|
@@ -1,654 +0,0 @@
|
|
|
-include "primitives.alh"
|
|
|
-include "modelling.alh"
|
|
|
-include "object_operations.alh"
|
|
|
-include "library.alh"
|
|
|
-include "conformance_scd.alh"
|
|
|
-include "io.alh"
|
|
|
-include "metamodels.alh"
|
|
|
-include "compilation_manager.alh"
|
|
|
-
|
|
|
-Element function retype_to_runtime(design_model : Element):
|
|
|
- Element runtime_model
|
|
|
- Element all_blocks
|
|
|
- Element all_links
|
|
|
- String mm_type_name
|
|
|
- String element_name
|
|
|
- String attr_name
|
|
|
- String attr_value
|
|
|
- String attribute
|
|
|
- String src
|
|
|
- String dst
|
|
|
- String time
|
|
|
- Element all_attributes
|
|
|
-
|
|
|
- runtime_model = instantiate_model(import_node("models/CausalBlockDiagrams_Runtime"))
|
|
|
-
|
|
|
- all_blocks = allInstances(design_model, "Block")
|
|
|
- while (list_len(all_blocks) > 0):
|
|
|
- element_name = set_pop(all_blocks)
|
|
|
- mm_type_name = reverseKeyLookup(design_model["metamodel"]["model"], dict_read_node(design_model["type_mapping"], design_model["model"][element_name]))
|
|
|
- element_name = instantiate_node(runtime_model, mm_type_name, element_name)
|
|
|
- if (is_nominal_instance(design_model, element_name, "ConstantBlock")):
|
|
|
- instantiate_attribute(runtime_model, element_name, "value", read_attribute(design_model, element_name, "value"))
|
|
|
- elif (is_nominal_instance(design_model, element_name, "ProbeBlock")):
|
|
|
- instantiate_attribute(runtime_model, element_name, "name", read_attribute(design_model, element_name, "name"))
|
|
|
-
|
|
|
- // Don't merge this together with the block conversion, as the destination block might not exist yet!
|
|
|
- all_links = allInstances(design_model, "Link")
|
|
|
- while (read_nr_out(all_links) > 0):
|
|
|
- element_name = set_pop(all_links)
|
|
|
- src = reverseKeyLookup(design_model["model"], read_edge_src(design_model["model"][element_name]))
|
|
|
- dst = reverseKeyLookup(design_model["model"], read_edge_dst(design_model["model"][element_name]))
|
|
|
- instantiate_link(runtime_model, "Link", element_name, src, dst)
|
|
|
-
|
|
|
- all_links = allInstances(design_model, "InitialCondition")
|
|
|
- while (read_nr_out(all_links) > 0):
|
|
|
- element_name = set_pop(all_links)
|
|
|
- src = reverseKeyLookup(design_model["model"], read_edge_src(design_model["model"][element_name]))
|
|
|
- dst = reverseKeyLookup(design_model["model"], read_edge_dst(design_model["model"][element_name]))
|
|
|
- instantiate_link(runtime_model, "InitialCondition", element_name, src, dst)
|
|
|
-
|
|
|
- return runtime_model!
|
|
|
-
|
|
|
-Element function sanitize(new_runtime_model : Element, old_runtime_model : Element):
|
|
|
- Element all_blocks
|
|
|
- Element all_links
|
|
|
- String element_name
|
|
|
- String attr_name
|
|
|
- String attr_value
|
|
|
- String attribute
|
|
|
- String time
|
|
|
- Element all_attributes
|
|
|
- Float current_time
|
|
|
-
|
|
|
- all_blocks = allInstances(new_runtime_model, "Block")
|
|
|
- while (list_len(all_blocks) > 0):
|
|
|
- element_name = set_pop(all_blocks)
|
|
|
- if (dict_in(old_runtime_model["model"], element_name)):
|
|
|
- if (is_nominal_instance(new_runtime_model, element_name, "ICBlock")):
|
|
|
- instantiate_attribute(new_runtime_model, element_name, "last_in", read_attribute(old_runtime_model, element_name, "last_in"))
|
|
|
- if (is_nominal_instance(new_runtime_model, element_name, "IntegratorBlock")):
|
|
|
- instantiate_attribute(new_runtime_model, element_name, "last_out", read_attribute(old_runtime_model, element_name, "last_out"))
|
|
|
- instantiate_attribute(new_runtime_model, element_name, "signal", read_attribute(old_runtime_model, element_name, "signal"))
|
|
|
- else:
|
|
|
- instantiate_attribute(new_runtime_model, element_name, "signal", 0.0)
|
|
|
-
|
|
|
- if (dict_in(old_runtime_model["model"], "time")):
|
|
|
- current_time = read_attribute(old_runtime_model, "time", "current_time")
|
|
|
- else:
|
|
|
- current_time = 0
|
|
|
-
|
|
|
- time = instantiate_node(new_runtime_model, "Time", "time")
|
|
|
- instantiate_attribute(new_runtime_model, time, "start_time", current_time)
|
|
|
- instantiate_attribute(new_runtime_model, time, "current_time", current_time)
|
|
|
-
|
|
|
- return new_runtime_model!
|
|
|
-
|
|
|
-Element function create_schedule(model : Element):
|
|
|
- // Create nice graph first
|
|
|
- Element nodes
|
|
|
- Element successors
|
|
|
- String element_name
|
|
|
- Element incoming_links
|
|
|
- Element all_blocks
|
|
|
-
|
|
|
- nodes = allInstances(model, "Block")
|
|
|
- successors = create_node()
|
|
|
- while (read_nr_out(nodes) > 0):
|
|
|
- element_name = set_pop(nodes)
|
|
|
- if (bool_not(dict_in(successors, element_name))):
|
|
|
- dict_add(successors, element_name, create_node())
|
|
|
-
|
|
|
- if (is_nominal_instance(model, element_name, "ICBlock")):
|
|
|
- if (element_eq(read_attribute(model, element_name, "last_in"), read_root())):
|
|
|
- incoming_links = allIncomingAssociationInstances(model, element_name, "InitialCondition")
|
|
|
- else:
|
|
|
- incoming_links = create_node()
|
|
|
- if (is_nominal_instance(model, element_name, "DerivatorBlock")):
|
|
|
- Element new_incoming_links
|
|
|
- new_incoming_links = allIncomingAssociationInstances(model, element_name, "Link")
|
|
|
- while (read_nr_out(new_incoming_links) > 0):
|
|
|
- list_append(incoming_links, set_pop(new_incoming_links))
|
|
|
- else:
|
|
|
- incoming_links = allIncomingAssociationInstances(model, element_name, "Link")
|
|
|
-
|
|
|
- while (read_nr_out(incoming_links) > 0):
|
|
|
- String source
|
|
|
- source = readAssociationSource(model, set_pop(incoming_links))
|
|
|
- if (bool_not(dict_in(successors, source))):
|
|
|
- dict_add(successors, source, create_node())
|
|
|
- set_add(successors[source], element_name)
|
|
|
-
|
|
|
- Element values
|
|
|
- values = create_node()
|
|
|
- dict_add(values, "S", create_node())
|
|
|
- dict_add(values, "index", 0)
|
|
|
- dict_add(values, "indices", create_node())
|
|
|
- dict_add(values, "lowlink", create_node())
|
|
|
- dict_add(values, "onStack", create_node())
|
|
|
- dict_add(values, "successors", successors)
|
|
|
- dict_add(values, "SCC", create_node())
|
|
|
-
|
|
|
- nodes = allInstances(model, "Block")
|
|
|
- while (read_nr_out(nodes) > 0):
|
|
|
- strongconnect(set_pop(nodes), values)
|
|
|
-
|
|
|
- return values["SCC"]!
|
|
|
-
|
|
|
-Integer function min(a : Integer, b : Integer):
|
|
|
- if (a < b):
|
|
|
- return a!
|
|
|
- else:
|
|
|
- return b!
|
|
|
-
|
|
|
-Void function strongconnect(v : String, values : Element):
|
|
|
- if (dict_in(values["indices"], v)):
|
|
|
- return!
|
|
|
-
|
|
|
- dict_overwrite(values["indices"], v, values["index"])
|
|
|
- dict_overwrite(values["lowlink"], v, values["index"])
|
|
|
- dict_overwrite(values, "index", cast_s2i(cast_v2s(values["index"])) + 1)
|
|
|
-
|
|
|
- list_append(values["S"], v)
|
|
|
- dict_overwrite(values["onStack"], v, True)
|
|
|
-
|
|
|
- Element successors
|
|
|
- String w
|
|
|
- successors = values["successors"][v]
|
|
|
- while (read_nr_out(successors) > 0):
|
|
|
- w = set_pop(successors)
|
|
|
- if (bool_not(dict_in(values["indices"], w))):
|
|
|
- strongconnect(w, values)
|
|
|
- dict_overwrite(values["lowlink"], v, min(values["lowlink"][v], values["lowlink"][w]))
|
|
|
- elif (dict_in(values["onStack"], w)):
|
|
|
- if (values["onStack"][w]):
|
|
|
- dict_overwrite(values["lowlink"], v, min(values["lowlink"][v], values["indices"][w]))
|
|
|
-
|
|
|
- if (value_eq(values["lowlink"][v], values["indices"][v])):
|
|
|
- Element scc
|
|
|
- scc = create_node()
|
|
|
- // It will always differ now
|
|
|
- w = list_pop(values["S"])
|
|
|
- list_append(scc, w)
|
|
|
- dict_overwrite(values["onStack"], w, False)
|
|
|
- while (w != v):
|
|
|
- w = list_pop(values["S"])
|
|
|
- list_append(scc, w)
|
|
|
- dict_overwrite(values["onStack"], w, False)
|
|
|
- list_insert(values["SCC"], scc, 0)
|
|
|
-
|
|
|
- return!
|
|
|
-
|
|
|
-Element function list_pop(list : Element):
|
|
|
- Integer top
|
|
|
- Element t
|
|
|
- top = list_len(list) - 1
|
|
|
- t = list_read(list, top)
|
|
|
- list_delete(list, top)
|
|
|
- return t!
|
|
|
-
|
|
|
-String function readType(model : Element, name : String):
|
|
|
- return reverseKeyLookup(model["metamodel"]["model"], dict_read_node(model["type_mapping"], model["model"][name]))!
|
|
|
-
|
|
|
-Boolean function solve_scc(model : Element, scc : Element):
|
|
|
- Element m
|
|
|
- Integer i
|
|
|
- Integer j
|
|
|
- String block
|
|
|
- String blocktype
|
|
|
- Element incoming
|
|
|
- String selected
|
|
|
- Float constant
|
|
|
- Element t
|
|
|
-
|
|
|
- // Construct the matrix first, with as many rows as there are variables
|
|
|
- // Number of columns is 1 higher
|
|
|
- i = 0
|
|
|
- m = create_node()
|
|
|
- while (i < read_nr_out(scc)):
|
|
|
- j = 0
|
|
|
- t = create_node()
|
|
|
- while (j < (read_nr_out(scc) + 1)):
|
|
|
- list_append(t, 0.0)
|
|
|
- j = j + 1
|
|
|
- list_append(m, t)
|
|
|
- i = i + 1
|
|
|
-
|
|
|
- log("Matrix ready!")
|
|
|
- // Matrix initialized to 0.0
|
|
|
- i = 0
|
|
|
- while (i < read_nr_out(scc)):
|
|
|
- log("Creating matrix row")
|
|
|
- // First element of scc
|
|
|
- block = scc[i]
|
|
|
- blocktype = readType(model, block)
|
|
|
-
|
|
|
- // First write 1 in the current block
|
|
|
- dict_overwrite(m[i], i, 1.0)
|
|
|
-
|
|
|
- // Now check all blocks that are incoming
|
|
|
- if (blocktype == "AdditionBlock"):
|
|
|
- constant = 0.0
|
|
|
- elif (blocktype == "MultiplyBlock"):
|
|
|
- constant = 1.0
|
|
|
-
|
|
|
- log("Generating matrix for " + blocktype)
|
|
|
- log("Block: " + block)
|
|
|
- incoming = allIncomingAssociationInstances(model, block, "Link")
|
|
|
-
|
|
|
- Integer index_to_write_constant
|
|
|
- index_to_write_constant = -1
|
|
|
- log("Iterating over incoming")
|
|
|
- while (read_nr_out(incoming) > 0):
|
|
|
- log("Iteration")
|
|
|
- selected = readAssociationSource(model, set_pop(incoming))
|
|
|
-
|
|
|
- if (set_in(scc, selected)):
|
|
|
- // Part of the loop, so in the index of selected in scc
|
|
|
- // Five options:
|
|
|
- if (blocktype == "AdditionBlock"):
|
|
|
- // 1) AdditionBlock
|
|
|
- // Add the negative of this signal, which is as of yet unknown
|
|
|
- // x = y + z --> x - y - z = 0
|
|
|
- dict_overwrite(m[i], list_index_of(scc, selected), -1.0)
|
|
|
- elif (blocktype == "MultiplyBlock"):
|
|
|
- // 2) MultiplyBlock
|
|
|
- if (index_to_write_constant != -1):
|
|
|
- return False!
|
|
|
- index_to_write_constant = list_index_of(scc, selected)
|
|
|
- elif (blocktype == "NegatorBlock"):
|
|
|
- // 3) NegatorBlock
|
|
|
- // Add the positive of the signal, which is as of yet unknown
|
|
|
- dict_overwrite(m[i], list_index_of(scc, selected), 1.0)
|
|
|
- elif (blocktype == "DelayBlock"):
|
|
|
- // 5) DelayBlock
|
|
|
- // Just copies a single value
|
|
|
- dict_overwrite(m[i], list_index_of(scc, selected), -1.0)
|
|
|
- else:
|
|
|
- // Block that cannot be handled
|
|
|
- return False!
|
|
|
- else:
|
|
|
- // A constant, which we can assume is already computed and thus usable
|
|
|
- if (blocktype == "AdditionBlock"):
|
|
|
- constant = constant + v2f(read_attribute(model, selected, "signal"))
|
|
|
- dict_overwrite(m[i], read_nr_out(scc), constant)
|
|
|
- elif (blocktype == "MultiplyBlock"):
|
|
|
- constant = constant * v2f(read_attribute(model, selected, "signal"))
|
|
|
- // Not written to constant part, as multiplies a variable
|
|
|
-
|
|
|
- // Any other block is impossible:
|
|
|
- // * Constant would never be part of a SCC
|
|
|
- // * Delay would never get an incoming constant
|
|
|
- // * Negation and Inverse only get 1 input, which is a variable in a loop
|
|
|
- // * Integrator and Derivator never get an incoming constant
|
|
|
-
|
|
|
- if (index_to_write_constant != -1):
|
|
|
- dict_overwrite(m[i], index_to_write_constant, -constant)
|
|
|
-
|
|
|
- i = i + 1
|
|
|
-
|
|
|
- // Constructed a complete matrix, so we can start!
|
|
|
- log("Constructed matrix to solve:")
|
|
|
- log(matrix2string(m))
|
|
|
-
|
|
|
- // Solve matrix now
|
|
|
- eliminateGaussJordan(m)
|
|
|
-
|
|
|
- // Now go over m and set signals for each element
|
|
|
- // Assume that everything worked out...
|
|
|
- i = 0
|
|
|
- while (i < read_nr_out(m)):
|
|
|
- block = scc[i]
|
|
|
- unset_attribute(model, block, "signal")
|
|
|
- instantiate_attribute(model, block, "signal", m[i][read_nr_out(scc)])
|
|
|
- log((("Solved " + block) + " to ") + cast_v2s(m[i][read_nr_out(scc)]))
|
|
|
- i = i + 1
|
|
|
-
|
|
|
- return True!
|
|
|
-
|
|
|
-Integer function list_index_of(lst : Element, elem : Element):
|
|
|
- Integer i
|
|
|
- i = 0
|
|
|
- while (i < read_nr_out(lst)):
|
|
|
- if (value_eq(list_read(lst, i), elem)):
|
|
|
- return i!
|
|
|
- else:
|
|
|
- i = i + 1
|
|
|
- return -1!
|
|
|
-
|
|
|
-Void function step_simulation(model : Element, schedule : Element):
|
|
|
- String time
|
|
|
- Float signal
|
|
|
- Element incoming
|
|
|
- String selected
|
|
|
- String block
|
|
|
- String elem
|
|
|
- String blocktype
|
|
|
- Element memory_blocks
|
|
|
- Integer i
|
|
|
- Float delta_t
|
|
|
- Element scc
|
|
|
-
|
|
|
- time = "time"
|
|
|
- delta_t = 0.1
|
|
|
-
|
|
|
- memory_blocks = create_node()
|
|
|
- output("SIM_TIME " + cast_v2s(read_attribute(model, time, "current_time")))
|
|
|
- i = 0
|
|
|
- while (i < read_nr_out(schedule)):
|
|
|
- scc = list_read(schedule, i)
|
|
|
- i = i + 1
|
|
|
-
|
|
|
- if (list_len(scc) > 1):
|
|
|
- log("Solving algebraic loop!")
|
|
|
- if (bool_not(solve_scc(model, scc))):
|
|
|
- output("ALGEBRAIC_LOOP")
|
|
|
- return !
|
|
|
- else:
|
|
|
- block = set_pop(scc)
|
|
|
-
|
|
|
- // Execute "block"
|
|
|
- blocktype = readType(model, block)
|
|
|
- if (blocktype == "ConstantBlock"):
|
|
|
- signal = read_attribute(model, block, "value")
|
|
|
- elif (blocktype == "AdditionBlock"):
|
|
|
- signal = 0.0
|
|
|
- incoming = allIncomingAssociationInstances(model, block, "Link")
|
|
|
- while (read_nr_out(incoming) > 0):
|
|
|
- selected = readAssociationSource(model, set_pop(incoming))
|
|
|
- signal = signal + cast_s2f(cast_v2s(read_attribute(model, selected, "signal")))
|
|
|
- elif (blocktype == "MultiplyBlock"):
|
|
|
- signal = 1.0
|
|
|
- incoming = allIncomingAssociationInstances(model, block, "Link")
|
|
|
- while (read_nr_out(incoming) > 0):
|
|
|
- selected = readAssociationSource(model, set_pop(incoming))
|
|
|
- signal = signal * cast_s2f(cast_v2s(read_attribute(model, selected, "signal")))
|
|
|
- elif (blocktype == "NegatorBlock"):
|
|
|
- incoming = allIncomingAssociationInstances(model, block, "Link")
|
|
|
- signal = 0.0
|
|
|
- while (read_nr_out(incoming) > 0):
|
|
|
- selected = readAssociationSource(model, set_pop(incoming))
|
|
|
- signal = float_neg(cast_s2f(cast_v2s(read_attribute(model, selected, "signal"))))
|
|
|
- elif (blocktype == "InverseBlock"):
|
|
|
- signal = 0.0
|
|
|
- incoming = allIncomingAssociationInstances(model, block, "Link")
|
|
|
- while (read_nr_out(incoming) > 0):
|
|
|
- selected = readAssociationSource(model, set_pop(incoming))
|
|
|
- signal = float_division(1.0, cast_s2f(cast_v2s(read_attribute(model, selected, "signal"))))
|
|
|
- elif (blocktype == "DelayBlock"):
|
|
|
- signal = 0.0
|
|
|
- if (element_eq(read_attribute(model, block, "last_in"), read_root())):
|
|
|
- // No memory yet, so use initial condition
|
|
|
- incoming = allIncomingAssociationInstances(model, block, "InitialCondition")
|
|
|
- while (read_nr_out(incoming) > 0):
|
|
|
- selected = readAssociationSource(model, set_pop(incoming))
|
|
|
- signal = cast_s2f(cast_v2s(read_attribute(model, selected, "signal")))
|
|
|
- else:
|
|
|
- signal = read_attribute(model, block, "last_in")
|
|
|
- unset_attribute(model, block, "last_in")
|
|
|
- set_add(memory_blocks, block)
|
|
|
- elif (blocktype == "IntegratorBlock"):
|
|
|
- if (element_eq(read_attribute(model, block, "last_in"), read_root())):
|
|
|
- // No history yet, so use initial values
|
|
|
- incoming = allIncomingAssociationInstances(model, block, "InitialCondition")
|
|
|
- while (read_nr_out(incoming) > 0):
|
|
|
- selected = readAssociationSource(model, set_pop(incoming))
|
|
|
- signal = cast_s2f(cast_v2s(read_attribute(model, selected, "signal")))
|
|
|
- else:
|
|
|
- signal = cast_s2f(cast_v2s(read_attribute(model, block, "last_in"))) + (delta_t * cast_s2f(cast_v2s(read_attribute(model, block, "last_out"))))
|
|
|
- unset_attribute(model, block, "last_in")
|
|
|
- unset_attribute(model, block, "last_out")
|
|
|
- instantiate_attribute(model, block, "last_out", signal)
|
|
|
- set_add(memory_blocks, block)
|
|
|
- elif (blocktype == "DerivatorBlock"):
|
|
|
- if (element_eq(read_attribute(model, block, "last_in"), read_root())):
|
|
|
- // No history yet, so use initial values
|
|
|
- incoming = allIncomingAssociationInstances(model, block, "InitialCondition")
|
|
|
- while (read_nr_out(incoming) > 0):
|
|
|
- selected = readAssociationSource(model, set_pop(incoming))
|
|
|
- signal = cast_s2f(cast_v2s(read_attribute(model, selected, "signal")))
|
|
|
- else:
|
|
|
- incoming = allIncomingAssociationInstances(model, block, "Link")
|
|
|
- while (read_nr_out(incoming) > 0):
|
|
|
- selected = readAssociationSource(model, set_pop(incoming))
|
|
|
- signal = (cast_s2f(cast_v2s(read_attribute(model, selected, "signal"))) - cast_s2f(cast_v2s(read_attribute(model, block, "last_in")))) / delta_t
|
|
|
- unset_attribute(model, block, "last_in")
|
|
|
- set_add(memory_blocks, block)
|
|
|
- elif (blocktype == "ProbeBlock"):
|
|
|
- incoming = allIncomingAssociationInstances(model, block, "Link")
|
|
|
- while (read_nr_out(incoming) > 0):
|
|
|
- selected = readAssociationSource(model, set_pop(incoming))
|
|
|
- signal = cast_s2f(cast_v2s(read_attribute(model, selected, "signal")))
|
|
|
- output((("SIM_PROBE " + cast_v2s(read_attribute(model, block, "name"))) + " ") + cast_v2s(signal))
|
|
|
-
|
|
|
- unset_attribute(model, block, "signal")
|
|
|
- instantiate_attribute(model, block, "signal", signal)
|
|
|
- output("SIM_END")
|
|
|
-
|
|
|
- while (read_nr_out(memory_blocks) > 0):
|
|
|
- block = set_pop(memory_blocks)
|
|
|
- // Update memory
|
|
|
- incoming = allIncomingAssociationInstances(model, block, "Link")
|
|
|
- while (read_nr_out(incoming) > 0):
|
|
|
- selected = readAssociationSource(model, set_pop(incoming))
|
|
|
- instantiate_attribute(model, block, "last_in", cast_s2f(cast_v2s(read_attribute(model, selected, "signal"))))
|
|
|
-
|
|
|
- // Increase simulation time
|
|
|
- Float new_time
|
|
|
- new_time = cast_s2f(cast_v2s(read_attribute(model, time, "current_time"))) + delta_t
|
|
|
- unset_attribute(model, time, "current_time")
|
|
|
- instantiate_attribute(model, time, "current_time", new_time)
|
|
|
-
|
|
|
- return !
|
|
|
-
|
|
|
-Void function execute_cbd(design_model : Element):
|
|
|
- String verify_result
|
|
|
- Element runtime_model
|
|
|
- Element old_runtime_model
|
|
|
- String cmd
|
|
|
- Boolean running
|
|
|
- Element schedule_init
|
|
|
- Element schedule_run
|
|
|
- Element schedule
|
|
|
- String conforming
|
|
|
-
|
|
|
- old_runtime_model = instantiate_model(import_node("models/CausalBlockDiagrams_Runtime"))
|
|
|
- runtime_model = retype_to_runtime(design_model)
|
|
|
- runtime_model = sanitize(runtime_model, old_runtime_model)
|
|
|
- running = False
|
|
|
- conforming = conformance_scd(design_model)
|
|
|
- if (conforming == "OK"):
|
|
|
- output("CONFORMANCE_OK")
|
|
|
- else:
|
|
|
- output("CONFORMANCE_FAIL")
|
|
|
-
|
|
|
- schedule_init = create_schedule(runtime_model)
|
|
|
- schedule_run = read_root()
|
|
|
-
|
|
|
- while (True):
|
|
|
- // If we are running, we just don't block for input and automatically do a step if there is no input
|
|
|
- if (running):
|
|
|
- if (has_input()):
|
|
|
- cmd = input()
|
|
|
- else:
|
|
|
- cmd = "step"
|
|
|
- else:
|
|
|
- cmd = input()
|
|
|
-
|
|
|
- // Process input
|
|
|
- if (cmd == "simulate"):
|
|
|
- // Simulation should toggle running to True, but only if the model is conforming
|
|
|
- if (conforming == "OK"):
|
|
|
- running = True
|
|
|
- else:
|
|
|
- output("CONFORMANCE_FAIL " + conforming)
|
|
|
-
|
|
|
- elif (cmd == "step"):
|
|
|
- // Stepping should make a single step, but first need to pick the correct schedule to use
|
|
|
- if (conforming == "OK"):
|
|
|
- if (read_attribute(runtime_model, "time", "start_time") == read_attribute(runtime_model, "time", "current_time")):
|
|
|
- schedule = schedule_init
|
|
|
- else:
|
|
|
- if (element_eq(schedule_run, read_root())):
|
|
|
- schedule_run = create_schedule(runtime_model)
|
|
|
- schedule = schedule_run
|
|
|
- // TODO remove
|
|
|
- schedule = create_schedule(runtime_model)
|
|
|
- step_simulation(runtime_model, schedule)
|
|
|
- else:
|
|
|
- output("CONFORMANCE_FAIL " + conforming)
|
|
|
-
|
|
|
- elif (cmd == "pause"):
|
|
|
- // Pausing merely stops a running simulation
|
|
|
- running = False
|
|
|
-
|
|
|
- elif (cmd == "read_available_attributes"):
|
|
|
- // Returns a list of all available attributes
|
|
|
- Element attr_list
|
|
|
- Element attrs
|
|
|
- Element attr
|
|
|
- attr_list = getAttributeList(design_model, input())
|
|
|
- attrs = dict_keys(attr_list)
|
|
|
- while (0 < read_nr_out(attrs)):
|
|
|
- attr = set_pop(attrs)
|
|
|
- output("AVAILABLE_ATTR_VALUE " + cast_v2s(attr))
|
|
|
- output("AVAILABLE_ATTR_TYPE " + cast_v2s(dict_read(attr_list, attr)))
|
|
|
- output("AVAILABLE_ATTR_END")
|
|
|
-
|
|
|
- elif (cmd == "read_attribute"):
|
|
|
- // Returns the value of an attribute
|
|
|
- output("ATTR_VALUE " + cast_v2s(read_attribute(design_model, input(), input())))
|
|
|
-
|
|
|
- elif (bool_or(bool_or(cmd == "set_attribute", cmd == "instantiate_node"), bool_or(cmd == "delete_element", cmd == "instantiate_association"))):
|
|
|
- // Modify the structure
|
|
|
- if (cmd == "set_attribute"):
|
|
|
- // Setting an attribute
|
|
|
- String element_name
|
|
|
- String attribute_name
|
|
|
- element_name = input()
|
|
|
- attribute_name = input()
|
|
|
-
|
|
|
- // Delete it if it exists already
|
|
|
- if (bool_not(element_eq(read_attribute(design_model, element_name, attribute_name), read_root()))):
|
|
|
- unset_attribute(design_model, element_name, attribute_name)
|
|
|
-
|
|
|
- // And finally set it
|
|
|
- instantiate_attribute(design_model, element_name, attribute_name, input())
|
|
|
-
|
|
|
- elif (cmd == "instantiate_node"):
|
|
|
- // Instantiate a node
|
|
|
- instantiate_node(design_model, input(), input())
|
|
|
-
|
|
|
- elif (cmd == "instantiate_association"):
|
|
|
- // Instantiate an association
|
|
|
- instantiate_link(design_model, input(), input(), input(), input())
|
|
|
-
|
|
|
- elif (cmd == "delete_element"):
|
|
|
- // Delete the provided element
|
|
|
- model_delete_element(design_model, input())
|
|
|
-
|
|
|
- // After changes, we check whether or not the design model conforms
|
|
|
- conforming = conformance_scd(design_model)
|
|
|
- if (conforming == "OK"):
|
|
|
- // Conforming, so do the retyping and sanitization step
|
|
|
- runtime_model = retype_to_runtime(design_model)
|
|
|
- runtime_model = sanitize(runtime_model, old_runtime_model)
|
|
|
- schedule_init = create_schedule(runtime_model)
|
|
|
- schedule_run = read_root()
|
|
|
- old_runtime_model = runtime_model
|
|
|
- output("CONFORMANCE_OK")
|
|
|
- else:
|
|
|
- // Not conforming, so stop simulation and block for input (preferably a modify to make everything consistent again)
|
|
|
- running = False
|
|
|
- output("CONFORMANCE_FAIL " + conforming)
|
|
|
- else:
|
|
|
- log("Did not understand command: " + cmd)
|
|
|
-
|
|
|
-Float function v2f(i : Element):
|
|
|
- return cast_s2f(cast_v2s(i))!
|
|
|
-
|
|
|
-Void function eliminateGaussJordan(m : Element):
|
|
|
- Integer i
|
|
|
- Integer j
|
|
|
- Integer f
|
|
|
- Integer g
|
|
|
- Boolean searching
|
|
|
- Element t
|
|
|
- Float divisor
|
|
|
-
|
|
|
- i = 0
|
|
|
- j = 0
|
|
|
-
|
|
|
- while (i < read_nr_out(m)):
|
|
|
- // Make sure pivot m[i][j] != 0, swapping if necessary
|
|
|
- while (v2f(m[i][j]) == 0.0):
|
|
|
- // Is zero, so find row which is not zero
|
|
|
- f = i + 1
|
|
|
- searching = True
|
|
|
- while (searching):
|
|
|
- if (f >= read_nr_out(m)):
|
|
|
- // No longer any rows left, so just increase column counter
|
|
|
- searching = False
|
|
|
- j = j + 1
|
|
|
- else:
|
|
|
- if (v2f(m[f][j]) == 0.0):
|
|
|
- // Also zero, so continue
|
|
|
- f = f + 1
|
|
|
- else:
|
|
|
- // Found non-zero, so swap row
|
|
|
- t = v2f(m[f])
|
|
|
- dict_overwrite(m, f, v2f(m[i]))
|
|
|
- dict_overwrite(m, i, t)
|
|
|
- searching = False
|
|
|
- // If we have increased j, we will just start the loop again (possibly), as m[i][j] might be zero again
|
|
|
-
|
|
|
- // Pivot in m[i][j] guaranteed to not be 0
|
|
|
- // Now divide complete row by value of m[i][j] to make it equal 1
|
|
|
- f = j
|
|
|
- divisor = v2f(m[i][j])
|
|
|
- while (f < read_nr_out(m[i])):
|
|
|
- dict_overwrite(m[i], f, float_division(v2f(m[i][f]), divisor))
|
|
|
- f = f + 1
|
|
|
-
|
|
|
- // Eliminate all rows in the j-th column, except the i-th row
|
|
|
- f = 0
|
|
|
- while (f < read_nr_out(m)):
|
|
|
- if (bool_not(f == i)):
|
|
|
- g = j
|
|
|
- divisor = v2f(m[f][j])
|
|
|
- while (g < read_nr_out(m[f])):
|
|
|
- dict_overwrite(m[f], g, v2f(m[f][g]) - (divisor * v2f(m[i][g])))
|
|
|
- g = g + 1
|
|
|
- f = f + 1
|
|
|
-
|
|
|
- // Increase row and column
|
|
|
- i = i + 1
|
|
|
- j = j + 1
|
|
|
-
|
|
|
- return !
|
|
|
-
|
|
|
-String function matrix2string(m : Element):
|
|
|
- Integer i
|
|
|
- Integer j
|
|
|
- String result
|
|
|
-
|
|
|
- result = ""
|
|
|
- i = 0
|
|
|
- while (i < read_nr_out(m)):
|
|
|
- j = 0
|
|
|
- while (j < read_nr_out(m[i])):
|
|
|
- result = result + cast_v2s(m[i][j])
|
|
|
- result = result + ", "
|
|
|
- j = j + 1
|
|
|
- i = i + 1
|
|
|
- result = result + "\n"
|
|
|
- return result!
|
|
|
-
|
|
|
-Void function main():
|
|
|
- Element model
|
|
|
- String verify_result
|
|
|
-
|
|
|
- while (True):
|
|
|
- execute_cbd(instantiate_model(import_node("models/CausalBlockDiagrams_Design")))
|
|
|
-
|
|
|
- return!
|