dictionary): dictionar
BaseDEVS>— ; Simulator

——
I +model: BaseDEVS

+__init__ (model:BaseDEVS)

+augment (d:BaseDEVS)

+send (d:BaseDEVS, msg:dictionary): dictionary
t+simulate(T:float=100.0)

Figure 4: Simulation class architecture

We note that the 7 in the messages is the time stamp of that message. The other part of the message is either
just a command flag (i or %), or an input or output dictionary (x and y). Whereas Zeigler calls the coupled-
DEVS and atomic-DEVS solvers coordinators and simulators respectively, we feel that simulator is a term
that should be reserved for the whole SE: consequently we will prefer the terms atomic-solvers and coupled-
solvers. DEVS objects being passive by themselves, the role of the corresponding solvers is to operate on
them when they are activated (i.e., call the DEVS’ methods and modify the DEVS’ attributes). This being
said, we have to find a mechanism to either augment each DEVS in the hierarchical model into a solver, or to
associate the DEVS with an appropriate solvers.

We first considered augmentation of DEVS into solvers by means of mixin classes, but found the ap-
proach to be not memory-efficient. Associating a solver object with a DEVS object suffers from the same
drawback. Hence we opted for a compromise, which consists in adding only the simulation-related at-
tributes to the DEVS objects, and storing the solver methods in two distinct solver classes AtomicSolver and
CoupledSolver. The actual Simulator class inherits from these two as in Figure 4, and the actual model
object is added either by aggregation or composition to the simulator object upon instantiation: for instance,
coupling the hierarchical DEVS described above with a simulator could be done using the following line of
code (aggregation):

S = Simulator (Parent (1))

Upon instatiation, the simulator class calls its augment method which traverses the hierarchical model to
effectively augment the DEVS objects with required attributes: in the current implementation these con-
sist of timeLast and timeNext, that respectively hold the simulation time when the last transition occured
within the given DEVS, and the scheduled time for the next internal transition. In case of coupled-DEVS, an
eventList attribute is also added which is the list of pairs (tng, d), where d is a reference to a sub-model
of the coupled-DEVS and tn, is set to the timeNext attribute of that model (hence for a coupled DEVS
timeNext is set to the minimal tng in its eventList).

The simulation is started by calling the simulate method:
S.simulate (30)

where the unique parameter is the length of the simulation (simulated time). The simulate code corresponds
to that of Zeigler’s root- coordinator: it starts by sending an initialization message (i, r) to the root-DEVS,
which will cascade through the whole model. The main loop then just repeatedly sends internal state transition
messages (*,¢) to the root DEVS until the simulation clock reaches the length of the simulation. Messages



are passed from DEVS to DEVS by means of the simulators’s send method, which dispatches the messages
to either the AtomicSolver.receive or the CoupledSolver.receive method as required. The progress of
a simulation is dumped to the standard output, in a format that will be described in the next section.

A final note is in order to stress a difference between our message-passing pattern and that described
in Zeigler’s view. Since (y, ) messages are sent back to a parent coupled-DEVS only in response of its
sending an (x, ) message, the former message is “sent back” as a returned value rather than by means of the
send method. Hence the receive methods in both solver classes treat only three kinds of messages, namely
(i, 1), (*,t) and (x,1). This design choice, which does not impact the behavior of the simulated model, is
motivated by the fact that extra-coding would otherwise have been required to distinguish between (x, 7) and
(y, t) messages. As a matter of fact, these messages are implemented as pairs whose first member is either an
input- or output-dictionary — which are essentially indistinguishable.

2 Examples

In this section we will go through the details of modelling and simulating a system of p parallel identical
processors each capable of processin jobs. The description of the system is given below:

1. jobs are created by a generator at time-interval randomly chosen in [/, [ (uniform distribution), where
1, and I, are both positive integers;

2. jobs are characterized by their size, which corresponds to the amount of time the jobs requires to be
processed. Sizes are randomly chosen in [S,, Sp[ (uniform distribution), where S, and S; are both
positive integers;

3. The generator sends its job to the first available processor if any (a processor is available if it is idle or
if its queue is not full), otherwise the job is discarded. Processors are cascaded as described further on;

4. each processor has a finite FIFO queue of capacity n, where unprocessed jobs can be stored. Once the
queue is full, arriving jobs are discarded;

5. asoon as a processor becomes idle (i.e., the current job is finished), it starts processing the first message
in its queue if any;

We will model the system as a coupled DEVS, with the generator DEVS and the p processor DEVS
atomic DEVS sub-models. But first of all, we represent jobs as instances of a Job class, which is defined
in the following piece of code. The code also imports required modules, plus the randint function which
returns random integers uniformly distributed between two positive integers:

from DEVS import *
from Simulator import *

from whrandom import randint

class Job:
""" A job has a positive integer id number, and a positive integer ’'size’.
nmnn
IDCounter = 0
def _ _init_ (self, szl, szh):
self.ID Job.IDCounter = Job.IDCounter + 1
self.size = randint (szl, szh)
def __str_ (self):
return " (job %d, size %d)" % (self.ID, self.size)



The constructor for the Job class merely sets the size and ID attributes. IDCounter is a class attribute
which gets incremented with each instantiation. The __str__ method is called when the print keyword is
used on an instance of the class: it is in no way compulsory, but makes the simulator’s output more readable.
As you might already known, the text included within triple quotes is the optional class’ “documentation
string”.

We now describe the generator atomic-DEVS. The Generator class differs slightly from the SimpleGenerator
class described before. First of all, let’s examine the timeAdvance method: since the time to the next job
is determined by calling the random number generator, we want the method to be consistent and not call the
rand function every time it is activated. The timeFlag attribute signals the method when to call the random
function: it is set to —1 when the generator has just sent a job, and it is set to the time until the next job
otherwise. The intTransition method of the generator resets the timeFlag attribute when necessary. We
also note that the outputFnc method sends an instance of the Job class through the single output port:

class Generator (AtomicDEVS) :
""" Generates jobs.
The interval between job is an integer randomly chosen in the
interval [ia, ib[ (uniform distribution).
The sizes of the jobs is an integer randomly chosen in the
interval [sa, sb[ (uniform distribution).
nnn
def _ init_ (self, ia, ib, sa, sb):
AtomicDEVS.__init__ (self)
self.ia = ia; self.ib = ib
self.sa = sa; self.sb = sb
self.OUT = self.addOutPort ()
self.timeFlag = -1
def intTransition(self):
self.timeFlag = -1
return self.state
def outputFnc(self):
p = Job(self.sa, self.sb
self.poke(self.OUT, p)
def timeAdvance (self):
if self.timeFlag == -1:
self.timeFlag = randint (self.ia, self.ib)
return self.timeFlag

The bounds for both the time-interval and the job size distributions are specified as parameters to the class. We
now implement the processor descriptive class: as all p processors are identical, we need only one prototype
class which will be instantiated as many times as required.

Obviously, a processor will have an output port, and input port connected to the generator’s output. But
we are facing a problem if we want the processors to be in parallel: when the generator sends a job, we
want it to be sent to just one available processor, not all of them. Hence we would requirer some kind of
a dispatcher. Although this could be implemented, there exists a simpler solution to our problem (refer to
Figure 5). The idea is to connect only one processor to the generator’s output, and provide each processor
with an extra output port (DISCARD): if the head processor is available when a job is received, the job is
enqueued and everything goes as expected. If however the head processor is not available, the jobs it receives
are immediately sent through the DISCARD port, which is connected to the next processor’s input port. This
way a job will cascade through all processors until it finds one available, or will definitely be discarded
otherwise. We adopt this design even though it is suboptimal in that jobs are enqueued in the first processor
whenever possible, even if all other processors are idle. Of course, the actual couplings are not described
at the atomic-DEVS level, and the coupling pattern is exposed here only to motivate the descriptive class
design.
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Figure 5: Parallel processors

The size of the queue is specified as a parameter to the class. The state of the processor DEVS is a triple:
the first item is a flag that indicates whether the DEVS is idle (0), busy (1) or about to discard a job (2).
In case the DEVS is not idle, the second item references the job currently being processed. The third item
holds the time spent so far on the current process: this is necessary as the elapsed attribute is reset after an
external event occurs (i.e., when a new job is received from the generator), and we don’t want the processor
to be reset when a job is appended to the queue. The timeAdvance method uses this item to return the time
until the next scheduled internal transition when the DEVS is busy. If the DEVS is busy but ready to discard
a job, the method returns 0 as we want the action to be instantaneous. A large number that stands for infinity
is returned if the DEVS is idle. The other methods also base their actions on the flag value in state[0]:

class Processor (AtomicDEVS) :
"""Processes jobs.
The processor has a queue of size n to store jobs.
Jobs are processes for a time equal to their size attribute.
When a job is finished being processed, it is sent through OUT output port.
If the queue is full, incoming jobs are sent through DISCARD output port.

def _ init_ (self, n):
AtomicDEVS.__init_ (self)
self.n = n
self.queue = []
self.state = [0, None, 0]
self.IN = self.addInPort ()
self.OUT = self.addOutPort ()
self.DISCARD = self.addOutPort ()

def extTransition(self):
p = self.peek(self.IN)
self.queue.append(p) # Enqueue incoming message
if self.state[0] == 0: # If idle, make busy with head of queue
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tempJob = self.queue[0]
self.queue = self.queue[l:] # trim the queue
return [1, tempJob, 0]
else: # If not idle, update last field of the state
tempElapsed = self.state[2] + self.elapsed
if len(self.queue)>self.n:
return [2, self.state[l], tempElapsed]
else:
return [1, self.state[l], tempElapsed]

def intTransition(self):
if self.state[0] == 1:
if len(self.queue) > 0: # remains busy
tempJob = self.queue[0]
self.queue = self.queuell:] # trim the queue
return [1, tempdJob, 0]
else: # becomes idle
return [0, None, 0]
elif self.state[0] ==
self.queue = self.queue[:-1] # discarded job removed from queue
if len(self.queue)>self.n: # another job to discard
return [2, self.state[l], self.state[2]]
else: # normal busy state
return [1, self.state[l], self.state[2]]
elif self.state[0] == 0: # shall not happen
print "Something went wrong!"

def outputFnc(self):
if self.state[0] == 1: # send processed job through output port
self.poke(self.OUT, self.state[l])
elif self.state[0] == 2: # send discarded job through discard port
self.poke (self.DISCARD, self.queue[-1])
elif self.state[0] == 0: # shall not happen
print "Something went wrong!"

def timeAdvance (self):
if self.state[0] ==
return self.state[l].size - self.state[2] # time to next int trans
elif self.state[0] ==
return 0 # instantaneous action
elif self.state[0] ==
return 10000 # infinity

The final step of the model description is to define the coupled-DEVS descriptive class Root. We provide
the DEVS with an output port OUT connected to the OUT port of every processor, and an output port DISCARD
connected to the last processor’s DISCARD port. The for loop which performs the connections is the heart of
the DEVS definition. The parameters to the class all have default values and correspond respectively to the
number of processors (np), the processors’ queue size (gs) and the bounds for the random distributions. Note
that since the number of processors is not known in advance, references to the processors cannot be saved in
the local dictionary: however, the modeler could always access them through the componentSet attribute if
need be:

class Root (CoupledDEVS) :
""" Wraps the generator and processors.
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def __init_ (self, np = 3, gs =1, ia =1, ib = 3, sa =5, sb = 10):
CoupledDEVS.__init__ (self)
self.OUT = self.addOutPort ()
self .DISCARD = self.addOutPort ()
self.GDEVS = self.addSubModel ( Generator(ia,ib,sa,sb) )
prevPORT = self.GDEVS.OUT
for I in range(0,np):
tmp = self.addSubModel (Processor(gs))
self.connectPorts (prevPORT, tmp.IN)
self.connectPorts (tmp.OUT, self.OUT)
prevPORT = tmp.DISCARD
self.connectPorts (prevPORT, self.DISCARD)

Once the model has been defined as above, it can be simulated as follows:

Model = Root ()
S = Simulator (Model)
S.simulate (20)

Here, the default parameter values for the model are used, and the simulation is performed for 20 seconds
(simulated time). We emphasize that if we were to call the simulate method a second time in this same
environment, the second simulation would try to start where the first one has left: however the results would
be imprevisible since some jobs might have been erased after the first simulation ended.

The output has the following format (refer to the appendix for an output of the above simulation):

e a first line indicates the current value of the clock;

o the next line indicates in which atomic-DEVS the internal transition took place at that time. Since the
DEVS are represented by their myID attributes, it might be difficult to figure out which DEVS is meant
if the order in which they were instantiated is not obvious: In our example, Al corresponds to the
generator DEVS, and A2 through 24 correspond to the processors (with A2 the head processor);

o the next few lines indicate the new state of the atomic-DEVS after the transition, the jobs it is sending
through its output ports and the next scheduled internal transition time;

e next, a report of the external transition is printed for each of the atomic-DEVS influenced by the above
DEVS: this includes the jobs received through input ports, the new state after the external transition
and finally the next scheduled transition time;

¢ finally, the output port configuration of the root DEVS is printed.

You might have noticed that the jobs addresses that are printed with the input and output port configurations
vary for a same job: for instance the job 1 is first reported at address 1a82b8 at the generator’s output port, and
at address 1a8270 at the head processor’s input port. This makes perfect sense since the formalism specifies
that copies of messages are to be transfered from DEVS to DEVS, rather than the messages themselves (just
consider the scenario where a DEVS wants to modify the attributes of a message it shares with other DEVS).

When they occur, collisions are reported right after the first line. The coupled-DEVS where the collision
took place is indentified, along with the involved sub-DEVS (atomic- or coupled-). The DEVS chosen by
the select function is also shown. Let us illustrate the possible effect of collisions with two examples each
involving two processors as defined above. The first example consists of two processors with 0 queue length
connected in series (i.e., Processorl’s output is connected to Processor2’s input):

12



class TwoProcessors (CoupledDEVS) :
def __init_ (self):

CoupledDEVS.__init__ (self)
self.OUT = self.addOutPort ()
self.Processorl = self.addSubModel (Processor (0))
self.Processor2 self.addSubModel (Processor (0))
self.connectPorts (self.Processorl.OUT, self.Processor2.IN)
self.connectPorts(self.Processor2.0UT, self.OUT)
self.Processorl.state = [1, Job(l,1), 0]
self.Processor2.state = [1, Job(l,1), 0]

The coupled-DEVS’ constructor sets the two processors’ states to make sure a collision will occur. The
standard select method is used, which returns the first item in the imminent list: in our example that will
always be Processorl since, being instantiated first, it has a lexicographically smaller myID attribute. Under
those circumstances, Processorl will undergo an internal transition first, sending its job to Processor2:
but the job gets discarded since the latter processor is still busy with its own job. As a matter of fact, were the
two internal transitions to occur at the same time as they should, the second processor would simultaneously
finish its first job and accept the second. This same behavior could be achieved if the select method would
be modified to choose Processor2 first. This illustrates our point that the choice of the select method
might impact the simulated behavior. But now consider another example.

This is exactly the same model as above, except that we add an extra coupling from Processor2’s output
to Processorl’s input, thus effectively creating a loop. We would expect the two processors to swap their
messages continuously: however, for the same reason as in the previous example, one of the two jobs will
irremediably be lost at the very beginning of the simulation. This stresses an important weakness of the classic
DEVS formalism. paralle]-DEVS [1], which will be treated in a further work, were developped precisely to
solve that problem.

3 Conclusion

In this we introduced an early prototype of a DEVS Modeling and Simulation Package implemented in Python.
We emphasized that the package still suffers at this point from important limitations: one of the most impor-
tant being the lack of a general method to save and load the state of a model, making it difficulty to re-initialize
a model after a simulation run. But despite this situation, we have seen that the package still provides an easy
way to model and simulate hierarchical DEVS. The examples also pointed to an inherent drawback of the
classic DEVS formalism.

The next step of our work is to fill the gaps in the package to make it a more robust and convivial
tool. We also wish to include in the simulator the possibility to gather elaborate statistics on DEVS models
as a simulation progresses. In a further work parallel-DEVS, which allow internal transitions to happen
synchronously in many DEVS models, will be considered.
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A Output From a Simulation Run

* ok ok ok ok ok ok ok ok % CLOCK: 1.000000

INTERNAL TRANSITION: Al
New State: None

Output Port Configuration:

port0: (job 1, size 8) at <_main__.
Next scheduled internal transition at

EXTERNAL TRANSITION: A2

Input Port Configuration:

port0: (job 1, size 8) at <__main__.
New State: [1, <_main__ .Job instance
Next scheduled internal transition at

ROOT DEVS’ OUTPUT PORT CONFIGURATION:

port(0: None
portl: None

k ok ok Kk Kk x * * x * (CLOCK:

INTERNAL TRANSITION: Al
New State: None

4.000000

Output Port Configuration:

port0: (job 2, size 7) at <_main__.
Next scheduled internal transition at

EXTERNAL TRANSITION: A2

Input Port Configuration:

port0: (job 2, size 7) at <_main__.
New State: [1, <_main__ .Job instance
Next scheduled internal transition at

ROOT DEVS’ OUTPUT PORT CONFIGURATION:

port(0: None
portl: None

k ok ok Kk k x * * x *x (CLOCK:

INTERNAL TRANSITION: Al
New State: None

7.000000

Output Port Configuration:
port0: (job 3, size 10) at <_main__.Job instance at 1a82b8>
Next scheduled internal transition at time 9.000000

EXTERNAL TRANSITION: A2

Input Port Configuration:
port0: (job 3, size 10) at <_main__.Job instance at la82e8>

New State: [2, <__main__.Job instance at 1a8270>, 6.0]

Next scheduled internal transition at time 7.000000

ROOT DEVS’ OUTPUT PORT CONFIGURATION:

port0: None
portl: None

**********CLOCK:

INTERNAL TRANSITION: A2

7.000000

Job instance at 1a82b8>
time 4.000000

Job instance at 1a8270>
at 1a8270>, 0]
time 9.000000

Job instance at la82b8>
time 7.000000

Job instance at la7a20>
at 1a8270>, 3.0]
time 9.000000

New State: [1, <_main__ .Job instance at 1a8270>, 6.0]
Output Port Configuration:

port0: None

portl: (job 3, size 10) at <_main__.Job instance at la82e8>
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Next scheduled internal transition at time 9.000000

EXTERNAL TRANSITION: A3
Input Port Configuration:
port0: (job 3, size 10) at <_main__.Job instance at 1a82d0>
New State: [1, <_main__ .Job instance at 1a82d0>, 0]
Next scheduled internal transition at time 17.000000

ROOT DEVS’ OUTPUT PORT CONFIGURATION:
port0: None
portl: None

* ok ok ok ok ok ok ok k% CLOCK: 9.000000

Collision occured in Cl, involving:
Al
A2
select chooses Al

INTERNAL TRANSITION: Al
New State: None
Output Port Configuration:
port0: (job 4, size 8) at <__main__.Job instance at 1a82b8>
Next scheduled internal transition at time 10.000000

EXTERNAL TRANSITION: A2
Input Port Configuration:
port0: (job 4, size 8) at <__main__.Job instance at 1a8258>
New State: [2, <__main__.Job instance at 1a8270>, 8.0]
Next scheduled internal transition at time 9.000000

ROOT DEVS’ OUTPUT PORT CONFIGURATION:
port0: None
portl: None

* ok ok ok ok ok ok ok & % CLOCK: 9.000000

INTERNAL TRANSITION: A2
New State: [1l, <__main__.Job instance at 1a8270>, 8.0]
Output Port Configuration:
port0: None
portl: (job 4, size 8) at <_main__.Job instance at 1a8258>
Next scheduled internal transition at time 9.000000

EXTERNAL TRANSITION: A3
Input Port Configuration:
port0: (job 4, size 8) at <__main__.Job instance at 1a8240>
New State: [1, <__main__.Job instance at 1a82d0>, 2.0]
Next scheduled internal transition at time 17.000000

ROOT DEVS’ OUTPUT PORT CONFIGURATION:
port0: None
portl: None

* ok ok ok ok ok ok k& % CLOCK: 9.000000

INTERNAL TRANSITION: A2
New State: [1, <__main__.Job instance at la7a20>, 0]
Output Port Configuration:
port0: (job 1, size 8) at <__main__.Job instance at 1a8270>
portl: None
Next scheduled internal transition at time 16.000000

ROOT DEVS’ OUTPUT PORT CONFIGURATION:
port0: (job 1, size 8) at <__main__.Job instance at 1a8270>
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portl:

* ok ok Kk Kk Kk K

None

* * * CLOCK: 10.000000

INTERNAL TRANSITION: Al
New State: None
Output Port Configuration:

port0:

(job 5, size 7) at <__main__.

Next scheduled internal transition at

EXTERNAL TRANSITION: A2
Input Port Configuration:

port0:

(job 5, size 7) at <__main__.

New State: [1, <_main__ .Job instance
Next scheduled internal transition at

ROOT DEVS’
port0:
portl:

* ok ok K Kk Kk K

OUTPUT PORT CONFIGURATION:
None
None

* * * CLOCK: 11.000000

INTERNAL TRANSITION: Al
New State: None
Output Port Configuration:

port0:

(job 6, size 8) at <_main__ .

Next scheduled internal transition at

EXTERNAL TRANSITION: A2
Input Port Configuration:

port0:

(job 6, size 8) at <_main__ .

New State: [2, <__main__.Job instance
Next scheduled internal transition at

ROOT DEVS’
port0:
portl:

OUTPUT PORT CONFIGURATION:
None
None

* ox ok ok okox ok % % x  CLOCK: 11.000000

INTERNAL TRANSITION: A2
New State: [1, <_main__ .Job instance
Output Port Configuration:

port0:
portl:

None

(job 6, size 8) at <__main__ .

Next scheduled internal transition at

EXTERNAL TRANSITION: A3
Input Port Configuration:

port0:

(job 6, size 8) at <__main__ .

New State: [2, <_main__ .Job instance
Next scheduled internal transition at

ROOT DEVS’
port0:
portl:

OUTPUT PORT CONFIGURATION:
None
None

* ok ok ok ok ox ok % % % CLOCK: 11.000000

INTERNAL TRANSITION: A3
New State: [1, <_main__ .Job instance
Output Port Configuration:

port0:
portl:

None

(job 6, size 8) at <_main__ .

Job instance at 1la82b8>
time 11.000000

Job instance at 1a8360>
at la7a20>, 1.0]
time 16.000000

Job instance at 1a82b8>
time 12.000000

Job instance at la7a08>
at la7a20>, 2.0]
time 11.000000

at la7a20>, 2.0]

Job instance at 1la7a08>
time 16.000000

Job instance at 1a8258>
at 1a82d0>, 4.0]
time 11.000000

at 1a82d0>, 4.0]

Job instance at 1a8258>
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Next scheduled internal transition at

EXTERNAL TRANSITION: A4

Input Port Configuration:

port0:
New State:

(1,

(job 6, size 8) at <_main__

<__main__.Job instance

Next scheduled internal transition at

ROOT DEVS’
port0:
portl:

* ok xk Kx Kx Kx *x %

* Kk

OUTPUT PORT CONFIGURATION:
None
None

CLOCK: 12.000000

INTERNAL TRANSITION: Al

New State:

None

Output Port Configuration:

port0:

(job 7, size 6) at <_main__

Next scheduled internal transition at

EXTERNAL TRANSITION: A2
Input Port Configuration:

port0:
New State:

[2/

(job 7, size 6) at <_main__

<__main__.Job instance

Next scheduled internal transition at

ROOT DEVS’
port0:
portl:

* kK kK Kk Kk Kk *x *

* K

OUTPUT PORT CONFIGURATION:
None
None

CLOCK: 12.000000

INTERNAL TRANSITION: A2

New State:

[1/

<__main__.Job instance

Output Port Configuration:
port0: None

portl:

(job 7, size 6) at <_main__

Next scheduled internal transition at

EXTERNAL TRANSITION: A3
Input Port Configuration:

port0:
New State:

(job 7, size 6) at <__main

(2,

<__main__.Job instance

Next scheduled internal transition at

ROOT DEVS’
port0:
portl:

* k ¥ *¥ *¥ * *x *x *x *x

OUTPUT PORT CONFIGURATION:
None
None

CLOCK: 12.000000

INTERNAL TRANSITION: A3

New State:

(1,

<__main__.Job instance

Output Port Configuration:
port0: None

portl:

(job 7, size 6) at <_main__

Next scheduled internal transition at

EXTERNAL TRANSITION: A4
Input Port Configuration:

port0:
New State:

(job 7, size 6) at <__main

(1,

<__main__.Job instance

Next scheduled internal transition at

ROOT DEVS'

OUTPUT PORT CONFIGURATION:

time 17.000000

.Job instance at 1a8318>

at 1a8318>, 0]
time 19.000000

.Job instance at 1a82b8>

time 14.000000

.Job instance at 1a8378>

at la7a20>, 3.0]
time 12.000000

at la7a20>, 3.0]

.Job instance at 1a8378>

time 16.000000

.Job instance at 1a7990>

at 1a82d0>, 5.0]
time 12.000000

at 1a82d0>, 5.0]

.Job instance at 1a7990>

time 17.000000

.Job instance at 1a82e8>

at 1a8318>, 1.0]
time 19.000000
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port0: None

portl:

* kK kK Kk Kk Kk *

None

* Kk %

CLOCK: 14.000000

INTERNAL TRANSITION: Al

New State:

None

Output Port Configuration:

port0:

(job 8

, size 9) at <_main_ .

Next scheduled internal transition at

EXTERNAL TRANSITION: A2
Input Port Configuration:

port0:

New State:

(job 8
[2/

, size 9) at <_main_ .

<__main__.Job instance

Next scheduled internal transition at

ROOT DEVS'
port0:
portl:

* kK kK Kk Kk Kk *

OUTPUT
None
None

* Kk %

PORT CONFIGURATION:

CLOCK: 14.000000

INTERNAL TRANSITION: A2

<__main__.Job instance

Output Port Configuration:

New State: [1,
port0: None
portl: (job 8

, size 9) at <_main_ .

Next scheduled internal transition at

EXTERNAL TRANSITION: A3
Input Port Configuration:

port0:

New State:

(job 8
[2/

, size 9) at <_main_ .

<__main__.Job instance

Next scheduled internal transition at

ROOT DEVS’
port0:
portl:

OUTPUT PORT CONFIGURATION:

None
None

* kK Kk Kk Kk Kk *x *x *x *

CLOCK: 14.000000

INTERNAL TRANSITION: A3

<__main__.Job instance

Output Port Configuration:

New State: [1,
port0: None
portl: (job 8

, size 9) at <_main__ .

Next scheduled internal transition at

EXTERNAL TRANSITION: A4
Input Port Configuration:

port0:

New State:

(job 8, size 9) at <__main__.

(2,

<__main__.Job instance

Next scheduled internal transition at

ROOT DEVS’
port0:
portl:

OUTPUT PORT CONFIGURATION:

None
None

* k ¥ *¥ * * *x *x *x %

CLOCK: 14.000000

INTERNAL TRANSITION: A4

New State:

(1,

<__main__.Job instance

Output Port Configuration:

Job instance at 1a82b8>
time 16.000000

Job instance at 1a8300>
at la7a20>, 5.0]
time 14.000000

at la7a20>, 5.0]

Job instance at 1a8300>
time 16.000000

Job instance at 1a8270>
at 1a82d0>, 7.0]
time 14.000000

at 1a82d0>, 7.0]

Job instance at 1a8270>
time 17.000000

Job instance at 1a7b58>
at 1a8318>, 3.0]
time 14.000000

at 1a8318>, 3.0]
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port0: None
portl: (job 8, size 9) at <_main__.Job instance at 1a7b58>
Next scheduled internal transition at time 19.000000

ROOT DEVS’ OUTPUT PORT CONFIGURATION:
port0: None
portl: (job 8, size 9) at <_main__.Job instance at 1a7b58>

* ox ok ok ok ox ok % % x  CLOCK: 16.000000

Collision occured in Cl, involving:
Al
A2
select chooses Al

INTERNAL TRANSITION: Al
New State: None
Output Port Configuration:
port0: (job 9, size 8) at <_main__.Job instance at 1la82b8>
Next scheduled internal transition at time 17.000000

EXTERNAL TRANSITION: A2
Input Port Configuration:
port0: (job 9, size 8) at <_main__.Job instance at 1a8168>
New State: [2, <__main__.Job instance at la7a20>, 7.0]
Next scheduled internal transition at time 16.000000

ROOT DEVS’ OUTPUT PORT CONFIGURATION:
port0: None
portl: None

* ok ok ok ok ox k% % % CLOCK: 16.000000

INTERNAL TRANSITION: A2
New State: [1, <__main__.Job instance at la7a20>, 7.0]
Output Port Configuration:
port0: None
portl: (job 9, size 8) at <_main__.Job instance at 1a8168>
Next scheduled internal transition at time 16.000000

EXTERNAL TRANSITION: A3
Input Port Configuration:
port0: (job 9, size 8) at <__main__.Job instance at 1la7a08>
New State: [2, <__main__.Job instance at 1a82d0>, 9.0]
Next scheduled internal transition at time 16.000000

ROOT DEVS’ OUTPUT PORT CONFIGURATION:
port0: None
portl: None

* ox ok ok ok ox ok k% x CLOCK: 16.000000

Collision occured in Cl, involving:
A2
A3
select chooses A2

INTERNAL TRANSITION: A2
New State: [1, <__main__.Job instance at 1a8360>, 0]
Output Port Configuration:
port0: (job 2, size 7) at <__main__.Job instance at la7a20>
portl: None
Next scheduled internal transition at time 23.000000

ROOT DEVS’ OUTPUT PORT CONFIGURATION:
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port0: (job 2, size 7) at <_main__.Job instance at la7a20>
portl: None

* ox ok ok ok ox ok k% % CLOCK: 16.000000

INTERNAL TRANSITION: A3
New State: [1, <_main__ .Job instance at 1a82d0>, 9.0]
Output Port Configuration:
port0: None
portl: (job 9, size 8) at <_main__ .Job instance at 1a7a08>
Next scheduled internal transition at time 17.000000

EXTERNAL TRANSITION: A4
Input Port Configuration:
port0: (job 9, size 8) at <_main__.Job instance at 1a83d8>
New State: [2, <_main__ .Job instance at 1a8318>, 5.0]
Next scheduled internal transition at time 16.000000

ROOT DEVS’ OUTPUT PORT CONFIGURATION:
port0: None
portl: None

* ok ok ok ok ox ok % % x CLOCK: 16.000000

INTERNAL TRANSITION: A4
New State: [1, <_main__ .Job instance at 1a8318>, 5.0]
Output Port Configuration:
port0: None
portl: (job 9, size 8) at <__main__.Job instance at 1a83d8>
Next scheduled internal transition at time 19.000000

ROOT DEVS’ OUTPUT PORT CONFIGURATION:
port(0: None
portl: (job 9, size 8) at <_main__.Job instance at 1a83d8>

* ok ok ok ok ok ko ox % % CLOCK: 17.000000

Collision occured in Cl, involving:
Al
A3
select chooses Al

INTERNAL TRANSITION: Al
New State: None
Output Port Configuration:
port0: (job 10, size 8) at <_main__.Job instance at 1a82b8>
Next scheduled internal transition at time 19.000000

EXTERNAL TRANSITION: A2
Input Port Configuration:
port0: (job 10, size 8) at <_main__.Job instance at 1a8138>
New State: [1, <__main__.Job instance at 1a8360>, 1.0]
Next scheduled internal transition at time 23.000000

ROOT DEVS’ OUTPUT PORT CONFIGURATION:
port0: None
portl: None

*¥ ok ok ok %k ok ok ox %k CLOCK: 17.000000
INTERNAL TRANSITION: A3
New State: [1, <__main__.Job instance at 1a8240>, 0]

Output Port Configuration:
port0: (job 3, size 10) at <_main__.Job instance at 1a82d0>
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portl: None
Next scheduled internal transition at time 25.000000

ROOT DEVS’ OUTPUT PORT CONFIGURATION:
port0: (job 3, size 10) at <_main__.Job instance at 1a82d0>
portl: None

* ok ok ok ok ox ok % % % CLOCK: 19.000000

Collision occured in Cl, involving:
Al
A4
select chooses Al

INTERNAL TRANSITION: Al
New State: None
Output Port Configuration:
port0: (job 11, size 5) at <_main__.Job instance at 1a82b8>
Next scheduled internal transition at time 21.000000

EXTERNAL TRANSITION: A2
Input Port Configuration:
port0: (job 11, size 5) at <_main__.Job instance at 1a8150>
New State: [2, <__main__.Job instance at 1a8360>, 3.0]
Next scheduled internal transition at time 19.000000

ROOT DEVS’ OUTPUT PORT CONFIGURATION:
port0: None
portl: None

* ox ko kok % ok k% % CLOCK: 19.000000

Collision occured in Cl, involving:
A2
A4
select chooses A2

INTERNAL TRANSITION: A2
New State: [1l, <__main__.Job instance at 1a8360>, 3.0]
Output Port Configuration:
port0: None
portl: (job 11, size 5) at <_main__ .Job instance at 1a8150>
Next scheduled internal transition at time 23.000000

EXTERNAL TRANSITION: A3
Input Port Configuration:
port0: (job 11, size 5) at <_main__.Job instance at 1a7b70>
New State: [1, <__main__.Job instance at 1a8240>, 2.0]
Next scheduled internal transition at time 25.000000

ROOT DEVS’ OUTPUT PORT CONFIGURATION:
port0: None
portl: None

* ox ok ok ok ox ok ok % % CLOCK: 19.000000

INTERNAL TRANSITION: A4
New State: [1, <_main__ .Job instance at 1a82e8>, 0]
Output Port Configuration:
port0: (job 6, size 8) at <_main__.Job instance at 1a8318>
portl: None
Next scheduled internal transition at time 25.000000

ROOT DEVS’ OUTPUT PORT CONFIGURATION:
port0: (job 6, size 8) at <_main__.Job instance at 1a8318>
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portl: None
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