Challenges for Automation in Adaptive Abstraction

Romain Franceschini*T, Moharram Challengerﬁ, Antonio Cicchetti®, Joachim Denil’*, Hans Vangheluwe”
*University of Corsica, France; TUniversity of Antwerp, Belgium,; {Flanders Make, Belgium; §Mezilardalen University, Sweden
r.franceschini @univ-corse.fr, moharram.challenger @uantwerpen.be, antonio.cicchetti@mdh.se,

{joachim.denil, hans.vangheluwe } @uantwerpen.be

Abstract—Models are well-defined abstractions that provide
cost-effective representations of the real-world for a precise
purpose. When dealing with complex problems, there usually
exist multiple abstractions, typically describing partially over-
lapping details of the system under study, and resulting in a
hierarchy of abstractions. Adaptive abstraction leverages these
levels with the aim of dynamically adapting the abstractions used
during system execution. In this paper, we describe such process
in terms of a MAPE-K (Monitor-Analyze-Plan-Execute over a
shared Knowledge) control loop to discuss the challenges towards
adaptive abstraction automation. In particular, we elaborate on
adaptively selecting a candidate over multiple abstractions, an
unaddressed issue in the literature. The discussion is supported
by a running example in an agent-based simulation scenario.

Index Terms—Adaptive System, Multi-Abstraction, Multi
Paradigm, System Modelling, Agent based Simulation, Traffic
Simulation.

I. INTRODUCTION

Models are abstractions that capture specific properties of
a system under study. They represent the system in a reduced
fashion for a specific purpose [1]. The amount of information
in a model determines its abstraction level: the less information
it contains, the more abstract it is [2]. Usually, systems
with complex dynamics are abstracted in many ways with
respect to a set of properties. As such, multiple abstractions are
eventually defined, describing partially overlapping properties
of the system under study. We intuitively tend to organize
these into a hierarchy of models, from the most detailed to
the coarser ones.

Before the formulation of a model, an important task is
to determine the most appropriate level of abstraction [3].
Together with the properties of interest, the viewpoint on
the system is what drives our choices regarding a particular
abstraction. The knowledge over the system, the dimensions
considered (e.g. space, time, ...), the scales at play, the
paradigm, the modeling view as well as the formalism chosen
to describe the model shapes the resulting abstraction level.

When reasoning about system properties, humans intuitively
switch back and forth between different levels of abstraction
depending on the problem to solve. With the idea that such
a mental process can be automated, adaptive abstraction takes
advantage of multi-level models to dynamically adapt the type
of abstractions used during execution or simulation. Among
its benefits, this technique improves insight and explainability
through the detection of particular phenomena [4] as well
as simulation performance [5] by reducing computational

needs when coarser models can be used. With respect to a
set of properties of interest that should be preserved at all
times, adaptive abstraction leverages detected phenomena to
automatically switch to a more appropriate abstraction level.

This paper provides a framework to reason on the adaptive
abstraction of simulation models. We explicitly reason over the
involved properties of models together with an operationalisa-
tion using the MAPE-K (Monitor-Analyze-Plan-Execute over
a shared Knowledge) framework. Since the early 2000s, a
growing interest in adaptive abstraction has been observed in
the literature [6], particularly with the agent-based modeling
(ABM) paradigm which often requires high computational
needs. To the best of our knowledge, the contributions that
have already been proposed were developed in an ad-hoc way,
providing tailored solutions to the specific problems of each
application. Due to the complexity of the technique, a generic
framework towards automated support of adaptive abstraction
in terms of a MAPE-K control loop is needed to generalize
the application of adaptive abstraction.

This paper is organized as follows: In the next section, we
provide background about the notion of abstraction as well
as the challenges to support adaptive abstraction. Section III
presents our motivating example based on a traffic network
case study, which we use to illustrate adaptive abstraction
as well as our approach in the remainder of the paper. We
then develop the MAPE-K approach to present how each step
fits the adaptive abstraction requirements in Section IV and
conclude the paper in Section V.

II. BACKGROUND AND RELATED WORKS

This section gives the required background information
related to abstraction and adaptive abstraction and describes
related works in both areas.

A. Abstraction

A foundation of the notion of abstraction has been proposed
during a workshop on Multi-Paradigm Modeling [7]. The
authors establish the notion of abstraction relative to the
information contained in a model M, which represents the
questions that can be asked regarding the model: the set
of properties P = I(M). Those properties serve to define
relations between abstractions. Thus, a relation between two
models M; and Ms can have different characters, namely
abstraction, refinement, or equivalence with respect to a set
of properties:



o Equivalence: Vp € P: M1 Ep < My fp

e Abstraction: M, is an abstraction of My w.r.t P if Vp €
P:MyEp = M, Ep.

o Refinement: M; is a refinement of My iff My is an
abstraction of M.

From a language engineering perspective, the relation be-
tween two models w.r.t properties can also be seen as a model
transformation. Among transformation intents classified in [8],
three are related to abstraction, namely the refinement, the
abstraction and the approximation intents. The latter specifies
a model m; approximates ms when m; is equivalent to my
up to a certain error margin, mj preserving more properties
than ms as the error decreases.

F
a(m’)
;m° » mS
/ "I
/ /
.1 / n.1
/ ;
/ /
II’ I(‘ G
f[m"] / [mS]
' F ' G
holds / holds /
! extract ! extract
;
/ . linguistic
; perf.val([ m™ 1) domain
/
/ ontological
; = domain
P, c
mfEP, & mSkP

B

Fig. 1: Abstraction relation between two models w.r.t. proper-
ties.

Figure 1 illustrate the process of checking a property, and
is inspired by the work of Barroca et al. [9] on relating
ontological and linguistic domains. Checking whether a model
satisfies a property may require to go over the semantic domain
([.D 110]. Let m* and m® define two models described
in formalism F and G, respectively. m® is an abstraction
of mf which results from the abstraction function a, as
defined in [11]. Such relation can be defined with respect to
the set of properties each model satisfies, namely P4 and
Pp, with P4 C Pg. A property is verified by extracting
a performance value from the semantic domain of a model.
This performance value is then evaluated to produce a boolean
value that determines whether the associated model satisfies
the property. Depending on the tolerance over the performance
value during the evaluation, an abstraction may satisfy the
same property as the refined model. The abstraction is then an
approximation relative to its refinement.

Formulating an abstraction often involves aggregating in-
formation across one or several dimensions, either by relaxing
them (e.g. lumping, coarser scale) or by removing them alto-
gether (e.g. remove the spatial dimension). Conversely, refine-

ment is about disaggregation and information re-construction.
Many dimensions can be involved [3], namely the temporal
dimension, the spatial dimension, the functional dimension
and orthogonally, all other dimensions found in the states of
the models. As those dimensions evolve from one abstraction
to another, the most appropriate formalism to represent them
evolves accordingly.

B. Adaptive abstraction

Given multiple abstractions describing partially overlapping
properties of a system under study and a set of proper-
ties of interest, the process of adaptive abstraction analyzes
the running system to find opportunities to switch from an
abstraction to another dynamically. Such opportunities can
arise from simple properties like a component reaching a
steady state, invariants known in the domain, or from com-
plex situations involving interactions between several entities
leading to emergent phenomena, arising from interactions. We
call these the enabling properties. As switching itself has a
cost, enabling properties are usually analyzed over time to
maximize the probability for the newly instantiated abstraction
to be relevant for a longer period of time. According to the
relations established between abstractions and the properties of
interest, the adaptive abstraction process has to determine if a
switch can actually be performed. Hence, adaptive abstraction
involves distinct steps, namely:

1) sample periodically the running system;

2) detect over time the properties allowing a switch;

3) select, if any, the most appropriate abstraction known to

preserve the set of properties of interest;

4) perform the abstraction(s) and/or refinement(s).

In the literature, the first two steps are performed through
clustering methods [12], [13], usually over the spatial dimen-
sion. As for the analysis of emergent properties over time,
weighted graphs are the most often used technique [12], [14] to
keep track of the recurrence of the phenomena and determine
if they are worth switching. Chen et al. [15] provide a
framework to observe properties by formally describing events
in a hyperspace, allowing them to include any dimensions.
Complex behaviors can be described with complex event types,
which formally relate a sequence of events together with a
temporal operator.

To our knowledge, the third step is usually implicit as all
approaches found in the literature were developed in an ad-
hoc way, involved only two abstractions and had an implicit
static set of properties of interest.

Finally, the last step consists in initializing states of the
newly instantiated models before performing the required
switches. While the abstraction transformation is trivial, the
refinement is much more challenging since it requires infor-
mation to be reconstructed. In any case, such a process is
domain-specific and thus, cannot be fully automated without
an explicit description. A switch may involve replacing the
whole running system, possibly by an abstraction expressed
in a different formalism, e.g. from an agent-based model to

a system dynamics model. However, if the running system is



expressed in a formalism that supports hierarchical constructs,
a switch may only occur at the component level, meaning dif-
ferent abstractions -possibly expressed in different formalisms-
can interact with each other in an integrated way, eventually
sharing other entities. For example, spatial clustering in an
agent-based model lies in this category.

For such systems, the question of how to represent aggre-
gates has been studied. Mathieu et al. [16] describe several
design patterns generalised from recurring solutions found in
the literature, namely the zoom pattern, the puppeteer pattern
and the view pattern. Figure 2 illustrates all three. The view
pattern (Figure 2.c) provides visual insights to the modeller
by only highlighting the involved entities when an emergent
property is detected. The zoom pattern (Figure 2.a) is the
most challenging pattern, since its purpose is to completely
substitute the original abstraction by another one. Finally, the
puppeteer pattern (Figure 2.b) also substitutes the original
model(s), but preserves the states of lumped entities.

M

abc

| | |
|

(a) Zoom pattern (b) Puppeteer pattern (c) View pattern

Fig. 2: Design patterns identified for adaptive abstraction [16].

III. MOTIVATING EXAMPLE

We present a road traffic network as a concrete adaptive
abstraction case study, which is used throughout the remainder
of the paper as a running example. Road traffic systems
can be tackled at many levels of details from microscopic
to macroscopic and features complex interactions between
vehicles, which can lead to emergent behaviors such as traffic
jams. As such, it is a good candidate for adaptive abstraction.

We focus on a highway cloverleaf interchange system de-
scribed as an agent-based model. The environment represents
the interchange as a graph, where edges are passive road
segments and the vertices are intersections. The road segments
are associated with real-world data exported from a graphical
information system including segment locations, number of
lanes, speed limits, and direction.

Three distinct abstractions are used to represent moving
vehicles. Abstractions can be blended: they interact with
each other and share the same environment. Figure 3 shows
screenshots of the running system, with two zoomed regions
illustrating the three abstractions. The most detailed abstrac-
tion (M) describes individual vehicles as agents featuring a
car-following behavior, where vehicles try to maintain their
preferred speed, adjust it to avoid collisions and speeding,
and look after lane switching opportunities. A more abstract

i | M3

Fig. 3: Illustration of the traffic network system with three
distinct abstraction levels.

model captures groups of close vehicles as agents to represent
traffic jams (M5), approximating the behavior of the “flock”.
The last abstraction (Mj3) takes a different approach and
approximates certain areas by representing road segments as
active entities using a Discrete Event model, similarly as the
work of Bosmans et al. [17]. Vehicles become passive entities
when entering an active road segment and are released at their
expected crossing time based on their speed.

To leverage these type of models, the adaptive abstraction
system may aggregate M; models to a M, model when a
traffic jam is detected, until it holds. The switch from a passive
road segment to an active one (M3) can be realized when the
segment is dense enough to be considered as a queuing system.

Adaptive abstraction for this example currently has to be
specifically tailored since no related works provide a generic
solution for this problem. In the next section, we present our
MAPE-K based conceptual framework intended to generalize
adaptive abstraction, where this motivating example is used
to better understand the introduced concepts. The study of
the usefulness or the performances improvements of adaptive
abstraction was already shown in the literature [5] and is not
addressed in this paper.

IV. MAPE-K BASED ADAPTIVE ABSTRACTION

This section presents a conceptual and methodological
framework for reasoning in terms of adaptive abstraction. We
argue that a MAPE-K (Monitor-Analyze-Plan-Execute over a
shared Knowledge) control loop naturally fits the requirements
of adaptive abstraction. As such, it is a promising basis towards
the automated support of adaptive abstraction.

Adaptive abstraction can be seen as a self-managed au-
tonomic system with self-optimization and self-configuration
capabilities, whose main purpose is to “continually seek oppor-
tunities to improve its own performance and efficiency” with
“automated configuration of components” following high-level
policies [18], i.e., the properties of interest. Figure 4 gives a
structural overview of such system, where a managed system
is queried and updated through a MAPE-K feedback control
loop. The system continuously polls or listens to events relative
to the managed system through the Monitor component (2) and



Analyze

Execute

| Managed system |

Fig. 4: MAPE-K control loop [18].

updates the shared Knowledge (1). Knowledge is evaluated
by the Analyze component (3) to detect opportunities for the
managed system to be updated according to the optimization
goals. In case there are such opportunities, they are examined
by the Plan (4) component to check whether they are com-
patible and to determine an update plan. Finally, the Execute
(5) component updates the managed system according to the
plan.

The remainder of this section specifies how the adaptive
abstraction process as presented in section II-B relates to each
MAPE-K component.

A. Knowledge

While Knowledge is not an active entity of the control loop,
it is shared by the MAPE components and provide means to
reason about the monitored information with respect to the
self-management goals. Given the distinct concerns of adaptive
abstraction, we identified several Knowledge entities.

1) Properties of interest: Adaptive abstraction’s main goal
can be described as providing insights and improving runtime
performances while producing similar results with respect to a
set of properties. As such, this set should be modeled so that
the MAPE components can reason in terms of those properties.

For our road network, the following set can be considered:

e pp: from any direction, vehicles can reach any direction.

e po: vehicles flow in one direction.

o p3: vehicles have a fixed path to their target destination.

2) Abstractions relations: Abstractions relations which are
described in section II-A, suggest that abstractions can be
related thanks to the properties they are assumed to satisfy.

For our road network, the relations between the three
abstractions M;, M and Mj (illustrated in Figure 3) are
also represented as boxes in Figure 5 with their respective
formalisms in the top-right corner and their set of assumed
satisfied properties (P4, Pp and P, respectively) in the
bottom-right corner. All abstractions are assumed to satisfy
the properties of interest: {p1,p2,p3} € Pa N Pp N Pc.

3) Enabling properties: The Enabling properties represent
the sequence of events expected to occur for model(s) to
trigger a switch (including emergent properties or known
invariants). In our example, a property enabling the abstraction
or the refinement to another model is associated with each
relation in Figure 5. A switch from M; to M, is triggered

Fig. 5: Relations between traffic network abstractions.

when vehicles are on the same lane and are close enough from
each other for a given period. The opposite, i.e. the refinement
from My to M, is triggered when the traffic jam reaches the
next intersection so that ps is still satisfied. A switch from
My to Ms is triggered when the number of vehicles on a
road segment, i.e. its density, reaches a certain threshold for
a given period. Individual vehicles are replaced by internal
events within the discrete event model of the road segment,
scheduled at the time they are supposed to leave the segment
given their speed. M models are refined to M; models when
the number of cars arriving at the cars segment decreases
and thus, reduces the density down to a threshold for a given
amount of time.

4) Model knowledge: This represents relevant information
about the entities at play in the system, such as their states or
their interactions.

5) Abstraction knowledge: This part keeps maintains a list
of models susceptible to be abstracted or refined.

B. Monitor

The Monitor component naturally fits with the first step
of adaptive abstraction described in section II-B. Data is
gathered from the models currently executed or simulated in
the managed system and the model knowledge base is updated.
The actual information that is collected may concern states
and/or particular interactions between several models.

As the monitoring process can be costly, several ways to
lower its overhead can be considered. The first concern is
the sampling rate, allowing either a 1:1 relation between state
transitions and sampling or a coarser resolution to be used,
allowing some states to be missed. The second one is to make
use of the relations between abstractions from the Knowledge
to only monitor the type of models that can be abstracted or
refined. Finally, to lower the amount of information gathered
for each type of model, the appropriate dimensions to monitor
(e.g. space, time, states) can be deduced from the enabling
properties description.

In our example, the monitor component uses a weighted
graph approach similar to [14] to update the model knowledge.
The weights are increased when an enabling property is
satisfied and decreased otherwise.

C. Analyze

The Analyze component regularly examines the Model
knowledge to detect adaptation opportunities of the managed



system models. Detection is about matching a required events
sequence for an enabling property to be satisfied. This consists
of evaluating data from the model knowledge. While the
Monitor role is to select relevant information, the Analyze
component role is to harness it to detect patterns that hold for
a given amount of time. Checking enabling properties over
time is important to ensure the investigated phenomenon is
consistent. For example, vehicles that are close together for a
brief period of time are not worth switching to a traffic jam.

Depending on how precise the modeler expresses the en-
abling properties, the detection can be considered more or less
exploratory. If one tries to gather new insights about the system
under study, the property can be described approximately. For
example, to check whether spatial clusters occur, a closeness
property involving extracting spatial locations as performance
values (see Figure 1) can be evaluated with an arbitrary
threshold. Conversely, if one has accurate knowledge over the
system under study, the enabling property can be described
by precisely defining complex temporal patterns and complex
combinations of states leading to well-known phenomena.
Although, accurate knowledge does not necessarily result in
a complex sequence of events. The framework proposed by
Chen et al. [15] can be considered for such purposes. In any
case, once switching opportunities are found, the Abstraction
knowledge is updated accordingly.

Besides the evaluation of monitored data w.r.t. enabling
properties to detect abstraction or refinement opportunities,
the Analyze component may also be responsible for regularly
checking whether a model in the managed system satisfies the
properties of interest. Although this is only necessary if the
abstractions are known to have edge cases where the associated
properties can be infringed. In this case, properties of interest
can be checked on the current execution path. In case one or
more properties are not satisfied, the Analyze component can
determine another appropriate abstraction to switch to.

For the road network case, clustering algorithms can be
applied to the weighted graph to isolate models or groups of
models above a certain threshold.

D. Plan

If the Abstraction knowledge has been filled during analysis,
the Plan component evaluates the different opportunities of
abstracting/refining the running models and checks whether
they are compatible with the properties of interest and if they
are not conflicting with each other. Eventually, an enacting
plan is produced and the abstraction knowledge is updated.
As far as we know, such an activity has never been addressed
in the literature, since the previous works only involve two
possible abstractions and an implicit, fixed set of properties
of interest. However, it is an important part of the adaptive
abstraction to support complex abstraction hierarchies as well
as a dynamic set of properties of interest.

With respect to the properties of interest, each abstrac-
tion/refinement candidate is evaluated twice: (1) to ensure that
an appropriate target abstraction exists based on the abstraction
relations found in the Knowledge and (2), to ensure the

target abstraction is able to satisfy the properties of interest.
If more than two distinct abstractions are available in the
abstraction hierarchy, conflicts between potential switches may
occur and should be addressed during the planning phase.
Even though a simple abstraction hierarchy is featured in our
motivational example (see Figure 5, conflicts appear and have
to be resolved during the Plan phase. We distinguish two
conflicting situations.

1) Overlapping switch conflict: The conflict occurs when
overlapping switching opportunities are detected during the
analysis phase, e.g. the same running model or group of
models can be switched to two different abstractions. In such
cases, the Plan component has to determine which abstraction
is the most appropriate. As long as the considered abstraction
types are assumed to satisfy the properties of interest, the
most abstract one could be promoted. However, abstractions’
properties only allow establishing partial ordering relations
between abstractions. As such, some abstractions cannot be
compared with each other and lie at the same “level”. In this
case, the most abstract type cannot be determined without
introducing domain-specific hints.

Such conflict can appear in our road traffic example since
the enabling properties describe situations that can occur
simultaneously. For example, if both a group of vehicles is
detected as a traffic jam while the vehicles are situated on
a road segment dense enough to be abstracted to an active
road segment, a choice has to be made. In this case, the
DES abstraction can be preferred since it should yield better
performances.

2) Heterogeneous abstractions conflict: This type of con-
flict occurs when a group of heterogeneous abstractions is
considered for aggregation or disaggregation. Models that
belong to different types of abstractions may be conflicting
and require a resolving plan. In this regards, two categories
can be distinguished.

The first category occurs when different abstractions “lev-
els” are considered to be merged, e.g. individual vehicles (M)
with traffic jams (Ms). In this case, the new abstraction has
to be initialized from the detailed models as well as from the
coarser ones for all entities to be merged. However, the coarser
abstraction has to support this particular initialization. In our
example, traffic jams (M>) have to support initialization from
traffic jams and vehicles. Otherwise, the problem falls into the
second category of heterogeneous abstractions conflict.

The second category occurs when there is an opportunity
for models to be switched to an abstraction having no direct
transformation relation, in which case the two abstraction types
are considered at the same “level” and there is no known way
to initialize the new abstraction from the existing one. To solve
this problem, the running model(s) first have to be refined
(possibly recursively) to a more detailed abstraction, from
which the involved entities can be re-abstracted to the target
abstraction. This can occur in the road traffic example. For
example, a traffic jam (M>) entering an active road segment
(Ms3) lies in this category since those two abstractions have no
relations (see Figure 5). They cannot be “merged” directly, the



traffic jam has to be refined to vehicles first so that those can
be merged into the active road segment. This is also necessary
if traffic jams do not support initialization both from vehicles
(M) and traffic jams (M>): a first refinement has to be done
before abstracting all vehicles.

E. Execute

The Execute component eventually enacts the plan estab-
lished during the Plan phase, if any. During this phase, the
main challenge is related to the state initialization. Moving
from a detailed abstraction to a coarser one requires the
faithful capturing of the available information by selecting the
appropriate dimensions and by aggregating it. For refinement,
information has to be reconstructed from an incomplete in-
formation representation. While in some cases information is
still available, e.g. if using the puppeteer or the view patterns,
the zoom pattern is destructive. This requires domain-specific
knowledge to be associated with each abstraction/refinement
relation. The previous works explored two approaches: ab-
stracting via statistics or equilibrium states [5].

V. CONCLUSION AND FUTURE WORKS

In this paper we looked into the challenges of adaptive
abstraction, a technique taking advantage of multi-level models
to dynamically switch between abstractions during execution
or simulation. Multi-level models provide several abstractions
over a system under study, that typically describes partially
overlapping details. As most existing works propose tailored
solutions and only consider two types of abstractions to switch
to, we lay the basis for a generic adaptive abstraction frame-
work based on a MAPE-K (Monitor-Analyze-Plan-Execute
over a shared Knowledge) self-management loop. After pro-
viding some background relative to abstraction and adaptive
abstraction and presenting a road network running example,
our contribution describes the challenges for a generic adaptive
abstraction framework based on MAPE-K components.

As a perspective, three axes can be investigated. The first
one is related to the relations established between abstractions.
Since a partial order is defined based on the properties
each abstraction is assumed to satisfy, many abstractions are
considered at the same level. For greater granularity, relations
could also be established by analyzing the scales and precision
units used across the model dimensions in addition to the
properties, as Iwasaki [3] did to relate abstractions with the
temporal dimension. This idea is related to the concept of ap-
proximation, which is presented as a transformation intent by
Lxucio et al. [8] and should be formally defined as an additional
model relation [7]. The second axis is about tackling adaptive
abstraction from a language engineering perspective to provide
fully automated support. While we developed our MAPE-K
based traffic model in an ad-hoc way, the approach could be
generalized by providing an adaptive abstraction meta-model
as well as an associated transformation language. Finally,
the concept of experimental frame could be integrated into
the framework. First introduced by B.P. Zeigler, experimental
frames provide an explicit specification over models context,

which can be used to validate model outputs. As adaptive
abstraction is only relevant w.r.t. properties of interest, we
believe experimental frames are an appropriate way to detect
whether the managed system is still valid after abstraction
switches.

ACKNOWLEDGEMENT

The content of this paper was discussed at the Computer
Automated Multi-Paradigm Modeling 2019 workshop. We also
thank Bentley J. Oakes for his insightful comments.

REFERENCES

[1] H. Stachowiak, Allgemeine Modelltheorie. Springer, 1973.

[2] P. Benjamin, M. Erraguntla, D. Delen, and R. Mayer, “Simulation
modeling at multiple levels of abstraction,” in Proceedings of the 30th
Conference on Winter Simulation. Washington, DC, USA: IEEE, Dec.
1998, pp. 391-398.

[3] Y. Iwasaki, “Reasoning with multiple abstraction models,” in Recent
Advances in Qualitative Physics. MIT Press, Jan. 1993, pp. 67-82.

[4] P. Caillou and J. Gil-Quijano, “SimAnalyzer: automated description of
groups dynamics in agent-based simulations,” in AAMAS ’12: Proceed-
ings of the 11th International Conference on Autonomous Agents and
Multiagent Systems, Valencia, Spain, Jun. 2012, pp. 1353-1354.

[5] A. Sharpanskykh and J. Treur, “Group Abstraction for Large-Scale
Agent-Based Social Diffusion Models with Unaffected Agents,” in
Agents in Principle, Agents in Practice. Springer, 2011, pp. 129-142.

[6] G. Morvan, “Multi-level agent-based modeling - A literature survey,”
arXiv, vol. 1205.0561v7, 2013.

[71 H. Giese, T. Levendovszky, and H. Vangheluwe, “Summary of the
Workshop on Multi-Paradigm Modeling: Concepts and Tools,” in Models
in Software Engineering. Springer, 2007, pp. 252-262.

[8] L. Lucio, M. Amrani, J. Dingel, L. Lambers, R. Salay, G. M. K. Selim,
E. Syriani, and M. Wimmer, “Model transformation intents and their
properties,” Software & Systems Modeling, vol. 15, no. 3, pp. 647-684,
Jul. 2014.

[9]1 B. Barroca, T. Kiihne, and H. Vangheluwe, “Integrating Language and
Ontology Engineering,” in Proceedings of Multi-Paradigm Modelling
workshop MoDELS 2014, 2014, pp. 77-86.

[10] M. Amrani, B. Combemale, L. Licio, G. Selim, J. Dingel, Y. Le Traon,
H. Vangheluwe, and J. R. Cordy, “Formal Verification Techniques for
Model Transformations: A Tridimensional Classification.” The Journal
of Object Technology, vol. 14, no. 3, pp. 1-43, Aug. 2015.

[11] T. Kiihne, “Matters of (Meta-) Modeling,” Software & Systems Model-
ing, vol. 5, no. 4, pp. 369-385, Jul. 2006.

[12] T. Moncion, P. Amar, and G. Hutzler, “Automatic characterization
of emergent phenomena in complex systems ,” Journal of Biological
Physics and Chemistry, vol. 10, pp. 16-23, 2010.

[13] J. Gil-Quijano, T. Louail, and G. Hutzler, “From Biological to Urban
Cells: Lessons from Three Multilevel Agent-Based Models,” in Princi-
ples and Practice of Multi-Agent Systems. Springer, 2012, pp. 620-635.

[14] A. Sarraf Shirazi, T. Davison, S. von Mammen, J. Denzinger, and
C. Jacob, “Adaptive agent abstractions to speed up spatial agent-based
simulations,” Simulation Modelling Practice and Theory, vol. 40, pp.
144-160, Jan. 2014.

[15] C.-C. Chen, C. D. Clack, and S. B. Nagl, “Identifying Multi-Level
Emergent Behaviors in Agent-Directed Simulations using Complex
Event Type Specifications,” SIMULATION, vol. 86, no. 1, pp. 41-51,
Dec. 2009.

[16] P. Mathieu, G. Morvan, and S. Picault, “Multi-level agent-based simula-
tions: Four design patterns,” Simulation Modelling Practice and Theory,
vol. 83, pp. 51-64, Apr. 2018.

[17] S. Bosmans, S. Mercelis, P. Hellinckx, and J. Denil, “Reducing Compu-
tational Cost Of Large-Scale Simulations Using Opportunistic Model
Approximation,” in 2019 Spring Simulation Conference (SpringSim).
IEEE, Apr. 2019, pp. 1-12.

[18] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41-50, Jan. 2003.



