banner above paper title

Breaking Free of the Implementation
Through Explicit Type/Instance Relations

Yentl Van Tendeloo

University of Antwerp
Yentl.VanTendeloo@uantwerpen.be

Abstract

One of the shortcoming of current (meta-)modelling tools
is their strong reliance on their implementation level. While
it does offer its benefits, certainly for tool developers, it se-
riously impedes portability of models. Model management
operations are handcoded in the implementation language
of the tool, making it difficult for users to grasp their se-
mantics. Furthermore, model management operations them-
selves have strong reliance on the internal data structures
used by the tool, making comparison of algorithms, even at a
conceptual level, difficult. In this paper, we analyze the rea-
sons and effects for this strong reliance on the implementa-
tion level. We offer a solution which allows the explicit mod-
elling of model management operations in a strict metamod-
elling framework. Even those operations that require access
to multiple levels in the modelling hierarchy are supported.
To aid in this effort, we furthermore break the strong link be-
tween model management operations and the data structures
in use by the (meta-)modelling tool. Our technique is illus-
trated through the explicit modelling of a retyping operation
on a petri net.

Categories and Subject Descriptors CR-number [subcat-
egory]: third-level

General Terms terml, term2

Keywords keywordl, keyword2

1. Introduction

One of the shortcomings of current (meta-)modelling tools
is their strong reliance on their implementation level. This
reliance ranges from exposing the general purpose imple-
mentation language used (e.g., Java), to requiring some op-
erations to operate directly on the internal data representa-

[Copyright notice will appear here once *preprint’ option is removed.]

short description of paper

Hans Vangheluwe

University of Antwerp and McGill University
Hans.Vangheluwe@uantwerpen.be

tion of the models (e.g., XMI). Such strong reliance on the
implementation level offers some benefits though, such as
higher efficiency both in execution (as it is likely compiled)
and development (tool developers are familiar with the pro-
gramming language).

The disadvantages, however, are significant: models and
algorithms become highly specific to the current state of the
implementation, making it impossible, or at least difficult,
to port models and algorithms from one tool to the other.
These disadvantages not only prevent porting models be-
tween tools, but models can also become incompatible with
newer versions of the tool. Should, for example, the inter-
nal data representation be changed ever so slightly, all pre-
viously created models become incompatible. Similarly, if
the tool is ported from one implementation language to the
other (e.g., from Python to C, for efficiency), all fragments
of Python code in all models would have to be updated to C
code too. Even more importantly for the scientific commu-
nity, is the portability of algorithms. Every year, new algo-
rithms are introduced to further the state of the art in model
management operations. These algorithms, however, often
strongly rely on the internal representation of models, such
as XMI or graphs. Implementing these algorithms on a tool
with a different internal representation could prove challeng-
ing due to the different assumptions that can be made. Sim-
ilarly, these algorithms are implemented in the implemen-
tation language of the tool, making a reimplementation of
these algorithms in a tool with a different implementation
language a non-trivial task as it is. Yet another disadvantage
relates to tool semantics: each tool has its own interpretation
of what it means to instantiate a model and check its confor-
mance. While the semantics is obvious to experienced users,
switching between tools will frequently necessitate lookups
in tool documentation to understand the semantics. Related
to this, porting a model between tools also requires adapta-
tion to this changed semantics, making it even more difficult
than it already is. Tool semantics are therefore non-obvious
and, more problematicly, hardcoded inside of the tool. So
in order to completely understand the semantics, it becomes
necessary to read the source code of the tool, which is a com-
pletely seperate entity from the tool itself (i.e., requires a

2016/3/3

different viewer/editor, is in a different language, and is at a
completely different level of abstraction).

To counter these disadvantages, we intend to break the
strong reliance on the implementation level of tools. First,
we observe why tools voluntarily chose for this strong re-
liance. One of the main reasons is undoubtedly purely prag-
matic: tool developers are (very) familiar with specific pro-
gramming languages, and thus use it wherever they can.
As general purpose programming languages are a well-
developed field, advanced tools are available, such as, ef-
ficient compilers, debuggers, and code analyzers. Addition-
ally, many libraries are available for use, such as graphical
libraries, parsers, data structures, and so on. This results, at
least at first, in efficient code and fast development of new
tools.

But even adventurous tool developers, who want to model
as much as possible, quickly hit a wall: the complete system,
thus including the model management algorithms, needs to
become independent of the implementation language, and
should thus be explicitly modelled. It is these algorithms,
however, that impose constraints such as conformance and
strict metamodelling. And while it is possible to bootstrap
these algorithms, the model of these algorithms will, by def-
inition, violate strict metamodelling requirements. A simple
example is the conformance algorithm: to determine whether
a model conforms to another, information is required from
both the metamodel and the model, thus combining two
modelling layers. This is the exact thing that strict metamod-
elling prevents, as it prevents models from spanning multiple
levels.

This problem is shown in Figure 1, where a petri net
model linguistically conforms to a simple petri net meta-
model. A conformance algorithm, however, has to access
parts of the metamodel (e.g., Place) and parts of the model
(e.g., a place), to check whether they conform. This makes
it difficult to state on which level the algorithm itself has to
reside: at the model or metamodel level. In the figure, this is
shown through the use of a gradient: it sits somewhere in be-
tween the levels. Note, however, that each element does in-
deed conform to the physical level in a strict way. The phys-
ical level is part of the implementation and is therefore not
(meant to be) user-accessible.

The natural solution to this problem, as followed by most
tools, and in particular deep metamodelling tools, is to shift
these strict metamodelling violating operations to the phys-
ical conformance dimension. In that dimension, all models,
even metamodels, become part of a single level: the imple-
mentation level. As the implementation level is implemented
in the implementation language, no restrictions are imposed
whatsoever, as models and metamodels are both just ele-
ments in the data structure.

While this approach has served current (meta-)modelling
tools well, it prevents the explicit modelling of the com-
plete system, resulting in the strong reliance on the imple-

short description of paper

Place Transition

Class

Algorithm

Figure 1: Illustration of the problem: the algorithm spans
both the metamodel (M2) and model (M1) layer in the lin-
guistic dimension, thus violating strict metamodelling.

mentation level, with all previously associated problems.
This problem is aggrevated in deep metamodelling, as there
can be absolutely no assumptions in the linguistic dimen-
sion: users can create an arbitrary number of layers. Deep
metamodelling further raises problems related to strict meta-
modelling, such as how to specify deep constraints (Atkin-
son et al. 2015), which also span multiple levels. While we
would prefer to model these explicitly, this becomes impos-
sible due to the explicit level-crossing nature of the algo-
rithms.

In this paper, therefore, we plan to tackle this problem
of strict metamodelling, allowing models of model manage-
ment operations, while still keeping strict metamodelling in
its original meaning. We do this by shifting parts of the phys-
ical conformance level, normally hardcoded in the tool, to
the linguistic conformance level, where users can access it
just like any other model. Not only does this allow for lin-
guistic modelling of tool algorithms, but it decouples these
algorithms from implementation details.

Apart from explicitly modelling the tool itself, we be-
lieve that this approach serves well in combination with
megamodelling (Bézivin et al. 2005), where we start reason-
ing about inter-model relations. Currently, most megamodel
management operations are still implemented in implemen-
tation languages, such as Java (Salay et al. 2015). Certainly
the combination with runtime models (Vogel et al. 2010) has
the potential to highly profit from our approach.

The remainder of this paper is organized as follows. Sec-
tion 2 summarizes the required background in supporting ex-
plicitly modelled type/instance relations, and how multiple
conformance relations are enabled through the application of
this technique. Section 3 touches upon the three main dimen-
sions in terms of conformance, and presents how we encode
each of these relations. Section 4 presents our approach to
merging the physical conformance level into the linguistic
conformance level through the use of conformance | . Re-

2016/3/3

lated work is explored in Section 6. Section 7 concludes the
paper and gives future work.

2. Background

In this section, we briefly introduce the required concepts for
the remainder of the paper. As our contribution is focussed
on moving away from the implementation layer, we present
our previous work in doing so. First, we discuss our explic-
itly modelled, neutral action language. It is a simple proce-
dural action language, but its constructs are explicitly stored
as a model themself (i.e., an abstract syntax graph). Second,
we use this action language to explicitly model the type/in-
stance relations, showing the benefits we gain from doing so.
This explicit type/instance relation offers us multiple possi-
ble typings for a single model, which sits at the core of our
approach.

Each part will already briefly encounter the problems
mentioned earlier in this paper. Solutions to this were always
rather ad-hoc, as our primary intention was on bootstrapping
our tool: the Modelverse (Van Mierlo et al. 2014). After the
implementation of the enabling technology, presented in this
section, we have come to an elegant solution, presented in
this paper, to a recurring problem.

2.1 Explicitly Modelled Action Language

A first step in breaking free from the implementation layer,
is by removing all code snippets in the implementation lan-
guage that are scattered throughout the model. Since we
don’t want to depend on a single implementation language,
a neutral action language was defined.

While our action language serves a similar purpose as
other neutral languages, like the OCL, its major difference
is that it is explicitly modelled. Whereas an OCL interpreter
follows the OCL standard, a 262-page specification, issued
by the OMG (OCL 2014), our action language is formalized
at a much lower level. Only a handful of low-level opera-
tions are supported, which are very similar to the primitive
operations in any procedural language. As we store models
as graphs internally, action language models are also repre-
sented as a graph. Semantics are formally defined through
the use of graph transformations, defining a translation from
one graph pattern (before execution of the instruction) to an-
other (after execution of the instruction). Our interpreter it-
self is therefore only a few hundred lines of code, to which
a set of graph transformation rules are passed. Only these
few hundred lines of code are dependent on the underlying
platform, and should be ported when porting the complete
application.

Apart from explicitly modelling the semantics, this also
makes sure that the execution state is explicitly modelled, as
that too is modified by the graph transformation. The major
disadvantage, however, is performance, which is very low at
the moment.

short description of paper

sername

frame’

-

, “phase’ [phase’

\
“init \

‘evalstack’ \ 'returnvalue’ \

/ *evalstack’

N ’/ 1P

\ “inst’ '\ ’phase’

*init’

“body’

Figure 2: Rule to execute when a while is executed with a
condition evaluating to True.

An example rule is shown in Figure 2, where the graph
transformation rule is shown for when a while element is
to be executed with a condition that evaluates to True. Note
that not only the action language constructs are explicitly
modelled, but also the complete execution context (i.e., exe-
cution stack) is explicitly represented in the Modelverse and
is transformed according to these rules.

It is our intention to create a library of operations, con-
taining, for example, the operations defined by OCL, which
is modeled using this minimal action language. But while
this is a noble plan, we quickly encounter the same prob-
lems that were raised in the beginning of this paper: strict
metamodelling does not allow for models that span multi-
ple levels. An explicit model of, let’s say, a conformance
relation, needs access to both the type and instance level,
as shown in Figure 1. We temporarily solved this problem
by ignoring strict metamodelling requirements, such that we
can bootstrap the tool anyhow.

The contribution of a new action language itself, is there-
fore not sufficient to address the problems raised at the start
of this paper. While some code snippets in models can be re-
placed with implementation-independent action code, such
as OCL or even our own action language, this action lan-
guage is not sufficient to model low-level operations that
need to work across multiple levels in the modelling hierar-
chy. Model management operations, in particular, frequently
require cross-level access to the model.

2.2 Explicitly Modelled Type/Instance Relations

A next step in allowing for our contribution, is to explicitly
model the type/instance relation between models. By explic-
itly modelling the type/instance relation, we have shown that
users gain more insight in tool semantics and can alter the

2016/3/3

semantics if desired. This resulted in the possibility for mul-
tiple types of type/instance relations. For example, a single
model can be typed by multiple metamodels, possibly sim-
ply because they are different, but similar, metamodels, but
maybe also because a less restrictive conformance check is
being used. As there is no common agreement on how re-
stricted a conformance relation should be (e.g., should it take
into account all of potency, cardinality, or multiplicity, and
how should it behave if these are violated?)

We achieved this explicit semantics through explicit mod-
elling of the type/instance relation, which constisted of sev-
eral steps.

First, the metamodel was stripped to only contain struc-
tural restrictions. As such, there were no longer any addi-
tional attributes that were undefined at the level above, such
as potency, multiplicity, cardinalities, and so on. Attributes
with that name could be present though, if they were allowed
by the metamodel, but they have no associated semantics,
thus not restricting instances.

Second, type information from the model was split of into
a seperate model. A model was thus reduced to a mere graph,
which structurally conformed to another graph (the meta-
model). The type information contained links between both
graphs, indicating the type of each element in the model.
Due to this seperation, a model could possibly have multi-
ple type mappings, together with multiple metamodels. To
determine whether a model was typed by another model,
both models were required, but additionaly a mapping also
needed to be present.

Third, all semantics was shifted to the instantiation and
conformance checking algorithms, which make up the type-
/instance relation. The instantiation algorithm checks all
necessary constraints during instantiation, and, for exam-
ple, prevents further instantiation if the potency has already
reached zero. Similarly, the conformance check checks both
the structure, as defined by the graphs, the types, as de-
fined by the type mapping, and the additional constraints
imposed by giving semantics to special attributes like po-
tency and cardinalities. It is thus now the conformance al-
gorithm which gives the semantics to these attributes, and
no longer the tool internals, which are hidden from the user
and non-modifiable. To make the algorithms independent of
the implementation, they are implemented using the previ-
ously defined neutral action language, which is explicitly
modelled.

The most important aspect, in the context of this paper,
is that it allows a single model to conform to multiple meta-
models simultaneously, possibly even through different con-
formance checking algorithms. This is shown in Figure 3,
where a single petri net model is shown (as a graph; in the
middle) which conforms to two different metamodels: an
ordinary place/transition net metamodel (top), and one ex-
tended with an inhibitor arc (bottom). Additionally, minor
differences exist between the two metamodels, such as dif-

short description of paper

"weight"

———————————

. \‘\['tokéﬁsl'\
Ir#teger

Figure 3: A single petri net model with multiple conform-
ing metamodels, each through a different type mapping (ex-

cerpt).

ferent naming for the weight of the transition. When a users
uses the model, it is thus required to pass the corresponding
type mapping, of which there are now two.

Note again that we encounter the problem of strict meta-
modelling here. The conformance checking algorithm needs
access to both the model and metamodel, thus crossing over
multiple levels in the modelling hierarchy. This problem was
again alleviated by not caring too much about strict meta-
modelling, thus again moving away from normal modelling,
and into a realm between the tool implementation and the
actual models in the tool. In this paper, we finally shift all
parts from the implementation to the models in the tool.

3. Types of Conformance

It was found out that there is not a single kind of type/in-
stance relation, but actually multiple, to cope with the dif-
ferent kinds of relations (Atkinson and Kiihne 2003). A dis-
tinction was made between conformance to the physical im-
plementation, and to the linguistic metamodel. This classifi-
cation architecture was termed the Orthogonal Classification
Architecture (OCA). Other work (Barroca et al. 2014; Van-
herpen et al. 2016) has shown the presence of yet another
type/instance relation, which links back to the semantics of

2016/3/3

the model. Depending on which dimension is used, different
type/instance hierarchies emerge, changing the implications
of strict metamodelling. Sadly, terminology is rather incon-
sistent in the literature, making it difficult to clearly commu-
nicate about the different dimensions. This section serves to
clear up the terminology we will use throughout this paper.

A concise example is shown of a simple petri net model,
which conforms to three different metamodels with respect
to these different conformance relations.

3.1 Physical Conformance

The low-level view on conformance is what we call physical
conformance. This is the kind of conformance used by tool-
developers and model management operations, as it does not
impose many constraints. It sits at the physical level, where
it is responsible for how data is represented physically in
memory. Physical representation is unrelated to language en-
gineering, and is completely managed by the implementa-
tion language of the tool. Physical conformance, therefore,
is checked by their respective compilers (e.g., GCC and Java
compiler).

But since it is checked only by the compiler, no restric-
tions are placed upon the crossing of modelling levels. In-
deed, all models, metamodels, metametamodels, and so on,
are similar at this level: they are data created by the user
that can be manipulated by the tool. Tool internals, as well
as model management operations, are mostly implemented
at this level, as it allows all possible modifications to the
model. Additionally, this level is efficient due to its close re-
lation to the implementation, and use of advanced tools such
as efficient compilers. Since this is the lowest level of con-
formance, to which every model conforms by definition, all
operations need to be applicable to all models. Most of the
time, the only common representation of all models is the
data structure used to store them. These operations thus al-
ter the internal data structure directly, without any kind of
domain-specific algorithm in between.

While these modifications are again efficient, and further-
more easy to implement for the tool developer, the strong
link to the implementation is made obvious. Porting all tool
internals to a different tool doesn’t only require porting be-
tween programming languages, but also between different
internal data representations. Changing implementation de-
tails, which should be transparent to the user, will have sig-
nificant implications on these algorithms as well.

In our petri net example, this relates to how the petri net
is stored in memory: with all elements being instances of a
generic Class defined by the implementation language. This
is shown in Figure 4: the model conforms to a simple graph
representation, where places and transitions are represented
as nodes, and the edge between them is mapped to the edge
of a graph. Depending on the implementation, a different
physical metamodel can be used, for example that of an
SQL database. The metamodel is the same for every model,
be it petri nets, class diagrams, object diagrams, statecharts,

short description of paper

Figure 4: Physical conformance of a petri net model.

or even a domain-specific language. The reason for this is
simple: if the model doesn’t conform to this metamodel, the
tool has no way of representing it in memory.

3.2 Linguistic Conformance

Linguistic conformance is the traditional view on confor-
mance, which is heavily used for domain specific mod-
elling. It is also the view offered to users: if a user cre-
ates a metamodel, and subsequently instantiates it, this
is through linguistic conformance. The relation defines
whether or not a user-defined model is a valid instance
of another user-defined (possibly by another user) meta-
model. Checks mostly have a structural notion (e.g., is a
link between these entities allowed and are all required at-
tributes present), though minor semantical constraints are
also possible. These semantical constraints are for exam-
ple range checks on attributes (e.g., integer must be larger
than 5), global restrictions on values of attributes (e.g., the
sum of these two attributes needs to be greater than 10),
or global restrictions on the structure (e.g., no loop possi-
ble for a certain association). Whereas structural checks are
easily implemented through the use of a metamodel, the ad-
ditional semantic constraints are often implemented using
some kind of executable language. Constraints are written
in constraint languages, such as OCL, but are sometimes
already shifted to the implementation language (e.g., imple-
mented in Python as in AToM? (de Lara and Vangheluwe
2002) and AToMPM (Syriani et al. 2013)).

Contrary to the physical conformance dimension, users
can extend the linguistic conformance dimension by adding,
modifying, or deleting metamodels. As such, a model is not,
by definition, always conforming to its provided metamodel.
This conformance relation is also not checked by the imple-
mentation language, but by the tool itself. But whereas most
programming languages are standardized and have a clear
definition on what it means to conform, this is not always
the case in the linguistic dimension. Each tool has its own
interpretation of what it means for models to conform to an-
other model. Making this relation explicit, and thus offering
the user the choice, was the primary effort of our previous
work (Van Tendeloo and Vangheluwe 2016).

2016/3/3

Place Transition

Figure 5: Linguistic conformance of a petri net model.

It is also at this level that strict metamodelling comes into
play: no links, except for the instanceOf link, is allowed to
cross the levels defined by this relation. Tool users should
ideally only be concerned with this dimension, as it offers
support for domain-specific languages and makes use of all
the features implemented by the tool (e.g., strict metamod-
elling, type checking, model transformations, and consis-
tency management).

In our petri net example, this relates to the metamodel of
petri nets which constrains the structure of the net. Example
constraints are that no direct link between places is possible
(specified by the omission of an association from Place to it-
self), and the number of tokens in a place needs to be positive
(specified by a static semantics constraint). This is shown in
Figure 5, where each element conforms to a metamodel that
is specific to the model. Contrary to physical conformance,
this metamodel is only valid for petri net instances. At this
level, it is impossible to create, for example, a link from the
place instance to the place type, due to strict metamodelling.
There is also no mention of the implementation: this relation
does not imply anything on how a place is represented in
memory (e.g., as a node in a graph or as an ID in a SQL
database). It does, however, constrain the structure of the
model. The metamodel contains an association from Place
to Transition, and vice versa, but no transition from Place or
Transition to itself. This constrains the instances more than
was the case with physical conformance. Furthermore, it is
often this dimension of conformance that is used to specify
concrete syntax. Strictly speaking, the representation of the
model in physical conformance would have to be the actual
graph that is stored in memory. We did not do this to prevent
confusion.

3.3 Ontological Conformance

The final conformance dimension is ontological confor-
mance, which relates purely to the semantics of the model. It
is also one of the views offered to users, but is not related to
the structure of the model, only to the properties the model
satisfies. As it relates to semantics, execution of the model
is required. Depending on the property of interest, the algo-
rithm executed varies from, for example, simulation (e.g.,

short description of paper

Figure 6: Ontological conformance of a petri net model.

trace satisfies some property) to state space analysis (e.g.,
deadlocking system).

The algorithm to be executed often again relates back to
the physical dimension, as this is where the implementation
is defined in case the implementation language is used.

In our petri net example, this relates to the properties sat-
isfied by the petri net, such as deadlocking, safety, or reach-
ability. Figure 6 represents a petri net without any tokens
and not generators, so the petri net is clearly deadlocking
and not live. Ontologically speaking, the petri net thus con-
forms to the deadlocking property and not to the live prop-
erty. This concept is again broader than petri nets only, and
might also be applicable to formalisms that have similar se-
mentics or properties. But while previous conformance re-
lations focussed purely on static aspects of the model (i.e.,
structure and static semantics), this conformance dimension
focusses exclusively on the semantics through execution.

4. Explicit Modelling of Physical
Conformance

Recall that relying on the physical conformance relation was
the cause of the problems we have previously observed. The
theoretical limitation, preventing explicit modelling of these
algorithms, were the limitations imposed by strict metamod-
elling: a model cannot span multiple levels. These problems
let to the obfuscation of tool semantics, and the strong re-
liance on implementation details for all algorithms.

4.1 Moving Away from Physical Conformance

As all problems seem to be situated in the physical confor-
mance dimension, the most direct solution would be to do
away with this dimension completely. This is, however, not
possible, as each model still requires a physical representa-
tion in memory, as well as model management operations
defined over it.

The closest we can get, is shifting away many respon-
sibilities of the (hidden) physical conformance dimension,
into the (explicitly modelled) linguistic conformance dimen-
sion. There is a natural relation between both physical and
linguistic conformance, as both are related to the structure of
the model.

2016/3/3

Node

~
Type Action Integer
I I
Float Boolean String

Figure 7: LT M, allowing for any element to connect to
any other element.

To do this, we define a new metamodel, which is identi-
cal to the (implicit) metamodel of the implementation layer.
This metamodel, however, is defined in the linguistic di-
mension, thus making it explicit. For clarity in our discus-
sion, we call this metamodel LTM ; , shown in Figure 7. It
can be seen that it is a metamodel for basic graphs, where
nodes might have values. These possible values are Type (the
type of any value type, including itself), Action (the type for
all action language constructs, such as While, If, and Func-
tionCall.), Integer, Float, Boolean, and String. Additionaly,
edges are a subclass of nodes, meaning that they can have
incoming and outgoing edges themself. Since every element
is a subclass of Node, an edge can start and end at any ele-
ment, including itself. As this is only at the conceptual level,
it was done to make reasoning about edges from edges con-
ceptually clearer. The leftmost association from Node to it-
self represents the type of inheritance relations: since inher-
itance relations are also explicitly modelled (Van Tendeloo
and Vangheluwe 2016), they require their own metamodel.
And since the LTM ; should be self-describing, it contains
this type too.

Since any model conforms to the (often implicit) physi-
cal metamodel in the physical dimension, they should also,
by definition, conform linguistically to LTM ;. We call
this new linguistic conformance to LTM | conformance | .
While it is actually the same as conformance in the physical
dimension, we shift this to the linguistic dimension to offer it
to the users. Thanks to the possibility for multiple metamod-
els for a single metamodel (Van Tendeloo and Vangheluwe
2016), it is possible for the model to be typed by multiple
linguistic metamodels: LTM ;| , and the original linguistic
metamodel(s). Figure 8§ shows the 1-to-1 mapping of the
Physical Type Model (PTM) to the linguistic dimension. As
each element necessarily conforms to the PTM, it will also,
by definition, conform to the new LTM | .

short description of paper

&7 |

Integer

Boolean String

Linguistic

Figure 8: LT'M | added in the linguistic dimension, which
is identical to the one in the physical dimension.

4.2 Coping with Strict Metamodelling

By lifting the physical conformance relation up to the lin-
guistic conformance dimension, we achieve a way of ex-
plicitly modelling, albeit indirectly, in the physical dimen-
sion. Users are therefore able to, using their normal linguis-
tic modelling tools, alter the physical dimension. The physi-
cal representation of the model is thus seen as an instance a
linguistic metamodel.

While the tool still complies to strict metamodelling in
the linguistic dimension, LTM | is taken so general, that the
complete metamodelling hierarchy can be expressed as a di-
rect instance of it. This effectively flattens the original meta-
modelling hierarchy into a single level: LTM ; at the meta-
modelling level, and everything else at the modelling level.
In this single model level, which is only a different view
on the same model, strict metamodelling does not restrict
anything, even links between different levels (of the origi-
nal hierarchy). Figure 9 represents the two possible views
on the modelling hierarchy: either through the usual confor-
mance relation (Figure 9a), or the new conformance | rela-
tion (Figure 9b).

Depending on the used metamodel and conformance re-
lation, strict metamodelling can thus be interpreted differ-
ently. Note that this is still distinct from dropping strict
metamodelling completely: strict metamodelling is still used
throughout the complete environment, and still imposed on
instances, even with the conformance | relation. But the
implications of strict metamodelling depend entirely on the
metamodel: for normal linguistic metamodels, strict meta-
modelling is as it was originally designed, but for the special
metamodel LTM | , strict metamodelling does not constrain
anything because every element is at the same level.

Coping with strict metamodelling alone does not solve all
problems. While the limitation of not being able to model ex-
ecutable models across levels was removed, these executable
models still directly interact with the underlying data struc-
ture. This is still a lingering aspect of the physical dimen-
sion, which we tackle next.

2016/3/3

(a) Petri nets metamodel

Figure 9: Different modelling hierarchies for the model my_PN, as seen through two different linguistic views.

4.3 Abstracting Implementation Details

The 1-to-1 mapping between the physical metamodel and
LTM) made it possible to linguistically access the physical
dimension. But the physical dimension is still part of the im-
plementation, and could therefore change in subsequent ver-
sions. This would bring us to language evolution, as LTM | ,
and possibly conformance | , would also have to be updated,
together with all saved models. While some advances are
made to language evolution in order to do these changes au-
tomatically, we don’t want to expose users to these problems.
Users should therefore not be bothered with the internals
of the tool, not even the physical data representation. And
while users do need access to a physical-like representation,
it can certainly be a different one than that which was im-
plemented, as long as there exists a mapping between them.
LTM | is thus merely a wrapper, or an abstraction of the ac-
tual data structure being used. Modifications on instances of
LTM , are mapped over to changes in the physical dimen-
sion, and vice versa. This can be done by having the actu-
ally implemented data structure implement an interface as if
it were conforming to LTM ;. This requires a mapper be-
tween LT M | and the physical metamodel, which is similar
to physical mappers (Van Mierlo et al. 2014). Now, how-
ever, the mapping is only defined for a single metamodel,
instead of for each metametamodel individually, greatly re-
lieving users. This is the mapping shown in Figure 10.
Decoupling the implementation of algorithms from the
actual internal data structure makes it possible to perform
drastic changes internally (e.g., switching between database
technologies), without any change whatsoever to the explicit
models of model management operations, nor to LTM ;
or conformance | . Related to this, different tools can im-
plement exactly the same algorithms, which were explicitly
modelled, even if their implementation language and inter-
nal data structure is completely different. They only need
to agree on LTM | and the corresponding conformance |,
and an explicitly modelled action language to go along with

short description of paper

|

Linguistic

Figure 10: Changing the physical metamodel with some-
thing else, as long as there is still a mapping to LT M ; . SQL
metamodel not expanded due to space constraints.

it. All other implementation choices become truely that:
choices made in the implementation that don’t affect func-
tionality at all.

4.4 Overview

We now relate back to the problems we initially observed.
The strong reliance on the physical dimension were caused
by both pragmatic reasons (i.e., developers are more famil-
iar with programming languages) and theoretical limitations
(i.e., strict metamodelling prevents a model from referenc-
ing two different levels). While we can’t do much about the
pragmatic reasons, we have used multi-conformance to of-
fer a different view on the model: instead of being an in-
stance of a user-defined metamodel, it becomes an instance
of LTM , . Using the conformance; relation, strict meta-
modelling does not constrain the user anymore because all
model elements reside at the same level.

Similarly, the physical implementation and mapping to
LTM , were decoupled from the linguistic metamodel,

2016/3/3

making it possible to alter the implementation without af-
fecting LT'M | or its instances at all.

5. Example

As a simple example of our approach, we present here the
implementation of an instantiation model management op-
eration. The operation is invoked on an element in a meta-
model that has to be instantiated, using the existing model to
which the instantiation should be added.

Current tools implement this using code written in the
implementation language and hardcoded in the tool, even
though their tool supports a neutral language (e.g., OCL). A
normal neutral language is unfit for this purpose for several
reasons:

1. Any representable model in the tool might become sub-
ject to instantiation, so we don’t want to define the oper-
ation over the linguistic metamodel defined by the user.
If we were to do this, only instances of that exact meta-
model could ever be instantiated. Creating a new meta-
model would also require users to reimplement all in-
stantiation operations over and over again, to make them
applicable to the model used. Most of the time, instanti-
ation is very similar, so a default should be provided. By
implementing this operation at the physical level, tools
avoid this problem as they now work on the internal rep-
resentation, which is identical for all models.

2. Instantiating a model element is an invasive operation,
which can greatly disturb the linguistic dimension by, for
example, breaking conformance to the linguistic meta-
model. Implementing instantiation based on the linguistic
metamodel, defined by the user, would therefore also be
unwise, as conformance might break halfway through the
operation, making the function not applicable anymore.

3. Strict metamodelling prevents users from crossing be-
tween levels. Even if the previous two problems were
to be solved, a single model (the instantiation algorithm)
cannot have links to both the model (to add the instan-
tiated element), the metamodel (to read out the element
to instantiate), and even the metametamodel (to find sub-
typing information).

With our approach, each of these reasons is solved as
follows:

1. Instead of shifting the algorithm to the physical dimen-
sion to get access to the physical representation, we shift
the physical representation to the linguistic dimension
as LTM . This way, the low-level representation of
the model is also an explicit instance, for which each
possible model conforms to one and the same meta-
model: LTM | . If the retyping operation is defined using
conformance |, it will be applicable to every possible
model.

short description of paper

2. The type of a model is not visible in normal circum-
stances, as it is part of the conformance check. It is indeed
even dangerous to change the type of a model, while op-
erating on that specific type. By operating on a different
type, however, of which it is known that the model will
always conform to it, there are no risks involved at all.
While it might be possible that some of the other previous
conformance relations are broken (e.g., to a user-defined
metamodel), conformance | is not invalidated by the op-
eration as it holds by definition.

3. As previously shown, our approach just changes views
to conformance | , in which strict metamodelling is still
valid, but it doesn’t actually restrict anything, since every
element is at the same level.

The algorithm is related to how models are represented
internally: all models are subgraphs of a single coherent
graph. This format of model representation is itself already
level-crossing, as there are edges for both navigation and
instantiation. As it contains level-crossing links, it is an
invalid model when viewed through an ordinary linguistic
typing relation. It is, however, viewable and even modifiable
using conformance |, as the model completely complies to
LTM, .

During the execution of the algorithm, the model is
viewed not through the usual conformance relation, but
through the conformance | relation. As such, the model
can be modified as if it were merely a graph, without any ad-
ditional semantics or imposed restrictions. Apart from just
allowing any kind of structural change, inconsistencies in the
usual conformance relation are also possible: cardinalities,
multiplicities, potencies, and so on, can all be invalidated as
their semantics is not checked at this level. Operations de-
fined by the user, using the normal linguistic conformance
relation, will just reinterpret the graph to the usual linguis-
tic dimension, thus again checking all additional constraints
such as cardinalities.

We use this code to instantiate a new petri net place, as
specified by the petri nets metamodel. The example is visual-
ized in Figure 11. Figure 11a indicates the problem with the
instantiation algorithm: it accesses itself and three different
modelling levels: the model level to write out the instantiated
model, the metamodel level to read out the allowed attributes
and all constraints, and the metametamodel level to know
about inheritance links and how to handle them. Accessed
elements are highlighted in the figure, indicating that the al-
gorithm requires access (and thus, links) to all these levels.
It is therefore impossible to add it at either of these levels:
adding it to one level would cause violations for the other
levels. By taking the conformance | view, the modelling hi-
erarchy changes from Figure 11a to Figure 11b, in which
there are no level-crossing links anymore. In Figure 11b, all
access are again highlighted, but are now within the same
level in the modelling hierarchy. There is therefore no longer
any violation of strict metamodelling.

2016/3/3

(a) Using normal conformance.

m‘
A

Action

Boolean

Class

Place Transition

(b) Using conformance | .

Figure 11: Two different ontological views on the same model. The elements accessed by the algorithm are shown in light blue.

Only conformance | complies with strict metamodelling.

The complete procedure is shown in Figure 12: first the
conformance | view is taken on the model, where it is
shown as a graph instead of a petri net model and meta-
model. Second, this graph is traversed and the requested
changes are performed. Finally, the modified graph model
is again interpreted using the original conformance relation,
where users use their own metamodel and corresponding
type mapping to interpret the graph.

6. Related Work

Three main dimensions of related work exist.

First, our approach builds upon the support for multiple
linguistic types. While we have used our approach (Van Ten-
deloo and Vangheluwe 2016), another possible direction
is through by a-posteriori typing (de Lara et al. 2015). In
a-posteriori typing, a model is constructed with a single
constructive type (Atkinson et al. 2011), which cannot be
changed. When a model is used in a different context, how-
ever, multiple additional types can be added afterwards (a
posteriori) through the use of concepts (de Lara and Guerra
2010b). These additional types don’t influence the original
constructive type, but can make the model applicable for use
in other algorithms. Supporting our conformance | relation
through the use of a-posteriori typing should be similar. The
constructive type could simply be part of LTM |, with all
“real” linguistic types specified as a posteriori types. Our
approach varies a bit though, since we don’t make the con-
structive type a special kind of type: the conformance | is
just another relation like any other. The OCA (Atkinson and
Kiihne 2003) is rather similar to our approach, as it identi-

short description of paper

B (1) 2 Y
/ N

EEm— / Transition] /\

] al

\ /

Place

Transition

siti
S
\
~ o 4 \
\ L7
7
\ Ll \
y . \
- D

Figure 12: Overview of the complete procedure: (1) reinter-
pret the model as instance of LTM |, (2) execute the algo-
rithm on the graph representation, (3) reinterpret the model
again using the initial metamodel. All steps happen on the
background and the user only sees the composite operation.

2016/3/3

fied the distinction between two conformance relations. But
whereas the OCA shifts one of these relations to the imple-
mentation level, we merge the physical type model into the
linguistic dimension. We therefore still completely comply
to the OCA: we have both a linguistic dimension (used for
user modelling), and a physical dimension (used during tool
building). Parts of our physical dimension are, however, ex-
posed to the linguistic dimension, such that all operations
from the physical dimension also become available in the
linguistic dimension. With the OCA it is not necessary to
support multiple linguistic types for a single model, which
is a necessary requirement when shifting more parts to the
linguistic dimension.

Second, strict metamodelling has been the subject of
several debates, both in favor (Atkinson and Kiihne 2001,
2005), and against (Henderson-Sellers et al. 2013; Clark
et al. 2014). People against strict metamodelling argue that
strict metamodelling makes specific models impossible, as
we have also shown in this paper. Their solutions, however,
often completely throw away all notions of strict metamod-
elling. And while we agree that strict metamodelling can be
overly restrictive, it certainly has its advantages in protect-
ing ordinary users and simplifying algorithms. So in contrast
to tools like XMF-Mosaic (Clark et al. 2014), who com-
pletely flatten the modelling hierarchy, we still enforce strict
metamodelling, though users can switch to the “unrestricted
mode” by taking on a different linguistic type model. Since
the unrestricted mode is at a much lower level of abstrac-
tion than the usual linguistic metamodels, users will now
have more powerful tools at their disposal, and are able to
circumvent strict metamodelling in a controlled way.

Third, many tools rely explicitly on the implementa-
tion level. For example, MMINT (Di Sandro et al. 2015),
MetaDepth (de Lara and Guerra 2010a), DISTIL (Man-
zanares et al. 2015), AToM® (de Lara and Vangheluwe
2002), and AToMPM (Syriani et al. 2013) all explicitly al-
low users to inject code, for example as parts of models, or to
extend the capabilities of the tool. This code is not explicitly
modelled, and is simply injected in the actual application
code that is being executed. There is thus no checking as
to what is happening and if the inserted application code
is actually valid code, since it is only treated as mere text
by the tool. This code is subsequently only checked by the
compiler or parser of the language that is being used, further
delaying user feedback. And since this code is dependent
on both the application interface (API), and the implemen-
tation language, and the internal data structures, the code is
not portable at all. Furthermore, it does away with the notion
of “model everything explicitly”, as it introduces unmodeled
aspects in the models and even in the tool. The importance of
the physical dimension was previously highlighted (Kurtev
et al. 2002, 2006), where the physical storage was mentioned
as a technological space. Different ways of representing this

short description of paper

data were presented, though each of these can, with our ap-
proach, be abstracted away as an implementation detail.

Similarly, megamodel management (Salay et al. 2015)
is often implemented purely at the implementation level
instead of explicitly modelled. And while there is some work
on making generic model management possible (Vignaga
et al. 2009; Rose et al. 2011), these approaches often remain
specific to the problem under study.

7. Conclusion

We observed that current (meta-)modelling tools have a very
strong reliance on their implementation level through the use
of code fragments in the implementation language (e.g., Java
code as an action in a Statechart transition), explicit reliance
on the internal data structures (e.g., XMI), by hardcoding
tool semantics (e.g., model management operators in Java),
hardcoding semantics of model attributes (e.g., a fixed po-
tency attribute that is always there and further restricts in-
stances), or a combination thereof.

This results in models specific to the specific implemen-
tation language, the specific tool semantics, and even im-
plementation details such as data structures. While this is is
an easy solution with high performance, these disadvantages
are significant.

It is, however, not trivial to explicitly model the complete
tool within the tool itself, due to many constraints imposed
on metamodelling, in particular strict metamodelling. And
while some previous approaches have completely done away
with strict metamodelling, we believe that there is still huge
value in strict metamodelling, and that it should be kept.

To tackle this problem, we shifted relevant parts from the
physical dimension over to the linguistic dimension. The in-
ternal data structure was made explicit, such that it can be
altered in an explicitly modelled way. To further break the
link between these tool services and the internal data struc-
ture, which should be an implementation detail, we allow
for the actual linguistic and physical metamodel to differ, as
long as there is a mapping between them. Operations will be
performed on the linguistic metamodel, which the used data
structure should translate to its own operations.

These changes allow on one hand to model all algorithms
explicitly over a metamodel that is known to be capable of
representing each possible model, and is known never to
change, even when the internal data structure changes. On
the other hand, it also allows us to cope with strict meta-
modelling by switching to a different linguistic metamodel
representation. In this low-level linguistic representation, all
data is shown as a single graph, as it was also the case in the
physical dimension, such that every possible link is known
to be within the same level by definition: every element is at
the same level anyhow.

We envision multiple directions for future work. First,
we intend to completely bootstrap our used tool, now that
the conceptual limitations have been removed. Currently,

2016/3/3

the tool still relies on a Python implementation for the ac-
tion language interpreter, which should now be shifted to an
interpreter in action language itself. Subsequently, a code
generator should be defined to export action language to
any other implementation language. This is very similar
to the way Squeak (Ingalls et al. 1997), an efficient and
self-describing Smalltalk (Goldberg and Robson 1983) in-
terpreter, was defined. We also wish to further investigate the
relation of our tool to Smalltalk. Second, we only considered
physical and linguistic conformance in this paper, whereas
we left ontological conformance untouched. Ontological
conformance might, thanks to multiple conformance rela-
tions and the break from the implementation level, also be
integrated in this vision. Third, decoupling the internal data
structures from the tool itself makes it possible to dynam-
ically change data structure depending on access patterns,
similar to the use of activity in simulation tools (Van Ten-
deloo and Vangheluwe 2014). Fourth, after bootstrapping
our tool, implementations in different implementation lan-
guages should be easy to create, simply by defining another
code generator. We intend to generate our tool for several
different platforms, to clearly show that there is no de-
pendence whatsoever on the platform. Finally, we believe
that the conformance | relation is an enabler for megamod-
elling (Bézivin et al. 2005), and want to investigate this fur-
ther.

Acknowledgments

This work was partly funded by a PhD fellowship from the
Research Foundation - Flanders (FWO). Partial support by
the Flanders Make strategic research centre for the manufac-
turing industry is also gratefully acknowledged.

References
OMG OCL. http://www.omg.org/spec/0CL/, 2014.

C. Atkinson and T. Kiihne. Strict profiles: Why and how. In
Proceedings of UML, pages 309-322, 2001.

C. Atkinson and T. Kiihne. Model-driven development: A meta-
modeling foundation. /EEE Software, 20(5):36-41, 2003.

C. Atkinson and T. Kiihne. Concepts for comparing modeling tool
architectures. In Proceedings of MoDELS, pages 398—413, 2005.

C. Atkinson, B. Kennel, and B. Go3. Supporting constructive and
exploratory modes of modeling in multi-level ontologies. In
Proceedings of Semantic Web Enabled Software Engineering,
pages 1-15, 2011.

C. Atkinson, R. Gerbig, and T. Kiihne. Opportunities and chal-

lenges for deep constraint languages. In Proceedings of the 15th
International Workshop on OCL and Textual Modeling, 2015.

B. Barroca, T. Kiihne, and H. Vangheluwe. Integrating language
and ontology engineering. In Proceedings of MPM 2014 Multi-
Paradigm Modelling Workshop, pages 77-86, 2014.

J. Bézivin, F. Jouault, P. Rosenthal, and P. Valduriez. Modeling in
the large and modeling in the small. In Model Driven Architec-
ture, 2005.

short description of paper

T. Clark, C. Gonzalez-Perez, and B. Henderson-Sellers. A founda-
tion for multi-level modelling. In Proceedings of MULTI 2014
Multi-Level Modelling Workshop, pages 43-52, 2014.

J. de Lara and E. Guerra. Deep meta-modelling with MetaDepth.
In Proceedings of TOOLS, pages 1-20, 2010a.

J. de Lara and E. Guerra. Generic meta-modelling with concepts,
templates, and mixin layers. In Proceedings of MoDELS, pages
16-30, 2010b.

J. de Lara and H. Vangheluwe. AToM®: A tool for multi-formalism
and meta-modelling. In Fundamental Approaches to Software
Engineering, pages 174-188, 2002.

J. de Lara, E. Guerra, and J. Sdnchez Cuadrado. A-posteriori typing
for model-driven engineering. In Proceedings of MoDELS,
2015.

A. Di Sandro, R. Salay, M. Famelis, S. Kokaly, and M. Chechik.
MMINT: A graphical tool for interactive model management.
In Proceedings of MoDELS, 2015.

A. Goldberg and D. Robson. Smalltalk-80: The Language and
Its Implementation. Addison-Wesley Longman Publishing Co.,
Inc., 1983.

B. Henderson-Sellers, T. Clark, and C. Gonzalez-Perez. On the
search for a level-agnostic modelling language. In Proceedings
of Advanced Information Systems Engineering, pages 240-255,
2013.

D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and A. Kay. Back to
the future: The story of Squeak, a practical Smalltalk written in
itself. In Proceedings of OOPSLA, pages 318-326, 1997.

L. Kurtev, J. Bézivin, and M. Aksit. Technological spaces: an initial
appraisal, 2002.

I. Kurtev, J. Bézivin, F. Jouault, and P. Valduriez. Model-based
DSL frameworks. In Proceedings of OOPSLA, pages 602-616,
2006.

C. C. Manzanares, J. S. Cuadrado, and J. de Lara. Building MDE
cloud services with DISTIL. In Proceedings of CloudMDE,
pages 1-6, 2015.

L. Rose, E. Guerra, J. de Lara, A. Etien, D. Kolovos, and R. Paige.
Genericity for model management operations. Software and
Systems Modeling, 12(1):201-219, 2011.

R. Salay, S. Kokaly, A. Di Sandro, and M. Chechik. Enriching
megamodel management with collection-based operators. In
Proceedings of MoDELS, 2015.

E. Syriani, H. Vangheluwe, R. Mannadiar, C. Hansen,
S. Van Mierlo, and H. Ergin. AToMPM: A web-based
modeling environment. In MODELS’13 Demonstrations, 2013.

S. Van Mierlo, B. Barroca, H. Vangheluwe, E. Syriani, and
T. Kithne. Multi-level modelling in the modelverse. In Proceed-
ings of MULTI 2014 Multi-Level Modelling Workshop, pages
83-92, 2014.

Y. Van Tendeloo and H. Vangheluwe. Activity in PythonPDEVS.
In Proceedings of ACTIMS, pages 2:1-2:10, 2014.

Y. Van Tendeloo and H. Vangheluwe. Explicit type/instance rela-
tions. Technical report, University of Antwerp, 2016.

K. Vanherpen, J. Denil, I. David, P. De Meulenaere, P. J. Moster-
man, M. Térngren, A. Qamar, and H. Vangheluwe. Ontological

2016/3/3

reasoning for consistency in the design of cyber-physical sys-
tems. In Proceedings of Cyber Physical Production Systems,
2016. (under review).

A. Vignaga, F. Jouault, M. C. Bastarrica, and H. Bruneliere. Typing
in model management. In Proceedings of International Confer-
ence on Model Transformation, 2009.

T. Vogel, A. Seibel, and H. Giese. Towards megamodels at runtime.
In Proceedings of Models @ run.time workshop, 2010.

short description of paper 13 2016/3/3

