dtcbd_simulate.alc 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458
  1. include "primitives.alh"
  2. include "modelling.alh"
  3. include "object_operations.alh"
  4. include "conformance_scd.alh"
  5. include "io.alh"
  6. include "metamodels.alh"
  7. include "mini_modify.alh"
  8. Boolean function main(model : Element):
  9. log("Start DTCBD simulation!")
  10. String cmd
  11. Boolean running
  12. Element schedule_init
  13. Element schedule_run
  14. Element schedule
  15. Float current_time
  16. String time
  17. log("Fetching time...")
  18. time = set_pop(allInstances(model, "FullRuntime/Time"))
  19. log("Time OK")
  20. current_time = read_attribute(model, time, "current_time")
  21. log("Fetching time now: " + cast_value(current_time))
  22. schedule_init = create_schedule(model)
  23. log("Schedule OK")
  24. schedule_run = read_root()
  25. Element nodes
  26. Element inputs
  27. String node
  28. log("Compute all blocks")
  29. nodes = allInstances(model, "FullRuntime/Block")
  30. log("Blocks: " + cast_value(set_len(nodes)))
  31. inputs = dict_create()
  32. while (set_len(nodes) > 0):
  33. node = set_pop(nodes)
  34. dict_add(inputs, node, allAssociationOrigins(model, node, "FullRuntime/Link"))
  35. while (bool_not(has_input())):
  36. if (read_attribute(model, time, "start_time") == read_attribute(model, time, "current_time")):
  37. schedule = schedule_init
  38. else:
  39. if (element_eq(schedule_run, read_root())):
  40. schedule_run = create_schedule(model)
  41. schedule = schedule_run
  42. current_time = step_simulation(model, schedule, current_time, inputs)
  43. instantiate_attribute(model, time, "current_time", current_time)
  44. log("CLOSE")
  45. output("CLOSE")
  46. return True!
  47. Element function create_schedule(model : Element):
  48. // Create nice graph first
  49. Element nodes
  50. Element successors
  51. Element predecessors
  52. String element_name
  53. Element incoming_links
  54. Element all_blocks
  55. log("Create schedule...")
  56. nodes = allInstances(model, "FullRuntime/Block")
  57. successors = dict_create()
  58. predecessors = dict_create()
  59. log("Got all instances")
  60. while (set_len(nodes) > 0):
  61. element_name = set_pop(nodes)
  62. log("Loop for " + cast_value(element_name))
  63. if (bool_not(dict_in(successors, element_name))):
  64. dict_add(successors, element_name, create_node())
  65. if (bool_not(dict_in(predecessors, element_name))):
  66. dict_add(predecessors, element_name, create_node())
  67. if (is_nominal_instance(model, element_name, "FullRuntime/ICBlock")):
  68. if (bool_not(is_physical_float(read_attribute(model, element_name, "last_in")))):
  69. incoming_links = allIncomingAssociationInstances(model, element_name, "FullRuntime/InitialCondition")
  70. else:
  71. incoming_links = create_node()
  72. else:
  73. incoming_links = allIncomingAssociationInstances(model, element_name, "FullRuntime/Link")
  74. while (set_len(incoming_links) > 0):
  75. String source
  76. source = readAssociationSource(model, set_pop(incoming_links))
  77. if (bool_not(dict_in(successors, source))):
  78. dict_add(successors, source, create_node())
  79. set_add(successors[source], element_name)
  80. set_add(predecessors[element_name], source)
  81. log("Loop done")
  82. Element values
  83. values = create_node()
  84. dict_add(values, "model", model)
  85. dict_add(values, "S", create_node())
  86. dict_add(values, "index", 0)
  87. dict_add(values, "indices", create_node())
  88. dict_add(values, "lowlink", create_node())
  89. dict_add(values, "onStack", create_node())
  90. dict_add(values, "successors", successors)
  91. dict_add(values, "predecessors", predecessors)
  92. dict_add(values, "SCC", create_node())
  93. log("Toposort")
  94. nodes = get_topolist(values)
  95. while (list_len(nodes) > 0):
  96. log("Strong connect")
  97. strongconnect(list_pop_final(nodes), values)
  98. log("OK")
  99. return values["SCC"]!
  100. Element function get_topolist(values : Element):
  101. Element result
  102. Element predecessors
  103. Element remaining
  104. String current_element
  105. Element cur_predecessors
  106. result = list_create()
  107. predecessors = dict_copy(values["predecessors"])
  108. while (dict_len(predecessors) > 0):
  109. remaining = dict_keys(predecessors)
  110. while (set_len(remaining) > 0):
  111. current_element = set_pop(remaining)
  112. cur_predecessors = predecessors[current_element]
  113. if (set_len(set_overlap(list_to_set(result), cur_predecessors)) == set_len(cur_predecessors)):
  114. // All predecessors of this node have already been visited
  115. dict_delete(predecessors, current_element)
  116. remaining = dict_keys(predecessors)
  117. list_append(result, current_element)
  118. return result!
  119. Integer function min(a : Integer, b : Integer):
  120. if (a < b):
  121. return a!
  122. else:
  123. return b!
  124. Void function strongconnect(v : String, values : Element):
  125. if (dict_in(values["indices"], v)):
  126. return!
  127. dict_overwrite(values["indices"], v, values["index"])
  128. dict_overwrite(values["lowlink"], v, values["index"])
  129. dict_overwrite(values, "index", cast_integer(values["index"]) + 1)
  130. list_append(values["S"], v)
  131. dict_overwrite(values["onStack"], v, True)
  132. Element successors
  133. String w
  134. successors = values["successors"][v]
  135. while (set_len(successors) > 0):
  136. w = set_pop(successors)
  137. if (bool_not(dict_in(values["indices"], w))):
  138. strongconnect(w, values)
  139. dict_overwrite(values["lowlink"], v, min(values["lowlink"][v], values["lowlink"][w]))
  140. elif (dict_in(values["onStack"], w)):
  141. if (values["onStack"][w]):
  142. dict_overwrite(values["lowlink"], v, min(values["lowlink"][v], values["indices"][w]))
  143. if (value_eq(values["lowlink"][v], values["indices"][v])):
  144. Element scc
  145. scc = create_node()
  146. // It will always differ now
  147. w = list_pop_final(values["S"])
  148. list_append(scc, w)
  149. dict_overwrite(values["onStack"], w, False)
  150. while (w != v):
  151. w = list_pop_final(values["S"])
  152. list_append(scc, w)
  153. dict_overwrite(values["onStack"], w, False)
  154. list_insert(values["SCC"], scc, 0)
  155. return!
  156. Boolean function solve_scc(model : Element, scc : Element):
  157. Element m
  158. Integer i
  159. Integer j
  160. String block
  161. String blocktype
  162. Element incoming
  163. String selected
  164. Float constant
  165. Element t
  166. // Construct the matrix first, with as many rows as there are variables
  167. // Number of columns is 1 higher
  168. i = 0
  169. m = create_node()
  170. while (i < read_nr_out(scc)):
  171. j = 0
  172. t = create_node()
  173. while (j < (read_nr_out(scc) + 1)):
  174. list_append(t, 0.0)
  175. j = j + 1
  176. list_append(m, t)
  177. i = i + 1
  178. // Matrix initialized to 0.0
  179. i = 0
  180. while (i < read_nr_out(scc)):
  181. // First element of scc
  182. block = scc[i]
  183. blocktype = read_type(model, block)
  184. // First write 1 in the current block
  185. dict_overwrite(m[i], i, 1.0)
  186. // Now check all blocks that are incoming
  187. if (blocktype == "FullRuntime/AdditionBlock"):
  188. constant = 0.0
  189. elif (blocktype == "FullRuntime/MultiplyBlock"):
  190. constant = 1.0
  191. incoming = allIncomingAssociationInstances(model, block, "Link")
  192. Integer index_to_write_constant
  193. index_to_write_constant = -1
  194. while (read_nr_out(incoming) > 0):
  195. selected = readAssociationSource(model, set_pop(incoming))
  196. if (set_in(scc, selected)):
  197. // Part of the loop, so in the index of selected in scc
  198. // Five options:
  199. if (blocktype == "FullRuntime/AdditionBlock"):
  200. // 1) AdditionBlock
  201. // Add the negative of this signal, which is as of yet unknown
  202. // x = y + z --> x - y - z = 0
  203. dict_overwrite(m[i], list_index_of(scc, selected), -1.0)
  204. elif (blocktype == "FullRuntime/MultiplyBlock"):
  205. // 2) MultiplyBlock
  206. if (index_to_write_constant != -1):
  207. return False!
  208. index_to_write_constant = list_index_of(scc, selected)
  209. elif (blocktype == "FullRuntime/NegatorBlock"):
  210. // 3) NegatorBlock
  211. // Add the positive of the signal, which is as of yet unknown
  212. dict_overwrite(m[i], list_index_of(scc, selected), 1.0)
  213. elif (blocktype == "FullRuntime/DelayBlock"):
  214. // 5) DelayBlock
  215. // Just copies a single value
  216. dict_overwrite(m[i], list_index_of(scc, selected), -1.0)
  217. else:
  218. // Block that cannot be handled
  219. return False!
  220. else:
  221. // A constant, which we can assume is already computed and thus usable
  222. if (blocktype == "FullRuntime/AdditionBlock"):
  223. constant = constant + cast_float(read_attribute(model, selected, "signal"))
  224. dict_overwrite(m[i], read_nr_out(scc), constant)
  225. elif (blocktype == "FullRuntime/MultiplyBlock"):
  226. constant = constant * cast_float(read_attribute(model, selected, "signal"))
  227. // Not written to constant part, as multiplies a variable
  228. // Any other block is impossible:
  229. // * Constant would never be part of a SCC
  230. // * Delay would never get an incoming constant
  231. // * Negation and Inverse only get 1 input, which is a variable in a loop
  232. // * Integrator and Derivator never get an incoming constant
  233. if (index_to_write_constant != -1):
  234. dict_overwrite(m[i], index_to_write_constant, -constant)
  235. i = i + 1
  236. // Constructed a complete matrix, so we can start!
  237. log(matrix2string(m))
  238. // Solve matrix now
  239. eliminateGaussJordan(m)
  240. // Now go over m and set signals for each element
  241. // Assume that everything worked out...
  242. i = 0
  243. while (i < read_nr_out(m)):
  244. block = scc[i]
  245. instantiate_attribute(model, block, "signal", m[i][read_nr_out(scc)])
  246. log((("Solved " + block) + " to ") + cast_string(m[i][read_nr_out(scc)]))
  247. i = i + 1
  248. return True!
  249. Integer function list_index_of(lst : Element, elem : Element):
  250. Integer i
  251. i = 0
  252. while (i < read_nr_out(lst)):
  253. if (value_eq(list_read(lst, i), elem)):
  254. return i!
  255. else:
  256. i = i + 1
  257. return -1!
  258. Float function step_simulation(model : Element, schedule : Element, time : Float, inputs : Element):
  259. Float signal
  260. Element incoming
  261. String selected
  262. String block
  263. String elem
  264. String blocktype
  265. Element memory_blocks
  266. Integer i
  267. Float delta_t
  268. Element scc
  269. delta_t = 0.1
  270. memory_blocks = set_create()
  271. i = 0
  272. while (i < list_len(schedule)):
  273. scc = list_read(schedule, i)
  274. i = i + 1
  275. if (list_len(scc) > 1):
  276. if (bool_not(solve_scc(model, scc))):
  277. log("ALGEBRAIC_LOOP")
  278. output("ALGEBRAIC_LOOP")
  279. return time!
  280. else:
  281. block = list_read(scc, 0)
  282. // Execute "block"
  283. blocktype = read_type(model, block)
  284. //log("Execute block " + block + " : " + blocktype)
  285. incoming = set_copy(inputs[block])
  286. if (blocktype == "FullRuntime/ConstantBlock"):
  287. signal = cast_float(read_attribute(model, block, "value"))
  288. elif (blocktype == "FullRuntime/AdditionBlock"):
  289. signal = 0.0
  290. while (set_len(incoming) > 0):
  291. selected = set_pop(incoming)
  292. signal = signal + cast_float(read_attribute(model, selected, "signal"))
  293. elif (blocktype == "FullRuntime/MultiplyBlock"):
  294. signal = 1.0
  295. while (set_len(incoming) > 0):
  296. selected = set_pop(incoming)
  297. signal = signal * cast_float(read_attribute(model, selected, "signal"))
  298. elif (blocktype == "FullRuntime/NegatorBlock"):
  299. signal = 0.0
  300. while (set_len(incoming) > 0):
  301. selected = set_pop(incoming)
  302. signal = float_neg(cast_float(read_attribute(model, selected, "signal")))
  303. elif (blocktype == "FullRuntime/InverseBlock"):
  304. signal = 0.0
  305. while (set_len(incoming) > 0):
  306. selected = set_pop(incoming)
  307. signal = float_division(1.0, cast_float(read_attribute(model, selected, "signal")))
  308. elif (blocktype == "FullRuntime/DelayBlock"):
  309. signal = 0.0
  310. if (bool_not(is_physical_float(read_attribute(model, block, "last_in")))):
  311. // No memory yet, so use initial condition
  312. incoming = allAssociationOrigins(model, block, "FullRuntime/InitialCondition")
  313. while (set_len(incoming) > 0):
  314. selected = set_pop(incoming)
  315. signal = cast_float(read_attribute(model, selected, "signal"))
  316. else:
  317. signal = read_attribute(model, block, "last_in")
  318. set_add(memory_blocks, block)
  319. elif (blocktype == "FullRuntime/ProbeBlock"):
  320. while (set_len(incoming) > 0):
  321. signal = cast_float(read_attribute(model, set_pop(incoming), "signal"))
  322. output(cast_string(time) + " " + cast_string(read_attribute(model, block, "name")) + " " + cast_string(signal))
  323. log(cast_string(time) + " " + cast_string(read_attribute(model, block, "name")) + " " + cast_string(signal))
  324. instantiate_attribute(model, block, "signal", signal)
  325. while (set_len(memory_blocks) > 0):
  326. block = set_pop(memory_blocks)
  327. // Update memory
  328. incoming = set_copy(inputs[block])
  329. while (set_len(incoming) > 0):
  330. selected = set_pop(incoming)
  331. instantiate_attribute(model, block, "last_in", cast_float(read_attribute(model, selected, "signal")))
  332. // Increase simulation time
  333. return time + delta_t!
  334. Void function eliminateGaussJordan(m : Element):
  335. Integer i
  336. Integer j
  337. Integer f
  338. Integer g
  339. Boolean searching
  340. Element t
  341. Float divisor
  342. i = 0
  343. j = 0
  344. while (i < read_nr_out(m)):
  345. // Make sure pivot m[i][j] != 0, swapping if necessary
  346. while (cast_float(m[i][j]) == 0.0):
  347. // Is zero, so find row which is not zero
  348. f = i + 1
  349. searching = True
  350. while (searching):
  351. if (f >= read_nr_out(m)):
  352. // No longer any rows left, so just increase column counter
  353. searching = False
  354. j = j + 1
  355. else:
  356. if (cast_float(m[f][j]) == 0.0):
  357. // Also zero, so continue
  358. f = f + 1
  359. else:
  360. // Found non-zero, so swap row
  361. t = cast_float(m[f])
  362. dict_overwrite(m, f, cast_float(m[i]))
  363. dict_overwrite(m, i, t)
  364. searching = False
  365. // If we have increased j, we will just start the loop again (possibly), as m[i][j] might be zero again
  366. // Pivot in m[i][j] guaranteed to not be 0
  367. // Now divide complete row by value of m[i][j] to make it equal 1
  368. f = j
  369. divisor = cast_float(m[i][j])
  370. while (f < read_nr_out(m[i])):
  371. dict_overwrite(m[i], f, float_division(cast_float(m[i][f]), divisor))
  372. f = f + 1
  373. // Eliminate all rows in the j-th column, except the i-th row
  374. f = 0
  375. while (f < read_nr_out(m)):
  376. if (bool_not(f == i)):
  377. g = j
  378. divisor = cast_float(m[f][j])
  379. while (g < read_nr_out(m[f])):
  380. dict_overwrite(m[f], g, cast_float(m[f][g]) - (divisor * cast_float(m[i][g])))
  381. g = g + 1
  382. f = f + 1
  383. // Increase row and column
  384. i = i + 1
  385. j = j + 1
  386. return !
  387. String function matrix2string(m : Element):
  388. Integer i
  389. Integer j
  390. String result
  391. result = ""
  392. i = 0
  393. while (i < read_nr_out(m)):
  394. j = 0
  395. while (j < read_nr_out(m[i])):
  396. result = result + cast_string(m[i][j]) + ", "
  397. j = j + 1
  398. i = i + 1
  399. result = result + "\n"
  400. return result!