dtcbd_simulate.alc 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454
  1. include "primitives.alh"
  2. include "modelling.alh"
  3. include "object_operations.alh"
  4. include "conformance_scd.alh"
  5. include "io.alh"
  6. include "metamodels.alh"
  7. include "mini_modify.alh"
  8. Boolean function main(model : Element):
  9. log("Start DTCBD simulation!")
  10. String cmd
  11. Boolean running
  12. Element schedule_init
  13. Element schedule_run
  14. Element schedule
  15. Float current_time
  16. String time
  17. time = set_pop(allInstances(model, "FullRuntime/Time"))
  18. current_time = read_attribute(model, time, "current_time")
  19. log("Fetching time now: " + cast_value(current_time))
  20. schedule_init = create_schedule(model)
  21. schedule_run = read_root()
  22. Element nodes
  23. Element inputs
  24. String node
  25. nodes = allInstances(model, "FullRuntime/Block")
  26. inputs = dict_create()
  27. while (set_len(nodes) > 0):
  28. node = set_pop(nodes)
  29. dict_add(inputs, node, allAssociationOrigins(model, node, "FullRuntime/Link"))
  30. while (bool_not(has_input())):
  31. if (read_attribute(model, time, "start_time") == read_attribute(model, time, "current_time")):
  32. schedule = schedule_init
  33. else:
  34. if (element_eq(schedule_run, read_root())):
  35. schedule_run = create_schedule(model)
  36. schedule = schedule_run
  37. current_time = step_simulation(model, schedule, current_time, inputs)
  38. instantiate_attribute(model, time, "current_time", current_time)
  39. log("CLOSE")
  40. output("CLOSE")
  41. return True!
  42. Element function create_schedule(model : Element):
  43. // Create nice graph first
  44. Element nodes
  45. Element successors
  46. Element predecessors
  47. String element_name
  48. Element incoming_links
  49. Element all_blocks
  50. nodes = allInstances(model, "FullRuntime/Block")
  51. successors = dict_create()
  52. predecessors = dict_create()
  53. while (set_len(nodes) > 0):
  54. element_name = set_pop(nodes)
  55. if (bool_not(dict_in(successors, element_name))):
  56. dict_add(successors, element_name, create_node())
  57. if (bool_not(dict_in(predecessors, element_name))):
  58. dict_add(predecessors, element_name, create_node())
  59. if (is_nominal_instance(model, element_name, "FullRuntime/ICBlock")):
  60. if (bool_not(is_physical_float(read_attribute(model, element_name, "last_in")))):
  61. incoming_links = allIncomingAssociationInstances(model, element_name, "FullRuntime/InitialCondition")
  62. else:
  63. incoming_links = create_node()
  64. else:
  65. incoming_links = allIncomingAssociationInstances(model, element_name, "FullRuntime/Link")
  66. while (set_len(incoming_links) > 0):
  67. String source
  68. source = readAssociationSource(model, set_pop(incoming_links))
  69. if (bool_not(dict_in(successors, source))):
  70. dict_add(successors, source, create_node())
  71. set_add(successors[source], element_name)
  72. set_add(predecessors[element_name], source)
  73. Element values
  74. values = create_node()
  75. dict_add(values, "model", model)
  76. dict_add(values, "S", create_node())
  77. dict_add(values, "index", 0)
  78. dict_add(values, "indices", create_node())
  79. dict_add(values, "lowlink", create_node())
  80. dict_add(values, "onStack", create_node())
  81. dict_add(values, "successors", successors)
  82. dict_add(values, "predecessors", predecessors)
  83. dict_add(values, "SCC", create_node())
  84. log("Toposort")
  85. //nodes = get_topolist(values)
  86. //while (list_len(nodes) > 0):
  87. // log("Strong connect")
  88. // strongconnect(list_pop_final(nodes), values)
  89. nodes = allInstances(model, "FullRuntime/Block")
  90. while (set_len(nodes) > 0):
  91. strongconnect(set_pop(nodes), values)
  92. log("OK")
  93. return values["SCC"]!
  94. Element function get_topolist(values : Element):
  95. Element result
  96. Element predecessors
  97. Element remaining
  98. String current_element
  99. Element cur_predecessors
  100. result = list_create()
  101. predecessors = dict_copy(values["predecessors"])
  102. while (dict_len(predecessors) > 0):
  103. remaining = dict_keys(predecessors)
  104. while (set_len(remaining) > 0):
  105. current_element = set_pop(remaining)
  106. cur_predecessors = predecessors[current_element]
  107. if (set_len(set_overlap(list_to_set(result), cur_predecessors)) == set_len(cur_predecessors)):
  108. // All predecessors of this node have already been visited
  109. dict_delete(predecessors, current_element)
  110. remaining = dict_keys(predecessors)
  111. list_append(result, current_element)
  112. return result!
  113. Integer function min(a : Integer, b : Integer):
  114. if (a < b):
  115. return a!
  116. else:
  117. return b!
  118. Void function strongconnect(v : String, values : Element):
  119. if (dict_in(values["indices"], v)):
  120. return!
  121. dict_overwrite(values["indices"], v, values["index"])
  122. dict_overwrite(values["lowlink"], v, values["index"])
  123. dict_overwrite(values, "index", cast_integer(values["index"]) + 1)
  124. list_append(values["S"], v)
  125. dict_overwrite(values["onStack"], v, True)
  126. Element successors
  127. String w
  128. successors = values["successors"][v]
  129. while (set_len(successors) > 0):
  130. w = set_pop(successors)
  131. if (bool_not(dict_in(values["indices"], w))):
  132. strongconnect(w, values)
  133. dict_overwrite(values["lowlink"], v, min(values["lowlink"][v], values["lowlink"][w]))
  134. elif (dict_in(values["onStack"], w)):
  135. if (values["onStack"][w]):
  136. dict_overwrite(values["lowlink"], v, min(values["lowlink"][v], values["indices"][w]))
  137. if (value_eq(values["lowlink"][v], values["indices"][v])):
  138. Element scc
  139. scc = create_node()
  140. // It will always differ now
  141. w = list_pop_final(values["S"])
  142. list_append(scc, w)
  143. dict_overwrite(values["onStack"], w, False)
  144. while (w != v):
  145. w = list_pop_final(values["S"])
  146. list_append(scc, w)
  147. dict_overwrite(values["onStack"], w, False)
  148. list_insert(values["SCC"], scc, 0)
  149. return!
  150. Boolean function solve_scc(model : Element, scc : Element):
  151. Element m
  152. Integer i
  153. Integer j
  154. String block
  155. String blocktype
  156. Element incoming
  157. String selected
  158. Float constant
  159. Element t
  160. // Construct the matrix first, with as many rows as there are variables
  161. // Number of columns is 1 higher
  162. i = 0
  163. m = create_node()
  164. while (i < read_nr_out(scc)):
  165. j = 0
  166. t = create_node()
  167. while (j < (read_nr_out(scc) + 1)):
  168. list_append(t, 0.0)
  169. j = j + 1
  170. list_append(m, t)
  171. i = i + 1
  172. // Matrix initialized to 0.0
  173. i = 0
  174. while (i < read_nr_out(scc)):
  175. // First element of scc
  176. block = scc[i]
  177. blocktype = read_type(model, block)
  178. // First write 1 in the current block
  179. dict_overwrite(m[i], i, 1.0)
  180. // Now check all blocks that are incoming
  181. if (blocktype == "FullRuntime/AdditionBlock"):
  182. constant = 0.0
  183. elif (blocktype == "FullRuntime/MultiplyBlock"):
  184. constant = 1.0
  185. incoming = allIncomingAssociationInstances(model, block, "Link")
  186. Integer index_to_write_constant
  187. index_to_write_constant = -1
  188. while (read_nr_out(incoming) > 0):
  189. selected = readAssociationSource(model, set_pop(incoming))
  190. if (set_in(scc, selected)):
  191. // Part of the loop, so in the index of selected in scc
  192. // Five options:
  193. if (blocktype == "FullRuntime/AdditionBlock"):
  194. // 1) AdditionBlock
  195. // Add the negative of this signal, which is as of yet unknown
  196. // x = y + z --> x - y - z = 0
  197. dict_overwrite(m[i], list_index_of(scc, selected), -1.0)
  198. elif (blocktype == "FullRuntime/MultiplyBlock"):
  199. // 2) MultiplyBlock
  200. if (index_to_write_constant != -1):
  201. return False!
  202. index_to_write_constant = list_index_of(scc, selected)
  203. elif (blocktype == "FullRuntime/NegatorBlock"):
  204. // 3) NegatorBlock
  205. // Add the positive of the signal, which is as of yet unknown
  206. dict_overwrite(m[i], list_index_of(scc, selected), 1.0)
  207. elif (blocktype == "FullRuntime/DelayBlock"):
  208. // 5) DelayBlock
  209. // Just copies a single value
  210. dict_overwrite(m[i], list_index_of(scc, selected), -1.0)
  211. else:
  212. // Block that cannot be handled
  213. return False!
  214. else:
  215. // A constant, which we can assume is already computed and thus usable
  216. if (blocktype == "FullRuntime/AdditionBlock"):
  217. constant = constant + cast_float(read_attribute(model, selected, "signal"))
  218. dict_overwrite(m[i], read_nr_out(scc), constant)
  219. elif (blocktype == "FullRuntime/MultiplyBlock"):
  220. constant = constant * cast_float(read_attribute(model, selected, "signal"))
  221. // Not written to constant part, as multiplies a variable
  222. // Any other block is impossible:
  223. // * Constant would never be part of a SCC
  224. // * Delay would never get an incoming constant
  225. // * Negation and Inverse only get 1 input, which is a variable in a loop
  226. // * Integrator and Derivator never get an incoming constant
  227. if (index_to_write_constant != -1):
  228. dict_overwrite(m[i], index_to_write_constant, -constant)
  229. i = i + 1
  230. // Constructed a complete matrix, so we can start!
  231. log(matrix2string(m))
  232. // Solve matrix now
  233. eliminateGaussJordan(m)
  234. // Now go over m and set signals for each element
  235. // Assume that everything worked out...
  236. i = 0
  237. while (i < read_nr_out(m)):
  238. block = scc[i]
  239. instantiate_attribute(model, block, "signal", m[i][read_nr_out(scc)])
  240. log((("Solved " + block) + " to ") + cast_string(m[i][read_nr_out(scc)]))
  241. i = i + 1
  242. return True!
  243. Integer function list_index_of(lst : Element, elem : Element):
  244. Integer i
  245. i = 0
  246. while (i < read_nr_out(lst)):
  247. if (value_eq(list_read(lst, i), elem)):
  248. return i!
  249. else:
  250. i = i + 1
  251. return -1!
  252. Float function step_simulation(model : Element, schedule : Element, time : Float, inputs : Element):
  253. Float signal
  254. Element incoming
  255. String selected
  256. String block
  257. String elem
  258. String blocktype
  259. Element memory_blocks
  260. Integer i
  261. Float delta_t
  262. Element scc
  263. delta_t = 0.1
  264. memory_blocks = set_create()
  265. i = 0
  266. while (i < list_len(schedule)):
  267. scc = list_read(schedule, i)
  268. i = i + 1
  269. if (list_len(scc) > 1):
  270. if (bool_not(solve_scc(model, scc))):
  271. log("ALGEBRAIC_LOOP")
  272. output("ALGEBRAIC_LOOP")
  273. return time!
  274. else:
  275. block = list_read(scc, 0)
  276. // Execute "block"
  277. blocktype = read_type(model, block)
  278. //log("Execute block " + block + " : " + blocktype)
  279. incoming = set_copy(inputs[block])
  280. if (blocktype == "FullRuntime/ConstantBlock"):
  281. signal = cast_float(read_attribute(model, block, "value"))
  282. elif (blocktype == "FullRuntime/AdditionBlock"):
  283. signal = 0.0
  284. while (set_len(incoming) > 0):
  285. selected = set_pop(incoming)
  286. signal = signal + cast_float(read_attribute(model, selected, "signal"))
  287. elif (blocktype == "FullRuntime/MultiplyBlock"):
  288. signal = 1.0
  289. while (set_len(incoming) > 0):
  290. selected = set_pop(incoming)
  291. signal = signal * cast_float(read_attribute(model, selected, "signal"))
  292. elif (blocktype == "FullRuntime/NegatorBlock"):
  293. signal = 0.0
  294. while (set_len(incoming) > 0):
  295. selected = set_pop(incoming)
  296. signal = float_neg(cast_float(read_attribute(model, selected, "signal")))
  297. elif (blocktype == "FullRuntime/InverseBlock"):
  298. signal = 0.0
  299. while (set_len(incoming) > 0):
  300. selected = set_pop(incoming)
  301. signal = float_division(1.0, cast_float(read_attribute(model, selected, "signal")))
  302. elif (blocktype == "FullRuntime/DelayBlock"):
  303. signal = 0.0
  304. if (bool_not(is_physical_float(read_attribute(model, block, "last_in")))):
  305. // No memory yet, so use initial condition
  306. incoming = allAssociationOrigins(model, block, "FullRuntime/InitialCondition")
  307. while (set_len(incoming) > 0):
  308. selected = set_pop(incoming)
  309. signal = cast_float(read_attribute(model, selected, "signal"))
  310. else:
  311. signal = read_attribute(model, block, "last_in")
  312. set_add(memory_blocks, block)
  313. elif (blocktype == "FullRuntime/ProbeBlock"):
  314. while (set_len(incoming) > 0):
  315. signal = cast_float(read_attribute(model, set_pop(incoming), "signal"))
  316. output(cast_string(time) + " " + cast_string(read_attribute(model, block, "name")) + " " + cast_string(signal))
  317. log(cast_string(time) + " " + cast_string(read_attribute(model, block, "name")) + " " + cast_string(signal))
  318. instantiate_attribute(model, block, "signal", signal)
  319. while (set_len(memory_blocks) > 0):
  320. block = set_pop(memory_blocks)
  321. // Update memory
  322. incoming = set_copy(inputs[block])
  323. while (set_len(incoming) > 0):
  324. selected = set_pop(incoming)
  325. instantiate_attribute(model, block, "last_in", cast_float(read_attribute(model, selected, "signal")))
  326. // Increase simulation time
  327. return time + delta_t!
  328. Void function eliminateGaussJordan(m : Element):
  329. Integer i
  330. Integer j
  331. Integer f
  332. Integer g
  333. Boolean searching
  334. Element t
  335. Float divisor
  336. i = 0
  337. j = 0
  338. while (i < read_nr_out(m)):
  339. // Make sure pivot m[i][j] != 0, swapping if necessary
  340. while (cast_float(m[i][j]) == 0.0):
  341. // Is zero, so find row which is not zero
  342. f = i + 1
  343. searching = True
  344. while (searching):
  345. if (f >= read_nr_out(m)):
  346. // No longer any rows left, so just increase column counter
  347. searching = False
  348. j = j + 1
  349. else:
  350. if (cast_float(m[f][j]) == 0.0):
  351. // Also zero, so continue
  352. f = f + 1
  353. else:
  354. // Found non-zero, so swap row
  355. t = cast_float(m[f])
  356. dict_overwrite(m, f, cast_float(m[i]))
  357. dict_overwrite(m, i, t)
  358. searching = False
  359. // If we have increased j, we will just start the loop again (possibly), as m[i][j] might be zero again
  360. // Pivot in m[i][j] guaranteed to not be 0
  361. // Now divide complete row by value of m[i][j] to make it equal 1
  362. f = j
  363. divisor = cast_float(m[i][j])
  364. while (f < read_nr_out(m[i])):
  365. dict_overwrite(m[i], f, float_division(cast_float(m[i][f]), divisor))
  366. f = f + 1
  367. // Eliminate all rows in the j-th column, except the i-th row
  368. f = 0
  369. while (f < read_nr_out(m)):
  370. if (bool_not(f == i)):
  371. g = j
  372. divisor = cast_float(m[f][j])
  373. while (g < read_nr_out(m[f])):
  374. dict_overwrite(m[f], g, cast_float(m[f][g]) - (divisor * cast_float(m[i][g])))
  375. g = g + 1
  376. f = f + 1
  377. // Increase row and column
  378. i = i + 1
  379. j = j + 1
  380. return !
  381. String function matrix2string(m : Element):
  382. Integer i
  383. Integer j
  384. String result
  385. result = ""
  386. i = 0
  387. while (i < read_nr_out(m)):
  388. j = 0
  389. while (j < read_nr_out(m[i])):
  390. result = result + cast_string(m[i][j]) + ", "
  391. j = j + 1
  392. i = i + 1
  393. result = result + "\n"
  394. return result!