main.py 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421
  1. import sys
  2. from collections import defaultdict
  3. import os
  4. import gzip
  5. import time
  6. # Work around Python 2 where a 'big integer' automatically becomes a long
  7. if sys.version > '3': # pragma: no cover
  8. import pickle as pickle
  9. integer_types = (int,)
  10. primitive_types = (int, float, str, bool)
  11. else: # pragma: no cover
  12. import cPickle as pickle
  13. integer_types = (int, long)
  14. primitive_types = (int, long, float, str, bool, unicode)
  15. complex_primitives = frozenset(["if", "while", "assign", "call", "break", "continue", "return","resolve","access", "constant", "input", "output", "declare", "global", "none"])
  16. def instance_to_string(value):
  17. return value["value"]
  18. def string_to_instance(value):
  19. return {'value': value}
  20. class ModelverseState(object):
  21. def __init__(self, bootfile = None):
  22. self.free_id = 0
  23. self.edges = {}
  24. self.outgoing = {}
  25. self.incoming = {}
  26. self.values = {}
  27. self.nodes = set()
  28. self.GC = True
  29. self.to_delete = set()
  30. self.cache = {}
  31. self.cache_node = {}
  32. if bootfile is not None:
  33. self.root = self.parse(bootfile)
  34. else:
  35. self.root = self.create_node()
  36. def dump_modelverse(self):
  37. with open("/tmp/modelverse.out", "w") as f:
  38. f.write("digraph main {\n")
  39. for n in self.nodes:
  40. if n in self.values:
  41. f.write("a_%s [label=\"a_%s (%s)\"];\n" % (n, n, self.values[n]))
  42. else:
  43. f.write("a_%s [label=\"a_%s\"];\n" % (n, n))
  44. for i, e in list(self.edges.items()):
  45. f.write("%s -> %s [label=\"%s\"];\n" % (e[0], e[1], i))
  46. f.write("}")
  47. return self.root
  48. def parse(self, filename):
  49. picklefile = filename + ".pickle"
  50. try:
  51. if os.path.getmtime(picklefile) > os.path.getmtime(filename):
  52. # Pickle is more recent than bootstrap file, so we can use it
  53. self.root, self.free_id, self.nodes, self.edges, self.values, self.cache, self.cache_node = pickle.load(open(picklefile, 'rb'))
  54. for name in self.edges:
  55. source, destination = self.edges[name]
  56. self.outgoing.setdefault(source, set()).add(name)
  57. self.incoming.setdefault(destination, set()).add(name)
  58. return self.root
  59. else:
  60. raise Exception("Invalid pickle")
  61. except Exception as e:
  62. # We have to parse the file and create the pickle
  63. symbols = {}
  64. def resolve(symb):
  65. try:
  66. return int(symb)
  67. except:
  68. if symb[0] == "?":
  69. derefs = symb[1:].split("/")
  70. v = self.read_dict(symbols["root"], "__hierarchy")
  71. for deref in derefs:
  72. v = self.read_dict(v, deref)
  73. return v
  74. else:
  75. return symbols[symb]
  76. with gzip.open(filename, 'rb') as f:
  77. for line in f:
  78. #handle str to bytes
  79. if sys.version_info[0] > 2:
  80. line = line.decode()
  81. element_type, constructor = line.split(None, 1)
  82. name, values = constructor.split("(", 1)
  83. values, _ = values.rsplit(")", 1)
  84. if element_type == "Node":
  85. name = name.split()[0]
  86. if values == "":
  87. symbols[name] = self.create_node()
  88. else:
  89. value = values
  90. if value in complex_primitives:
  91. value = string_to_instance(value)
  92. else:
  93. value = eval(value)
  94. symbols[name] = self.create_nodevalue(value)
  95. elif element_type == "Edge":
  96. name = name.split()[0]
  97. values = [v.split()[0] for v in values.split(",")]
  98. symbols[name] = self.create_edge(resolve(values[0]), resolve(values[1]))
  99. elif element_type == "Dict":
  100. values = [v.split()[0] for v in values.split(",")]
  101. if values[1] in complex_primitives:
  102. values[1] = string_to_instance(values[1])
  103. else:
  104. values[1] = eval(values[1])
  105. self.create_dict(resolve(values[0]), values[1], resolve(values[2]))
  106. else:
  107. raise Exception("Unknown element type: %s" % element_type)
  108. # Creation successful, now also create a pickle
  109. with open(picklefile, 'wb') as f:
  110. pickle.dump((symbols["root"], self.free_id, self.nodes, self.edges, self.values, self.cache, self.cache_node), f, pickle.HIGHEST_PROTOCOL)
  111. return symbols["root"]
  112. def read_root(self):
  113. return self.root
  114. def create_node(self):
  115. self.nodes.add(self.free_id)
  116. self.free_id += 1
  117. return self.free_id - 1
  118. def create_edge(self, source, target):
  119. if source not in self.edges and source not in self.nodes:
  120. return None
  121. elif target not in self.edges and target not in self.nodes:
  122. return None
  123. else:
  124. self.outgoing.setdefault(source, set()).add(self.free_id)
  125. self.incoming.setdefault(target, set()).add(self.free_id)
  126. self.edges[self.free_id] = (source, target)
  127. self.free_id += 1
  128. if source in self.edges:
  129. # We are creating something dict_readable
  130. # Fill in the cache already!
  131. dict_source, dict_target = self.edges[source]
  132. if target in self.values:
  133. self.cache.setdefault(dict_source, {})[self.values[target]] = source
  134. self.cache_node.setdefault(dict_source, {})[target] = source
  135. return self.free_id - 1
  136. def is_valid_datavalue(self, value):
  137. if isinstance(value, dict):
  138. if "value" in value and value["value"] in complex_primitives:
  139. return True
  140. else:
  141. return False
  142. elif not isinstance(value, primitive_types):
  143. return False
  144. elif isinstance(value, integer_types) and not (-2**63 <= value <= 2**63 - 1):
  145. return False
  146. return True
  147. def create_nodevalue(self, value):
  148. if not self.is_valid_datavalue(value):
  149. return None
  150. self.values[self.free_id] = value
  151. self.nodes.add(self.free_id)
  152. self.free_id += 1
  153. return self.free_id - 1
  154. def create_dict(self, source, data, destination):
  155. if destination is None:
  156. print("Assign None for " + str(locals()))
  157. print("Previous value: " + str(self.values.get(self.cache.get(source, {}).get(data, None), None)))
  158. if source not in self.nodes and source not in self.edges:
  159. return None
  160. elif destination not in self.nodes and destination not in self.edges:
  161. return None
  162. elif not self.is_valid_datavalue(data):
  163. return None
  164. else:
  165. n = self.create_nodevalue(data)
  166. e = self.create_edge(source, destination)
  167. self.create_edge(e, n)
  168. self.cache.setdefault(source, {})[data] = e
  169. self.cache_node.setdefault(source, {})[n] = e
  170. def read_value(self, node):
  171. if node in self.values:
  172. return self.values[node]
  173. else:
  174. return None
  175. def read_outgoing(self, elem):
  176. if elem in self.edges or elem in self.nodes:
  177. if elem in self.outgoing:
  178. return list(self.outgoing[elem])
  179. else:
  180. return []
  181. return None
  182. def read_incoming(self, elem):
  183. if elem in self.edges or elem in self.nodes:
  184. if elem in self.incoming:
  185. return list(self.incoming[elem])
  186. else:
  187. return []
  188. else:
  189. return None
  190. def read_edge(self, edge):
  191. if edge in self.edges:
  192. return [self.edges[edge][0], self.edges[edge][1]]
  193. else:
  194. return [None, None]
  195. def read_dict(self, node, value):
  196. try:
  197. first = self.cache[node][value]
  198. # Got hit, so validate
  199. if (self.edges[first][0] == node) and \
  200. (value in [self.values[self.edges[i][1]] for i in self.outgoing[first] if self.edges[i][1] in self.values]):
  201. return self.edges[first][1]
  202. # Hit but invalid now
  203. del self.cache[node][value]
  204. except KeyError:
  205. # Didn't exist
  206. pass
  207. except:
  208. print(locals())
  209. raise
  210. return None
  211. def read_dict_keys(self, node):
  212. if node not in self.nodes and node not in self.edges:
  213. return None
  214. result = []
  215. #NOTE cannot just use the cache here, as some keys in the cache might not actually exist; we would have to check all of them anyway
  216. if node in self.outgoing:
  217. for e1 in self.outgoing[node]:
  218. if e1 in self.outgoing:
  219. for e2 in self.outgoing[e1]:
  220. result.append(self.edges[e2][1])
  221. return result
  222. def read_dict_edge(self, node, value):
  223. try:
  224. first = self.cache[node][value]
  225. # Got hit, so validate
  226. if (self.edges[first][0] == node) and \
  227. (value in [self.values[self.edges[i][1]] for i in self.outgoing[first] if self.edges[i][1] in self.values]):
  228. return first
  229. # Hit but invalid now
  230. del self.cache[node][value]
  231. except KeyError:
  232. # Didn't exist
  233. pass
  234. return None
  235. def read_dict_node(self, node, value_node):
  236. e = self.read_dict_node_edge(node, value_node)
  237. if e is None:
  238. return None
  239. else:
  240. self.cache_node.setdefault(node, {})[value_node] = e
  241. return self.edges[e][1]
  242. def read_dict_node_edge(self, node, value_node):
  243. try:
  244. first = self.cache_node[node][value_node]
  245. # Got hit, so validate
  246. if (self.edges[first][0] == node) and \
  247. (value_node in [self.edges[i][1] for i in self.outgoing[first]]):
  248. return first
  249. # Hit but invalid now
  250. del self.cache_node[node][value_node]
  251. except KeyError:
  252. # Didn't exist
  253. pass
  254. return None
  255. def read_reverse_dict(self, node, value):
  256. if node not in self.nodes and node not in self.edges:
  257. return None
  258. elif not self.is_valid_datavalue(value):
  259. return None
  260. # Get all outgoing links
  261. matches = []
  262. if node in self.incoming:
  263. for e1 in self.incoming[node]:
  264. # For each link, we read the links that might link to a data value
  265. if e1 in self.outgoing:
  266. for e2 in self.outgoing[e1]:
  267. # Now read out the target of the link
  268. target = self.edges[e2][1]
  269. # And access its value
  270. if target in self.values and self.values[target] == value:
  271. # Found a match
  272. matches.append(e1)
  273. return [self.edges[e][0] for e in matches]
  274. def delete_node(self, node):
  275. if node == self.root:
  276. return None
  277. elif node not in self.nodes:
  278. return None
  279. self.nodes.remove(node)
  280. if node in self.values:
  281. del self.values[node]
  282. s = set()
  283. if node in self.outgoing:
  284. for e in self.outgoing[node]:
  285. s.add(e)
  286. del self.outgoing[node]
  287. if node in self.incoming:
  288. for e in self.incoming[node]:
  289. s.add(e)
  290. del self.incoming[node]
  291. for e in s:
  292. self.delete_edge(e)
  293. if node in self.outgoing:
  294. del self.outgoing[node]
  295. if node in self.incoming:
  296. del self.incoming[node]
  297. return None
  298. def delete_edge(self, edge):
  299. if edge not in self.edges:
  300. return None
  301. s, t = self.edges[edge]
  302. if t in self.incoming:
  303. self.incoming[t].remove(edge)
  304. if s in self.outgoing:
  305. self.outgoing[s].remove(edge)
  306. del self.edges[edge]
  307. s = set()
  308. if edge in self.outgoing:
  309. for e in self.outgoing[edge]:
  310. s.add(e)
  311. if edge in self.incoming:
  312. for e in self.incoming[edge]:
  313. s.add(e)
  314. for e in s:
  315. self.delete_edge(e)
  316. if edge in self.outgoing:
  317. del self.outgoing[edge]
  318. if edge in self.incoming:
  319. del self.incoming[edge]
  320. if (self.GC) and (t in self.incoming and not self.incoming[t]) and (t not in self.edges):
  321. # Remove this node as well
  322. # Edges aren't deleted like this, as they might have a reachable target and source!
  323. # If they haven't, they will be removed because the source was removed.
  324. self.to_delete.add(t)
  325. def garbage_collect(self):
  326. while self.to_delete:
  327. t = self.to_delete.pop()
  328. if t in self.incoming and not self.incoming[t]:
  329. self.delete_node(t)
  330. def purge(self):
  331. self.garbage_collect()
  332. values = set(self.edges)
  333. values.update(self.nodes)
  334. visit_list = [self.root]
  335. while visit_list:
  336. elem = visit_list.pop()
  337. if elem in values:
  338. # Remove it from the leftover values
  339. values.remove(elem)
  340. if elem in self.edges:
  341. visit_list.extend(self.edges[elem])
  342. if elem in self.outgoing:
  343. visit_list.extend(self.outgoing[elem])
  344. if elem in self.incoming:
  345. visit_list.extend(self.incoming[elem])
  346. dset = set()
  347. for key in self.cache:
  348. if key not in self.nodes and key not in self.edges:
  349. dset.add(key)
  350. for key in dset:
  351. del self.cache[key]
  352. dset = set()
  353. for key in self.cache_node:
  354. if key not in self.nodes and key not in self.edges:
  355. dset.add(key)
  356. for key in dset:
  357. del self.cache_node[key]
  358. # All remaining elements are to be purged
  359. if len(values) > 0:
  360. while values:
  361. v = values.pop()
  362. if v in self.nodes:
  363. self.delete_node(v)