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Abstract

None of the current plethora of (meta-)modelling tools include a complete model of themselves. Such a model, a precise spec-
ification of the tool’s syntax and semantics, allows for introspection and reflection. This enables features such as debugging.
Without such a model, it is harder to decompose a tool into components for distribution, reason about efficiency, and reuse com-
ponents of existing implementations. In this technical report, we present the foundations of the Modelverse, a self-describable
environment for multi-paradigm modelling (supporting multi-formalism and multi-abstraction modelling and explicitly modelled
processes). The foundations describe a class of Modelverse realizations, which satisfy our identified set of requirements. Con-
ceptually, all information in the Modelverse is stored in a graph, and model management operations transform this graph. Parts
of the graph also describes action constructs which, amongst others, can be used to define (linguistic) conformance relations, the
basis for multi-layer multi-level modelling.
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Introduction

To deal with the increasing complexity and size of the systems, both physical and software and combinations thereof, that we
build, Multi-Paradigm Modelling (MPM) [1] promotes the explicit modelling of all aspects of system development. It addresses
and integrates three orthogonal research dimensions: model abstraction, concerned with the (refinement, generalization, ...)
relationships between models at different levels of abstraction; multi-formalism modelling, concerned with the coupling of and
transformation between models described in different formalisms; and the explicit modelling of the (multi-user, collaborative,
multi-domain) model management processes.

User collaboration is usually solved by presenting the modelling tool as a service, which ideally would be constantly running,
requiring online self-updating to guarantee high availability.

Most current modelling tools do not directly support usage as a service, or they do not allow online self-updating, through
self-modification. Self-modification requires a description of itself, preferably in the form of a model, to allow for explicit
transformations. As such, a complete model of the modelling tool, and all of its features, needs to be present within the tool itself,
and be expressed in the most appropriate formalism. Besides including the operational semantics of its execution, including
model management operations, and thus allowing for introspection, reflection, and self-modification, we should also include the
execution context. Thus allowing debugability through direct inspection of the execution data.

In the presence of multiple users, possibly collaborating from different locations, interoperability between the modelling tools
is required. Therefore, these tools need to agree on a common exchange format, with precisely defined semantics. As such, all
models need to be representable using this common exchange format, as done by most other tools.

Collaboration between users with different expertise raises challenges for consistency management of shared models, which
would require links between the different models. Each of these models possibly in different formalism, using multiple levels of
abstraction, and with multiple simultaneous views.

Our contribution in this paper, is the specification of the foundations of a self-describable, multi-paradigm modelling environ-
ment: the Modelverse [2]. We start by eliciting the requirements we find essential to such an environment, which will later be
used in our specification. The presented foundations therefore describe a class of Modelverse realizations, which satisfy our iden-
tified set of requirements. Conceptually, all information in the Modelverse is stored in a single graph, and model management
operations transform this graph. Parts of the graph also describe action constructs which, amongst others, can be used to define
several linguistic conformance relations.

1.1 Architecture

An architectural overview of the Modelverse is presented in Fig. 1.1. The Modelverse consists of two main components: the
Modelverse State (MvS) and the Modelverse Kernel (MvK), with a communication layer in between. Different Modelverse
Interfaces (MvI), capable of communication with the Modelverse, exist outside of the Modelverse.

In the Modelverse Interface, the user has a graphical or textual front-end for the Modelverse, which is close to the problem
domain. The Mvl translates all user operations to operations for the MvK to process. The MvK considers models at the logical
level, where it can reason about conformance relations and can enforce syntax-directed editing. For communication with the
MvS, a conceptual idea of what a model looks like physically is used: the Physical Type Model (PTM). As we clearly distinguish
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Figure 1.1: Overview of the Modelverse architecture

between the MvK and the MvS, the MvK cannot know how the model is represented in hardware. The PTM is therefore used as
a common concept to reason about. Finally, the MvS receives changes on this PTM and maps them to the representational level,

where it is actually stored in hardware.



Related work

Our specification builds on the work from several topics. We identify the following topics: self-describable environments, action
languages, and (meta-)modelling tools. We touch upon all of these, as we create a modelling tool, which can describe itself using
an action language.

In this chapter, we will go over these different topics, and relate back to our work.

2.1 Self-describable

The idea of having a self-describable programming language is not new. Squeak [3], for example, is a Smalltalk interpreter written
in Smalltalk. For execution, there are two options: either the Smalltalk code is executed from within a running interpreter, or
the interpreter is translated to a different programming language, which can be compiled. The former approach offers self-
modifiability at run-time, whereas the latter offers increased performance. The translator only works on a subset of Smalltalk
though, which closely maps to C (the target language of the translation). It is possible to combine both approaches: first write and
debug using the interpreter-in-interpreter approach, and afterwards translate that same code to a different programming language.
The combination is actually the main motivation for their work: it is possible to create code in Smalltalk, a high-level language,
and debug it with all provided tools, and afterwards generate C, a low-level language, and profit from its performance.

A similar project is PyPy [4], a Python interpreter written in Python. The Python code that is used for the definition is again a
subset of valid Python code, called RPython, which again gets mapped to C. Their main motivation is performance: by raising the
level of abstraction from C to RPython, it becomes far easier to implement advanced interpreters (e.g., including a JIT compiler).

Going over to the modelling world, there is already some work done on a self-describable meta-modelling environment. One
such tools is XMF [5], which is a self-describable kernel for multi-level modelling. Its kernel conforms to itself, though it cannot
modify itself due to the lack of side-effects to functions. While it offers a foundation for multi-level modelling, it does not include
an explicitly modelled action language.

In the Modelverse, we also want to explicitly model the MvK component. But as the MvK can hold all kinds of models, the MvK
should be able to manipulate (another instance of) itself. This would mean that the MvK is explicitly modelled in the Modelverse,
and therefore is present in the MvS. As such, an instance of the MvK can modify its own model in the same way as this was
possible with Squeak.

All tools provide an extensive model library, which is written in the language they implement. This is certainly the case for
Smalltalk, where basically everything is a library, even primitive data structures such as integers. Tools can provide a minimal
foundation, possibly hardcoded, with all other parts building upon this core. For example in PyPy, most libraries are implemented
in pure Python code, whereas in CPython (the reference implementation), these are coded in C for efficiency reasons. The
Modelverse is similar in this aspect, as it only has a minimal base of hardcoded operations, to which everything should be mapped.
While this limits performance (since some operations require multiple primitive instructions), the amount of fixed components
is minimized and thus the amount of modifiable code is maximized. Furthermore, it offers users insight into the working of the
tool, without resorting to the kernel manual. Finally, new implementations of the kernel only require the reimplementation of the
minimal core, with the complete library being reused as-is.



2.2 Action language

Several action languages are already in use today, to allow models with associated behaviour. We describe some of these lan-
guages:

o fUML [6] (foundational UML) is a frequently used language, often in combination with alf [7]. It is referenced as the
assembly language of MDA [8], as many other languages get mapped to it. Work has been done to extend the library of
fUML with external services, such as Java libraries [9, 10]. It is a quite elaborate language though, making it difficult to
create a minimal core out of it. In its turn, this decreases the power of self-modifiability: a lot of constructs are built-in,
and therefore their semantics cannot be changed.

o txtUML [11] (textual executable translatable UML) provides a mere interface for the user, where all code gets translated
to Java. This has the advantage that existing tools, such as Java debuggers, can be reused. However, the question is
as to whether existing general purpose debuggers are at the right level of abstraction, as they do not provide tracability
information. Mapping to Java has the additional problem that it is not completely platform independent, as there would be
a need for a Java interpreter at the platform. Additionally, Java is not explicitly modelled and therefore we would not be
able to model everything explicitly.

e EOL [12] (Epsilon Object Language) is a language commonly used for model management purposes. Several closely
related languages are also specialized for specific purposes, such as ECL (Epsilon Comparison Language), EML (Epsilon
Merging Language), and EGL (Epsilon Generation Language). While it has wide support, and is based on the familiar
Object Constraint Language (OCL), there is a lack of a complete metamodel. As the code is purely textual, and not
explicitly modelled, it is impossible to combine with strict metamodelling, where level-crossing links (or accesses) are
disallowed. Again, the language in itself is fairly large, making it difficult to implement a simple, minimal core.

e Kermeta [13] probably comes closest to the Modelverse. Their action language is explicitly modelled, and there is the
possibility for both graphical and textual editting of action language constructs. However, they are limited in the use
of strict, static typing and strict metamodelling, which is a potential problem in combination with model management
operations.

We can identify two different design goals for action languages: operational semantics (examples in [14]), and model manage-
ment operations (examples in [12]). Both goals have very different requirements. For the modelling of operational semantics, it
is desired that the action language is also explicitly modelled, and therefore can directly reference the accessed values. Further-
more, we want to have requirements that are similar to strict metamodelling, where the action language is only able to access
elements at the same level. It is therefore not possible to use such languages for the definition of model management operations:
language constructs can only access a single level. For the modelling of model management operations, most approaches take
some distance from the model itself, causing the language to not be modelled explicitly. This allows them to ignore strict meta-
modelling requirements, and access arbitrary elements from the model, even if they are at different levels. While this allows for
model management operations, it is not possible to model the language, and therefore also impossible to use model management
operations on themself, breaking self-describability and self-modifiability. While the definition of operational semantics is not
impossible, there are no constraints on the modifications done to the model, which is a potentially dangerous operation. Due to
this discrepancy, both of which we want to support in the Modelverse, there is a need for two different views: one specifically
designed to define operational semantics, and another one to define model management and other core functions.

Languages also come in different representations, with purely textual being a popular choice for action language due to the
similarity with programming languages. For the combination of behaviour and structure, however, we want a hybrid of these
approaches: textual for the action language, but graphical for the structural metamodelling language [15]. As the action language
model is also modelled explicitly, it is automatically possible to modify action language constructs with the graphical environ-
ment. The Modelverse takes the same approach as [15, 13, 9], as all tools are purely graphical internally, but with a textual
front-end that will generate the appropriate models automatically.

In terms of debugability, many tools at the moment support some kind of execution traces [16], which can aid in debuging.
Some, however, implement this through the use of an API that is exposed by the virtual machine that executes the code [17].
While this is a possible way, it makes clear that the virtual machine holds parts of the state that are not present in the state
that is stored. Implying that the execution state is not explicitly modelled, and therefore not user-modifiable or debugable. It
furthermore also raises questions as to whether the provided API is sufficient for all goals the debugger tries to solve. In the
case of the Modelverse, no state whatsoever is stored in the virtual machine (the MvK), and everything is written to the MvS.
Debuggers can therefore simply access and modify the complete execution state as if it were a regular model. Work based on
traces, such as multi-dimensional trace files [18], can therefore be built on top of our provided execution state.

Finally, there is the formalisation aspect. Most languages are formalised by mapping to either f{UML or Java. While this is a
viable approach, this makes us dependent on the target language, reducing interoperability. An approach that lies closer to our
approach in the Modelverse, is the mapping to graph transformations, as is done by [19]. As the MvS is conceptually a graph, a
mapping of behaviour to graph transformations seems ideal.



2.3 (Meta-)Modelling tools

The last aspect to look at, is the functionality of current meta-modelling tools, in relation to the Modelverse.

WebGME [20] is a web-based tool, focussed on collaboration between multiple users. It really focusses on the collaboration
aspect by offering model-based version control. Support for prototype-based inheritance distinguishes it from other tools. While
it is a powerful metamodelling tool, it does not support model transformations. It is furthermore not possible to add in model
transformations, as there is no minimal core on which transformations can be built. The Modelverse doesn’t support model
transformations at the moment, either, but these will later be implemented on top of the minimal core that is present. The
architectural split between behaviour and storage was replicated in the Modelverse. In contrast, the behavioural part, the MvK,
will be completely modelled in the action language defined by the Modelverse.

AToMPM [21] is another web-based meta-modelling tool with support for model transformations. While there is a notion of
collaboration, this is not to the same degree as WebGME. The Modelverse has no direct notion of collaboration build-in, as such
operations need to be implemented on top of the minimal core. The Modelverse doesn’t include a default interface at the moment,
as it only consists of the service.

Melanie [22] is a graphical multi-level modelling tool. It has support for automatic emendation (changes to a meta-level are
automatically propagated to the lower levels), and transformations. While it comes with a graphical environment, there is no
support for multiple users.

MetaDepth [23] is another multi-level modelling tool. It is purely textual, and therefore feels more familiar to programmers.
While it lacks transformations, constraints and operational semantics can be defined through the use of action language in the
EOL formalism. The Modelverse supports multi-level modelling by default, but mainly because there is no restriction on re-
instantiation of previously instantiated elements. Advanced features, like emendation, or even potency, are not supported by
default. Thanks to the minimal core, however, potency, or similar techniques, can be added in, as was done by XMF-Mosaic [5].

XMF-Mosaic [5] is one of the only self-describable multi-level meta-modelling tools. It is purely textual and there is no support
for multiple users. However, it is also based on a minimal kernel, which is self-describable. The action language they use, EOL,
is not self-describable though. Internally, the Modelverse makes fairly similar decisions, as for the use of a single common
metamodel. While this is the only way of looking at the model in XMF-Mosaic, the Modelverse allows different conformance
dimensions, of which one might actually be a real conformance dimension.

Kermeta [13] is similar to the Modelverse. It offers a hybrid syntax of graphical and textual, and also has a meta-model for
the used action code. There is, however, a strong focus on strict and static typing, which, combined with strict metamodelling,
can become very constraining for model management operations. Kermeta models many constructs explicitly: there is even a
metamodel for primitive datatypes. These primitive datatypes however, just come out of a (system) library, and are therefore not
easily changable, or visible, by the user.

While all mentioned tools have their specific application (and research) domain, the Modelverse tries to combine features of all
tools. This is done through the use of the minimal core, on which the features of other tools can be built.



Axioms

We define a set of requirements for a Modelverse. These requirements, or axioms, will be used during our formalization to
motivate our decisions. Although implementation-related requirements are not needed for our formalization, they are mentioned
as it is something every implementation should conform to.

After an explanation of what each axiom represents, we give an overview of how all these axioms are related to each other.

3.1 Axiom I: Forever Running

The Modelverse should always be able to continue running. As such, no modifications to the behaviour should require a restart,
except for changes to the (minimal) kernel (and thus the action language semantics). An (authorized) user should be able to alter
all core concepts, with changes automatically applied for all connected Modelverse Interfaces.

Forever running also implies that the Modelverse runs as a service, separate from the MvI program, which is used by the user,
but also on a different machine. A more drastic interpretation is that it should be parallelized and distributed, as to cope with
possible hardware failure. We do not require this more drastic interpretation, though it is certainly a feature to take into account
in an implementation evaluation.

The forever running does not apply to the Mvl, of course, as the Mvl is a tool ran on the system of the end-user. It is the whole
of MvK and MvS that should run as if it is running forever.

3.2 Axiom IlI: Scalability

The Modelverse should be scalable in terms of computation, memory, number of users, number of models, and the size of
individual models. Related to the previous axiom, scalability should still be maintained even if the Modelverse is forever running.
Combined with scalability is performance: even if operations are scalable in terms of complexity, the total time taken by execution
should also be as low as possible.

Due to our split in multiple components, we can also split up our scalability requirements over these components:

e The MvI needs to be scalable in performance, of course, though the size of models will be relatively small compared
to those processed by the MvK or MvS, because the models being worked on will always be submodels of the complete
Modelverse model. More important for the MvI is the scalability in the size of the model for visualization and presentation.
Depending on the domain, an implementation might provide further methods for abstraction of components.

e The MvK needs to be scalable in performance, again, but mainly in the processing of action code constructs. An MvK
instance should be easily parallelizable up to the “1 MvK per user” threshold. Beyond that limit, multiple MvKs would
have to cooperatively work on a single block of action code, which is likely to hamper performance. An MvK also needs
to be scalable in the number of users it is able to handle.

e The MvS needs to be scalable in performance, mainly in terms of the size of the complete Modelverse state. It is non-trivial
to distribute or parallelise, as operations are small and atomic, and all data needs to be shared between users. The MvS
should therefore be offloaded as much as possible, shifting all computation to the MvK. This reduces the functionality of
the MvS to that of a simple, but high-performance, data structure library. Again, it should be scalable in the number of,



possibly simultaneous, requests made, which differs from the total number of users.

3.3 Axiom lll: Minimal Content

A minimal amount of content should be available in the Modelverse by default. The content consists of the models necessary for
bootstrapping, but also some default formalisms, such as Petri Nets, Parallel DEVS, Statecharts, FTG+PM [24], ...

For bootstrapping, the Modelverse contains a model of itself, which can then be compiled to a binary, executable outside of the
Modelverse, or interpreted by the currently running MvK. From this viewpoint, the Modelverse will be similar to Squeak [3],
which is a Smalltalk interpreter written in Smalltalk.

Apart from formalisms, some models should also be present in the Modelverse. These include the Formalism Transformation
Graph (FTG), and the corresponding Process Model (PM), forming the FTG+PM. The FTG model can be automatically con-
structed from the formalisms that are automatically detected in the Modelverse. Combined with detecting the formalisms, it
should also be possible to automatically detect all transformations defined between these formalisms, thus completing the FTG.
The PM model will be the driving force of the MvK and defines which operations to execute. It can therefore be written in an
action language, which defines the behaviour of the MvK, and thus the communication with the user.

3.4 Axiom IV: Model Everything

Every element in the Modelverse needs to be explicitly modelled, using the most appropriate formalism. This does not only
include the typical elements, such as the models and metamodels, but should also go down to the level of the primitives such as
Integer and Float. This will allow for stronger model transformations, as they can transform (and access) literally everything.

Ultimately, a model of the Modelverse should also be present in the Modelverse, which closes the loop. In the end, a compiled
version needs to be used for pragmatic reasons, though this compiled version can be (automatically) compiled from the model
that lives in the Modelverse.

Features like debugging, introspection, reflection, and self-modifiability will come from this axiom, as every part of execution is
accessible for both reading and writing.

3.5 Axiom V: Human Interaction

All interaction with the human user of the Modelverse needs to be explicitly modelled. This includes timed behaviour of the Mod-
elverse (e.g., time-out of requests), or even the complete communication protocol. It is actually the MvI which will communicate
with the Modelverse, though it will be guided by the user.

It should also be taken into account that the MvK will be (mainly) used by humans, and as such should be usable. While most of
this will be handled by the Mvl, which provides the tool to the user, the fact that a human is behind all of it should be taken into
account. Possible applications for this are for performance evaluation: a human user has completely different (and likely slower)
access patterns than an automated tool. The predefined constructs and design of the system should also be usable by humans,
specifically those that are non-experts in design of the Modelverse. Enforcing strict metamodelling is part of the solution, as this
offers users (and tools) a limited scope to worry about [?].

3.6 Axiom VI: Test-Driven

Development on the Modelverse should happen using the model of the Modelverse, which can be simulated, and placed in a vari-
ety of circumstances which are hard to replicate in real-life situations. A similar approach was taken by [25], where a DEVS model
was made of a distributed DEVS simulation kernel. Modelling allowed them to replicate, among others, sudden disconnects, high
latency connections, or different network topologies. Furthermore, detailed, and perfectly deterministic, performance insights
can be gained by the simulation of the model. Certainly for parallel execution, this gives us deterministic thread interleavings,
which can be crucial to debugging and performance analysis.

Functionality also needs to be checked as exhaustively as possible. Certainly for the first axiom, critical bugs should be avoided
as much as possible. Because the Modelverse will have to communicate with a variety of tools, its interface will also have to be
tested for conformance with the specifications.

3.7 Axiom VII: Multi-View

The Modelverse should support different views on the same model. Examples include hiding parts of a model, or aggregating
different elements into a composite element. This gives rise to consistency management, as changes in one view will have to be
propagated to all other views.

Multi-view should be handled at all components, as each component needs to allow it. The MvI needs to provide operations
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to use the different views, the MvK needs to update the views and keep them consistent, and the MvS needs to provide these
operations efficiently. The MvS is least concerned with multi-view, as it sits at a lower level.

3.8 Axiom VII: Multi-Formalism

The Modelverse should support models which combine different formalisms. Models should therefore be able to have a meta-
model which is the combination of multiple (meta)models. Inter-formalism links should also be possible, even if those cannot
be typed within the respective formalism. While the semantics of such a link depends on the domain, and therefore has to be
provided by the user, the Modelverse should allow such links to be created and used. Consequently, links between models should
also be possible, which can then act as the type for those inter-formalism links.

Related, a single model should be able to have multiple metamodels. A model could therefore be typed by a metamodel, but
would also have to conform to a bigger metamodel, which contains the original metamodel as one of its elements. This allows
the reuse of models, even if the context surrounding the metamodel has changed.

3.9 Axiom IX: Multi-Abstraction

The Modelverse should support systems which are expressed using a set of models, all at a different level of abstraction. Consis-
tency management will again have to be handled here.

As was the case for multi-view, each component needs to think about multi-abstraction separately. The exception is again the
MvS, as it is at a lower level. However, it can still (internally) use optimizations, knowing that some requests will be related to
multi-abstraction.

3.10 Axiom X: Multi-User

The Modelverse should be able to serve multiple Modelverse Interfaces simultaneously. A main concern to this is fairness
between users: a user cannot wait for its turn infinitely long. If a single user therefore uses all computational power, at the expense
of other users, the code executed by this user will have to be automatically paused, marked as “low priority”, or terminated.

User Access Control is related to this, as users should be able to configure the Read/Write/Execute status of their models. As
such, groups of users, with specific privileges, should also be supported.

If their access control allows it, users should also be able to read the state of the execution of other users. This will allow for
debugging with multiple users: user A can execute code, with user B being an automated debugging bot, which examines the
state of user A.

3.11  Axiom XI: Interoperability

Different implementations of the Modelverse and its interface should be possible. These implementations should all be able to
communicate with each other, as long as they follow the same specification. This is one of our main goals for specifying the
interfaces between components.

Additionally, because the semantics of action code and its corresponding execution context is defined, different MvK’s should be
able to continue each other’s execution, or interpret the execution context of other tools. This can come in handy with different
tools (e.g., a debugger, a compiler, or an interpreter) which might be developed independently, though are able to understand each
other’s information.

3.12 Interconnections

All of these axioms are related in some way, as the graph in Figure 3.1 shows. We now continue by explaining the links between
all concepts, using their label:

1. As the Modelverse will be forever running, there is a need for garbage collection or periodical maintenance to guarantee a
decent performance.

2. Having everything explicitly modelled allows us to create a self-modifiable Modelverse, which helps us with the forever
running axiom.

3. In the presence of multiple users, it is necessary to have the Modelverse running as a service, which implies that it should
run forever.

4. Using the performance tests, combined with the MvK being modelled explicitly, it becomes possible to assess the scalabil-
ity of the Modelverse algorithms under specific workloads.
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Figure 3.1: Overview of relations between all axioms

Scalability is deeply connected with interoperability, as there is often a trade-off: increasing interoperability will decrease
scalability and vice versa.

Having everything modelled explicitly requires the presence of at least a few basic formalisms. Ultimately, it also includes
having a model of the Modelverse in the minimal content of the Modelverse.

By modelling everything, we will inevitably also have to model the interaction with the human.

The performance tests will use a performance model of the Modelverse, which is contained in the Modelverse. To that end,
the Modelverse will simulate its own performance.

Multi-view requires the ability to model everything, as we will have to model all different views separately.

By modelling everything explicitly, we also need to model links between different formalisms, which is a requirement for
multi-formalism models.

Interoperability between different Modelverse components becomes easier if each component is modelled explicitly, as it
clearly defines the expected semantics.

Interoperability is an essential part of human interaction, as otherwise it would be impossible for both of them to commu-
nicate.

Multi-view and multi-formalism are related due to a view being possibly expressed in a different formalism.

Multi-view and multi-abstraction are related, as different views might be at different levels of abstraction.
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Modelverse State

We start our specification with the Modelverse State (MvS). The MvS maps the Physical Type Model (PGM) to the hardware.
Essentially, the MvS needs to implement the CRUD interface using whatever algorithms and data representation it sees fit.
Despite the liberal choice of data representation and algorithm, the interface is strictly defined and uses a special kind of graph,
defined in this chapter. We will first describe the conceptual representation of the PTM, followed by the operations on it that the
MvS should support.

4.1 Data representation

Conceptually, all data in the MvS is stored in the form of a kind of graph, as defined below. Informally, we define a graph which
can have a primitive value in a node, and both nodes and edges can be connected using edges. Allowing edges to connect other
edges allows for a more explicit representation, such as type links on associations, (Axiom IV: Model Everything). While edges
between edges could also be conceptualized using the standard notions of graphs, using tricks similar to hypergraphs, having a
closer mapping between the PTM and the models will allow for higher performance (Axiom II: Scalability). Both nodes and
edges can be accessed using a unique identifier.

An actual implementation of this interface might store the graph in different physical representations (e.g., using a relational
database or triplestores). This allows for more specialized implementations, depending on the problem domain (Axiom II:
Scalability), while still being interoperable (Axiom XI: Interoperability). Despite the need for multi-view (Axiom VII: Multi-
View), multi-formalism (Axiom VIII: Multi-Formalism), and multi-abstraction (Axiom IX: Multi-Abstraction), everything is
represented uniformly at this level. It is only at the Modelverse Kernel (MvK) level, that an interpretation is given to this graph.

We define a graph G, element of G (the set of all possible states of the MvS). A graph consists of nodes (Ng), possibly with
values (in U) defined on them (mapping Ny ), and edges (stored in E as triples). Edges can run between both nodes and edges.
All identifiers allocated to edges are stored in Ejps . Nodes and edges have a unique identifier, with IDSg being (exactly) the
set of all identifiers. This also means that identifiers cannot be reused between nodes and edges.

Edges which are self-connecting can be problematic for certain recursive algorithms, which traverse an edge by going on to the
source and target. Therefore, edges can, by construction, only link elements that already exist. This effectively prevents (indirect)
links to itself. With this restriction, such constructs are disallowed and these recursive algorithms are therefore guaranteed to
terminate. Such a restriction is also not limiting, as it is a normal requirement to only connect elements that already exist.

The requirement for ever increasing identifiers might seem contradictory to Axiom I: Forever Running, as the identifier would
go up to infinity, consequently endangering Axiom II: Scalability. In theory, this is not a problem, though implementations will
specifically have to handle this to prevent problematic situations (e.g., integer overflow or slow operations). In an implementation,
this could easily be solved by periodical “identifier compaction” (identifiers are reassigned, to filter out removed identifiers), or
reusing removed identifiers (keeping in mind the constraint).
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G = (Ng,Eg,NyG) € G

n; € Ng CIDSg

ej € Eg CIDSG X IDSG X IDSg

NV,G :Ng — U

Eps,c = {b|(a,b,c) € Eg}

NcNEpsc =0

NgUEpsc =IDSg

Vej,ej €E:ej=(a,b,c),ej=(d,e f),(b=¢e)= (e;=¢)
Ve, €E:e; = (a,b,c),(a<b)A\(c<b)
U defines the set of all possible values, or the union of all possible types: U = 1UFUSUBUAUZX,y,.. We define the following
primitive types, supported in the PTM, for which the MvS needs to provide native support:

e Integer (1) as the set of integers in the range [—(2%3),2%3 — 1] (i.e., as would be available using 64-bit integers);

e Float (F) as the set of floating point numbers, as defined by IEEE 754, with double precision (i.e., as would be available
using 64-bit floating point numbers). Values outside of this range will be rounded towards —oo or oo;

e String (S) as the set of all ordered combinations of ASCII characters;

e Boolean (B) as either True or False;

e Action (A) as an action language construct ({If, W hile,Assign,Call, Break,Continue, Return, Resolve,Access}), used by

the Modelverse Kernel to define the semantics.

e Type (%;)).) as the set of all supported types ({IntType, FloatType, StringType,BooleanType,ActionType, TypeType}).
These types differ from the set denoting all elements (i.e., | does not equal IntType), as the type is an instance itself.

We use | and F, instead of Z and R, respectively, because an implementation of these infinite concepts would not be able to
exploit current hardware. This is required for Axiom II: Scalability, as otherwise primitive operations would be inefficient due to
their generality. With this restriction, we enforce the size of the data values, thus preventing implementation-dependent behaviour
(e.g., some implementation using 32-bit integers, whereas another uses 64-bit integers).

The use of primitives does not violate Axiom IV: Model Everything, as primitives will still be explicitly modelled in the linguistic
dimension. In the physical dimension however, we shift the representation of the data to the physical level to obtain higher
performance (Axiom II: Scalability) and to have a basic type system available.

None of the value sets overlap, therefore it is possible to infer the type of the data, using N7.

NT U— Ztype

IntType if
FloatType if
StringType if

BooleanType if
ActionType if

TypeType if

Nr(d) =

del
deF
des
deB
deA
d € Xiype

Vi,j e {LLF,S,B,A e} i j=iNj=0

We can define a subgraph (M) of a graph (G), as a graph containing a subset of the nodes and edges, with the restriction that all
used nodes and node values are copied. It is implicit that the resulting graph should still be valid according to the restrictions

placed on the graph (e.g., source and target of nodes is still present).

MCG
<~
Ny C NG A
Ey CEg A
Nyy € Nyg A

V(a—>b) ENV$G:a€NM:>(a—>b) GNV’M/\
Y(a,b,c) € Ey : a,c € IDSy
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4.2 CRUD interface

The final part of the PTM is the interface, or the set of its supported operations, which are defined here. An MvS implemen-
tation needs to offer the operations defined here, irrespective of its implementation algorithm or data structure. Of course, the
implementation does not need to be using a graph similar to the conceptual representation of the PTM, but the operations should
always return exactly the same result.

We distinguish four different kinds of operations in our interface: Create, Read, Update, and Delete (CRUD). For each set of
operations, we define the function signature and the required semantics.

Apart from the actual return value, operations also return a status. This status is an integer specifying a status code: S = 1. We
have different categories of status codes: 1xx for success; 2xx for interface errors; and 3xx for execution errors. An interface error
indicates an error in the call, for example wrong type of arguments. An execution error means that the call itself was well-formed,
but could not be executed due to another restriction, such as an element not being defined.

All possible status codes are defined. Some additional errors might happen in the MvS though, such as out-of-memory problems.
These errors are platform-dependent and are only caused due to the implementation, the hardware, or the combination of both.
As such, an MvS is not allowed to return such errors and needs to handle such situations gracefully. For example, in the case of
an out-of-memory error, the MvS needs to be able to swap out pieces of itself to disk, or over the network.

4.2.1 Create

The first set of instructions that we define are create operations. Create operations cause the creation of new elements in the
graph, thus extending its size. Each newly created element will be assigned an identifier by the MvS, which is returned. It is this
identifier which acts as the handle to that element in the MvS.

Note that there are no restrictions on the created identifier, apart from it being a value that is not yet used for another element.
This allows whatever kind of identifier to be used, and even reuse is possible if the previous element was deleted.

First is the create node operation (Cy), which takes no arguments and returns the identifier of the newly created node, which was
unused up to now.

Cn:G— GxXNxXS
Cn(G) = (G',n,100)
G

= (N,E,Ny)
G = (N',E,Ny)
N' =NuU{n}
n ¢ IDS

The create edge operation (Cg) takes the identifier of the source and target elements (either a node or an edge) as argument, and
returns the identifier of the newly created edge.

Ceg: GxIDSXIDS — G x Ejps xS
CE(GailaiZ) = (Gl7l.3,S)

G = (N,E,Ny)
G = (N,E/,NV>
E'=EU/{e;}
e ¢ E
e; = (i1,i3,i2)
iy & IDS

s # 100 < i3 = None
200 if i €IDS
s=4q 201 if i &IDS
100 else
The last primitive create operation (Cyy ) creates a new node, and assigns it a value immediately. It has the same signature as the
create node, but takes a primitive value to assign to the created node. This operation could be implemented by first creating an
empty node and afterwards updating its value, though this would negatively impact performance (Axiom II: Scalability).
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Cnvv:GxU— GXNxS
CNv(G,d) = (G’,i,s)

G = (N,E,Ny)
G = (N',E,N},)
N =NU{i}
Ny, =NyU(i—d)
i¢gN
s:{ 202 if d¢U
100 if else

For performance, we add a composite create operation, which creates a named edge between two graph elements (Cp). This
operation is equivalent to creating an edge between the two elements, followed by creating an edge from the newly created edge,
to the data value that was specified. It is formalised as follows.

Cp:GXIDSxUXIDS — GxS§
Cp(G,a,d,b) = (G ,s)

G = (N,E,Ny)
G = (N"E',Ny)
N =NU{c}

E' =EU{(a,i1,b),(i1,i2,c)}
Ny =Ny U{(c —d)}

c,i1,ia € IDS
203 if a¢lIDS
. 204 if d¢U
T ) 205 if b&IDS
100 if else

4.2.2 Read

The next set of operations consists of the read operations. As there is no useful information in non-data nodes, there is no read

operation defined on nodes, except for their primitive data (Ry). It is an error if the node that is being read does not have a value
assigned to it.

Ry :GxN—=UxS
Ry(G,n)=(d,s)
G = (N,E,Ny)

d =Nv(n)

206 if n¢gN

s=< 300 if n&dom(Ny)
100 else

Instead of a read operation on the nodes, it is possible to read out their outgoing edges (Rp) and incoming edges (R;). This

works for nodes, but also for edges, as edges can also be the source (and target) of other edges. The result is the identifier of the
connected edges, in an unordered collection.

Ro: G xIDS—2E xS
Ro(G,i) = (e,s)
G = (N,E,Ny)
e={(i,b,c) eE}

[ 207 if igIDS
STY 100 if  else
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R;: G xIDS —2F xS
Ri(G,i) = (e,s)
G = (N,E,Ny)
e={(a,b,i) €E}

208 if i¢IDS
100 if else

A read operation for edges (Rp) is defined as returning a tuple consisting of the source and target of the edge. Due to the restriction
on the edge identifier, both the source and target identifier will be smaller than the edge identifier.

Rg : G X Eps — IDS X IDS x §
Rg(G,iy) = (ia,13,5)
G=(N,E,Ny)

e = (ip,i1,i3) €EE

_J 209 if i\ €Ems
ST 100 if  else

For efficiency (Axiom II: Scalability), an additional “dictionary read” operation (R ;) is defined to read an element which is
linked to another one through an edge, which is connected to a node with a primitive value. This allows for a more efficient
implementation of lookups from a specific node, without requiring an exhaustive search of the connected edges. While the search
might still be necessary internally, implementations are free to create specialized data structures for this operation. Even if that
is not the case, this operation reduces the amount of calls required to 1. Two errors are possible: if the specified entry could not
be found in the dictionary, and if a matched link also has other outgoing links, causing ambiguity as to which element is the key

to use.

Notice that there is room for ambiguity if a node has multiple outgoing links, linking to the same data value. While this could
cause an error, we explicitly allow for this situation for performance reasons, as otherwise the search would always need to
traverse all links, even if a match was already found.

210
211
s=« 301
302
100

if
if
if
if

else

Raiet : G X IDSxU = IDS x S
Rdict(Ga i],V) = (i27s)

G=(N,E,Ny)
d :Nv(v)
db,c € Eips : (il,b,iz),(b,c,d) cE
iy ¢ IDS
v U

Ab,c € Eips : (i1,b,i2),(b,c,d) € E
ﬂb,C,e,fE Eips : (i],b,iz),(b,C,d),(b,f,e) €ENc #f

Some other, more complex read operations on dictionaries are also supported, purely for efficiency reasons. Their errors are
similar to the Ry, operation. Each of these operations returns a slightly different result, determined by the frequently used
operations in the next section. These operations are:

® Ryict_node Teturns the element being linked to, but instead of a primitive value, it searches for a specific element by identifier.
It therefore does not try to dereference the value stored in the resulting element, nor will it match different elements with

the same value.

® Ryict edge 18 €quivalent as Ry, but returns the identifier of the edge between them, instead of the element itself.
® Ryict_reverse Teturns a list of all elements that have an outgoing link towards the passed element, with the provided name on
that edge. It is therefore basically a reverse dictionary lookup: return the dictionaries that contain this exact value with a

specified key.

Multiple combinations would also be possible, though we only formalize those that are used by the MvK in later sections.
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Ruict keys © G X IDS — 275 x §
Rdictheys(Gva) = (173)
G=(N,E,Ny)
Vb,c,d,e € IDS : (a,b,c),(b,d,e) EE:e€l
(222 if i &IDS
ST 100 else
Riict node : G X IDS X IDS — IDS x S
Rdict1mde<Gai17i2) = (i3,S)
G=(N,E,Ny)
3b,c € Eips : (i1,b,13),(b,c,ir) EE
212 if i1 € IDS
213 if i &IDS
S = 303 lf £b7CEEIDS:(ilabai3)7(bacai2)€E
304 lf 3b,C,€,f€E[D51(il,b,i3),(b,C,iz),(b,E,f)€E/\C7éf
100 else
Riict-edge : G X IDS x U — IDS x §
Rdict,edg(,)(GuihV) = (iz,S)
G=(N,E,Ny)
dZNv(V)
3b,c € Eips : (i1,i2,b), (i2,¢,d) €E
214 if i) ¢IDS
215 if vgu
s = 305 if Ab,c € Epps : (i1,i2,D), (iz,c,d) € E
306 l.f Elbac7evf€ElDS:(ilaiZab)?(iZac7d)’(i2afve)EE/\C#f
100 else
Rictnode_edge » G X IDS X IDS — IDS X §
Rdictjwde,edge(Gail 7i2) = (b,s)
G = (N,E,Ny)
db,c € Eips : (il,b,i3),(b,c, iz) €FE
216 if i) ¢IDS
217 if i IDS
s = 307 if £b7c € Empps: (il,b, i3)7(b7c, iz) cE
308 lf HbvcaeafEEIDS(ll7bal3)a(b7c712)a(baeaf)EE/\C#f
100 else
Ruict_reverse - G X IDS x U — 2108 §
Rdic‘t,(G;ihv) = (l,S)
G = (N,E,Ny)
dsz(v)
I ={ip:3b € Eps.(ir,b,i1),(b,c,d) € E}
218 if i) €IDS
219 if vgu
s = 309 if ﬂb,CGE[DSI(i],b,iz),(b,c,d)GE
310 lf E'b,C,e,fG EIDS: (il,b,iz),(b,C,d),(b,f,E) € E/\C#f
100 else

4.2.3 Update

Even though we implement a CRUD interface, we do not offer support for any update operations.
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The most important reason is correctness and performance. Updating the source and target of edges has the potential of creating
impossible loops, like an edge connecting itself. While this is impossible to do when constructing the edge at first (as it is
required that its source and target already exist), this can no longer be guaranteed when the edge is updated. An alternative
would be to allow updates, but search for correctness violations (i.e., recursively following the source and target of an edge, we
ultimately end up in nodes) after the update was done. This would have a significant, and unpredictable, impact on performance
when performing an update for an edge. As an update operation is similar to a subsequent create and delete, which have better
complexity, we did not think this is a viable approach. Yet another alternative would be to allow updates again, but only those
updates that change the source and target to nodes that existed when the edge was originally created. This prevents correctness
violations by construction, though it does not make the operation generally applicable. And since we would need to have a
fallback method (i.e., subsequent delete and create) anyway, it might be easier to just always use the fallback method. This also
prevents us having to store some kind of causality information, like which elements were created before which other elements.

Another reason is cache management, as also proposed by [20]. If a node can be updated, caches can become invalid, implying
some kind of MvS-initiated invalidation protocol for the MvK. While we do not have any significant optimization for this yet,
restricting updates has significant potential.

4.2.4 Delete

Finally there are the delete operations. The source and target of each edge should always exist in the graph. Therefore, if a
deleted node or edge is the source or target of an edge, the edge needs to be recursively removed. The resulting graph should
thus be the largest possible subgraph of the original graph, while still being a valid graph. For the delete node operation (Dy),
the node itself is removed, and then all connected edges are recursively removed.

Dy:GXN—GxS
Dn(G,i) = (G,s)

G = (N,E,Ny)
G' = (N',E',N},)
N' =N\ {i}
G CG

¥G'CG: (G CG) =G =G
[0 if igN
] 100 else

The delete edge operation (Dg) operation is similar, but it is guaranteed that no nodes are removed at all. Due to recursive
deletions, the resulting set of edges is possibly a subset of the original edges. The resulting graph is again the largest possible
(valid) subgraph, with the specified edge removed.

Dr:GXxEips— GXS
Dg(G,i) = (G,s)
G=(N,E,Ny)

G = (N,E',N},)

E' CE\{(a,i,c) €E}

G CG
VG'CG:(GCcG)=G =6

_ 221 if  ig€Ems
$70 100 else
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Modelverse Kernel

We will now consider the Modelverse Kernel (MvK), which is responsible for the execution of action code. Execution of action
code causes changes to the PTM, which need to be handled by the MvS. As such, the Modelverse Kernel is responsible for the
mapping between the user-level and the PTM. Users can create action code constructs directly, thus forming a direct interface to
the MvS for the user. Alternatively, users can create models using a formalism which has action code constructs defined (e.g., to
define the model semantics).

As everything is modelled explicitly (Axiom IV: Model Everything), both the execution context and instructions to execute are
part of the MvS, and can thus be accessed by the MvK and ultimately the user. When executing an action language model, the
execution context is modified in the MvS. Therefore, the MvK itself does not have any local state. By making all states and
intermediate steps explicit, we obtain enhanced debugability and introspection. This furthermore contributes to Axiom I: Forever
Running, as it allows action code to modify other action code (i.e., self-modifiability).

We first introduce the notion of transformations for our graph, subsequently called graph transformations . Such transformations
consist of a matching part, which we will use to determine if the execution context is well-defined, and a rewriting part, which
we can use to define the action language semantics by defining transformations of the execution context.

5.1 Graph transformations

Before we can use graph transformations in our well-formedness check and semantical definition, we need to define them first.
We need to bridge the gap between graph transformations and the CRUD operations defined by our MvS interface.

For each transformation rule, it is possible to decompose it in four distinct (sequentially ordered) components. The first two
are read operations, which are used for the matching, and the last two are create and delete operations, which are used for the
rewriting.

1. Positive read operations are used for elements which are present before and after execution of the transformation rule.
They are used for finding a possible match during the matching phase. Note that all elements need to be matched, even
those that are about to be removed. All elements that are now matched, can be used during the rewriting phase. Elements
that are simply required for the match, but without any changes to them, are visualized by black, solid lines.

2. Negative read operations are used for the negative application conditions. Such elements should not be present before
application of the transformation rule. If they are present in a match, the match is considered incorrect and another match
is searched for. Elements which are searched for here, can of course not be used during the rewriting phase, as we explicitly
required that they are absent. They are visualized by a red, dotted line.

3. Delete operations are used for elements that need to be removed during the rewriting phase. Elements which should be
removed, should also be matched in the positive read operation. These elements are visualized by a blue, dashed line.

I They are called graph transformations, though are different from the usual meaning of graph transformations in the literature. While the idea is similar, we
provide a different mapping as we do not work on Typed Attributed Graphs (TAGs).
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(a) Shorthand notation (b) Expanded notation

Figure 5.1: Shorthand notation and equivalent expanded notation.

4. Create operations are used for elements that need to be created during the rewriting phase. Because the element is newly
created, it does not need to be matched by a positive read operation. However, we do not require them to be absent either.
They are visualized by a green, wide solid line.

Each rule can be written in the following form, assuming success status, thus mapping to our previously defined formalization of
the MvS. If an error is encountered, it is propagated to the user.

PositiveRead (G)
NegativeRead(G)
G' = Creates(G)
G" = Deletes (G')

ste
G =P G

Each rule uses the matched elements, which get bound during application. As such, the PositiveRead operation binds the
variables, which are then used in the NegativeRead to detect invalid matches, in the Delete to delete elements, and in the
Create to create new elements.

For conciseness, we define the shorthand notation for graph elements shown in Fig. 5.1a, equivalent to Fig. 5.1b, meaning:

(Xnodes Whink, Ynode) € E
(Wiink, ¢, Whode) € E
Ny (Xnode) =X
Ny (Yiode) =Y
Ny Wooge) =W

If X, Y, or W is not shown in the shorthand notation, then the Ny mapping is unconstrained, and might not even exist.

An example of the mapping between the shorthand notation and the previously defined semantics is given next. We explain the
transformation shown in Figure 5.2. First, the success status code is stored in s (equation 5.1), to shorten subsequent rules. All
parts of the rule are assumed to result in a success status code. The positive read operations start at equation 5.2, followed by the
negative read operation at equation 5.6. Now that all nodes and edges are bound, the create operation creates the necessary links
starting from equation 5.7. From equation 5.10 to the end, operations try to match the edge to delete at a finer granularity and
delete it in equation 5.18.
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Figure 5.2: Example graph transformation which is expanded

s=(100,.) 5.1
Ruict(G,a,”A”) = (b,s) (5.2)
Riit(G,a,”B”) = (c,s) (5.3)
Raict (G,a,”F”) = (e;s) 54

Ry(G,e) = ("E”,s) (5.5)
Ad : Ryt (G,d,"C") = (c,s) (5.6
Cnv(G,”D”) = (G, f,s) (5.7)
Ce(G',b,c) = (G",g,s) (5.8)
Ce(G",g,f) = (G",h,s) (5.9)
(V1,5) = Ro(G",a,s) (5.10)
(Va,s) =R (G" c,s) (5.11)
iev (5.12)

ieV, (5.13)

(V3,5) = Ro(G"i,s) (5.14)
jev; (5.15)
Re(G", j) = ((i,k),s) (5.16)
Ry(G" k)= ("B”,s) (5.17)
Dg(G" i) = (G"5) (5.18)

stepa
G G////

Note that this does not explicitly remove all parts of the edge. Specifically, the node containing the data value still remains. This
is because it might still be referenced from somewhere else, and deleting that might have serious repercussions. As a safety
measure, only the link itself is removed. All elements that are no longer reachable from the root will later be removed in the
garbage collection phase.

The current notion of graph transformations should not be confused with the notion of model transformations, which the user
can use. The graph transformations we have defined here, are merely a conceptual construct, used to formalize the semantics of
action language constructs. It is therefore not mandatory for an MvK implementation to implement the semantics as if it were a
graph transformation. On the other hand, model transformations, which are implemented on top of action language constructs,
will be usable by the user, and as such are really implemented as transformations. Furthermore, model transformations will be
at a level closer to the user (i.e., not on raw graphs), and will therefore be typed. We will not discuss model transformations any
further in this technical report, as this is part of future work.

5.1.1 Performance

It is important to mention that our graph transformations do not use the notion of types. As we are working on simple graphs,
which do not have a real notion of type, and it can therefore not be used. This implies that nodes in the transformation rules can
as well be edges, since the semantics of a point in the tranformation rules is simply an identifier from /DS. Conversely, this might
imply a performance impact, as the only basis to determine a match is the use of primitive values, and edges between specific
nodes. While this is a concern relating to Axiom II: Scalability, it is not a fundamental problem for the following reasons:
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[output’\'last_output”™\ frame’

Figure 5.3: Graph to match as execution context. Some nodes might be identical.

1. We start from a pivot, which is the Modelverse Root previously defined. All MvK instances will know which node to use
for this, and therefore there is already a place where the matching can start.

2. At most one match exists. This means that we can already stop searching as soon as a single match is found.

3. All edges have a constant on them, which needs to be unique. Therefore, no trackbacking is required as soon as the correct
edge is found: each edge will be identifiable.

4. A primitive operation exists to read out the aforementioned edges: the R;;.; operations. If this operation is implemented in
O(1) (e.g., using hashmaps), this means that the complexity of finding a match is unrelated to the size of the host graph.

Combining all of this information, we can write a simple algorithm for each rule, which starts from the Modelverse Root, and just
performs a serie of Ry;.; operations. As there is only one possible result for that operation, we do not need to rely on backtracking.

Some exceptions exist to these findings though, such as the accessing of variables in the symbol table. These do not use values
on the edge that are in U, and therefore require more advanced algorithms.

5.2 Execution context

We specify the structure of the execution context by defining a graph that has to be matched. If the graph is matched, the
execution context is valid and execution is possible if the current instruction is valid. If no match can be found for the specified
user, the user’s execution context is invalid and execution is impossible. If multiple matches are found, the execution context is
also invalid, and results will be undefined. We make no distinction between no execution context (i.e., nothing at all) and corrupt
execution context (e.g., a single missing link). In either case, no execution is possible. During normal operation, the user is unable
to corrupt or remove its own execution context, as all action language primitives are guaranteed to keep the execution context
in a valid state. But in case introspection or self-modifiability is used (i.e., if an intentional change is made by the user), it is
possible to alter, and possibly corrupt, the execution context. This is possible because the execution context is itself again another
model in the MvS, and it can be manipulated like any other. We do this to enable self-modifiability, introspection, reflection, and
debugability, which can now be performed directly on the graph. For debugging it is even possible for another (privileged) user
to debug the state of another user, or process.

A valid execution context is one that is matched by the structure in Fig. 5.3. At the top of the structure sits the Modelverse root
node, which is a node that is known to the MvK. From this root node, there is a link to all user root nodes, containing the name
of the user. In our figure, username has to be interpreted as a variable for the transformation. From the user root, there are links
for input and output lists, and a “frame” link. These input and output links come with both an initial link, and the lasz_ variant,
which points to the last element of the list. The last element will always be empty (have no value), but needs to be there to guard
for the case of an empty list. Each element in such a list will have a “value” link, which points to the actual value, and a “next”
link, which points to the next element in the list. The exception to this is the element pointed to by the “last_” element, which is
the empty placeholder.

The destination of the “frame” link is the currently active execution frame for that user. Each execution frame has several
outgoing links.

First is the “symbols” link, which points to the symbol table. A symbol table is a node which is interpreted as a dictionary, where
all outgoing edges have a unique key. The symbol table can then be accessed using the R;;.; CRUD operation of the MvS. In this
case, the key is the variable definition in the code being executed. The destination of the edge is the current value of the specified
variable. It is not possible to save this variable in the executing code itself, as the code can possibly be executed by different users
simultaneously (Axiom X: Multi-User).
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Second is the “IP” link, which points to the current action code primitive being executed. It is similar to an Instruction Pointer,
with the exception that it does not advance linearly, nor is there a default direction. Every instruction primitive is responsible to
update the instruction pointer.

Third is the “evalstack” link, pointing to the evaluation stack. In this stack, instructions are stored, which need to be made in the
same scope. Such a structure is necessary because we do not use compiled bytecodes which modify a stack. For example, for the
execution of an If construct, we first need to evaluate the condition. In such “stack-based” languages, the result of the condition
is first put on the stack by the appropriate bytecodes. Only then a bytecode concerning the If construct is encountered, which
consumes the evaluated value on the stack. In our language, the If is encountered first, which then explicitly states to evaluate
the condition first (by moving the “IP” link), and come back as soon as it is evaluated (by putting it on the evaluation stack).

There is also the “phase” link, allowing for a distinction between the different sub-states in the evaluation of a primitive. For
example in the If construct, a distinction between the “evaluate condition” and “branch on value” phases is necessary. To make
this possible, the phase keeps the current state of the evaluation of that specific execution primitive.

Finally, there is the “returnvalue” link, which links to a node which contains the value from the previous execution. Each
instruction primitive can read and update this link. It is used for the exchange of temporary values between different instructions.
In contrast to languages which use a stack, there is only one temporary variable in our language. This offers us a slightly more
efficient implementation of most constructs, due to avoiding the use of a list. Some constructs get more complex (though not
necessarily slower, performance-wise), such as those where it is natural to evaluate multiple values sequentially.

Some additional links might be present on the frame, and their use is mandatory, though they are not required for a well-defined
execution context. These links are the “prev” and “variable” links. The “prev” links to the previous execution frame, that is, the
invoker of the function for which the frame is created. The “variable” link is used during assignment, as we need two evaluated
elements at the same time: the variable to write to, and the value to assign. If these links are not present at the time where they are
necessary, the execution context is considered to be corrupt. These optional links could be made mandatory, by setting making
them point to an empty node if they are not necessary.

The execution context is well-defined if exactly one such match is found for a given user. No matches means that there is
no execution context with all required elements (i.e., either corrupt or completely missing). Multiple matches indicate non-
determinism and are therefore not allowed. Additional elements, though not indicated here, are allowed, as they do not interfere
with the match. These elements should be considered implementation-dependent and should not be used for the implementation
of functional requirements.

Apart from the user-specific execution context, there is also a global symbol table, stored as if it were the “__global” user. This
symbol table is shared by all users, and is accessed if a variable could not be found in the local symbol table of the current
execution frame.

5.3 Execution primitives

What remains is the semantics of each of the action language constructs. For each construct, defined in A, the required modifica-
tions on the execution context needs to be defined.

As proposed in previous sections, graph transformations are used to define the semantics. These graph transformation rules are
defined such that there should always be exactly one possible match. If no matches can be found, this indicates that the execution
context, the current action language primitive, or both, are invalid. If multiple matches are found, non-determinism is possible,
which is disallowed.

In the presence of multiple users (Axiom X: Multi-User), interleaving is necessary between them to guarantee fairness. This also
prevents uninterruptible loops (Axiom I: Forever Running), as another (privileged) user can then always halt the execution of
another user. For performance reasons (Axiom II: Scalability), an MvK can ignore updates to the execution context (e.g., by not
propagating them to the MvS, or by implementing compiled operations). But this comes at the cost of debugability, introspection,
and self-modifiability. Hybrid approaches are supported, meaning that some functions will be called without modifications to the
execution context (e.g., primitive operations such as integer addition), whereas others modify to the execution context.

A step function is defined for each user, which applies the only applicable rule.

1
GGV
1
G G v
G step G
The interleaving of different users, and thus of different steps, is not specified, as long as there is some fairness between all users.
This allows for the definition of primitive operations in the Modelverse Kernel, which consist of several (atomically executed)
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Construct Name Mandatory Executable Meaning (informal)

cond Yes Yes Condition
If true Yes Yes Block to execute if condition is True
false No Yes Block to execute if condition is False
next No Yes Next instruction after True/False block
cond Yes Yes Condition
While body Yes Yes Body to execute while condition is True
next No Yes Next instruction after condition is False
Break while Yes Yes While construct that should be broken
Continue while Yes Yes While construct that should be continued
Access var Yes Yes Variable to access
Resolve var Yes No Variable definition to access
var Yes Yes Variable to assign to
Assign value Yes Yes Value to assign to variable
next No Yes Next instruction after assignment
func Yes Yes Function signature to call
Call next No Yes Next instruction after function call returned
params Yes No First parameter, linking to a Parameter
last_param Yes No Last parameter, linking to a Parameter
name Yes No Name of the parameter, used to link with the formal parameters
Parameter value Yes Yes Instructions to evaluate as parameter
next_param No No Next parameter to be evaluated (optional if this is the last parameter)
Return value No Yes Value to return
Const node Yes No Node containing the constant to access
Input N/A N/A N/A
Output value Yes Yes The node to output

Table 5.1: Outgoing link specification.

instructions. Such primitives can then be used for performance reasons (Axiom II: Scalability), but also as a core function
(Axiom IV: Model Everything).

In Table 5.1, we present an overview of all specified outgoing links for each primitive element. A construct is valid if all
mandatory elements are present. Links which guide the instruction pointer, require the target of the link to be executable (i.e., be
another primitive construct, € A). If that is not the case, execution will terminate.

Normally, the action language constructs are created by a different tool, such as a HUTN MvI, which will guarantee that the
constructs are well formed. But it is possible for users to access all parts of the MvS, thanks to Axiom I'V: Model Everything, and
therefore to manually create (or alter) action language constructs. Such actions cannot automatically be checked for correctness,
due to our lack of typing: there is no metamodel for the primitive action language constructs. And since there is no metamodel,
there is no constraint on the graph. Although counter-intuitive, this is actually what we want: unconstrained modifications on the
raw model representation, thus allowing model management operations. In the next chapter, we will add a layer on top of all this,
which is typed and more constrained. Notwithstanding, it is possible to create a function which manually checks whether or not
a construct is well-defined, using the information from Table 5.1.
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531 If

username
sername

"frame’

N
*phase’ IPevalstack’ \
| \
(= o

l’ evalstack’

(a) Evaluate condition (b) Returned True

(c) Returned False and there is an ’else’ block (d) Returned False but there is no else’ block

Figure 5.4: If branch rules

The If construct will first evaluate the condition (cond link) by moving the instruction pointer there. It signals that it should be
executed again afterwards, but now in phase cond, by putting this on the evaluation stack (Figure 5.4a). As soon as the condition
is evaluated, and the If popped back from the stack, the return value (of the condition) can either be True or False. If it is True
(Figure 5.4b), the then link is executed, and the if is pushed on the stack again, but now in the final phase finish. This is the phase
which signals to another rule that this operation has finished, and the next instruction can be loaded. If it is False, and there is an
else link (Figure 5.4c), it is executed, similar to the previous case. If it is False, but there is no else link (Figure 5.4d), the If is
marked as completed immediately, without any subsequent actions.
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5.3.2 While
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(c) Condition was false

sername

"frame’

s, /’phase’ “phase’

; evalstack’

(b) Condition was true

Figure 5.5: While loop rules

The While construct will first evaluate the condition (cond link) by moving the instruction pointer there. It signals that it should
be executed again afterwards, but now in phase cond, by putting this on the stack (Figure 5.5a). As soon as the condition is
evaluated, and the While popped from the stack, the return value (of the condition) can either be True or False. If it is True
(Figure 5.5b), the body link is executed, and the While is pushed on the stack again, but with its phase set to init. This way, the
while construct will again be executed after the body has terminated. By setting the phase to init, we effectively cause looping, as
the condition will again be evaluated, and, depending on the result, the body gets executed once more. If it is False (Figure 5.5¢),
the While is immediately marked as finished and the body is not executed.
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5.3.3 Break
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Figure 5.6: Break rule

The Break construct will move the instruction pointer back to the While construct it belongs to (Figure 5.6). The phase is set to
finish to indicate that the loop has finished. This prevents the condition evaluation and marks the end of the while loop.

5.3.4 Continue

Figure 5.7: Continue rule

The Continue construct will move the instruction pointer back to the While construct to which it belongs (Figure 5.7). The phase
is set to init to indicate that the loop needs to continue. This causes the condition to be evaluated again, indicating the next
iteration of the loop.
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5.3.5 Access

username
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‘returnvalue’

(a) Evaluate variable to access (b) Access evaluated variable

Figure 5.8: Variable dereference rules
The Access construct will move the instruction pointer to the variable which has to be resolved first (Figure 5.8a). It signals that

it needs to be executed again after the variable was resolved, by putting itself on the evaluation stack. After resolution of the
variable, the value of the variable is accessed and set as the new return value (Figure 5.8b).

29



5.3.6 Resolve

~
\ ’returnvalue’

\
i *finish’
‘returnvalue’
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(a) Access the variable from the local symbol table (b) Access the variable from the global symbol table

Figure 5.9: Resolution rules
With the resolve rule, a variable is looked up in either the local (Figure 5.9a) or global (Figure 5.9b) symbol table. The variable

in the symbol table will be set as the returnvalue. The local symbol table has priority over the global symbol table. Note that the
returned value is only a reference, similar to the lvalue in parsers. A further Access is required to read out the actual value.
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5.3.7 Assign
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Figure 5.10: Assignment rules

The Assign rule will first evaluate the variable (Figure 5.10a), as it will first need to be resolved. After resolution (Figure 5.10b),
the found value is stored in a temporary link from the frame (variable link). The instruction pointer is moved to the value that will
be assigned, as it will also need to be evaluated. After the value is evaluated (Figure 5.10c), the value link in the stored variable
is changed to the evaluated value.
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5.3.8 Function call
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(a) Resolve function without parameters (b) Resolve function with parameters

returnvalue

*last_param’

Y

(c) Execute call with no parameters (d) Execute call with parameters

Figure 5.11: Function call rules for resolution and execution
A Call construct has different paths, depending on how many parameters there are. The distinct situations are:

1. No parameters: in this simple case, the method is first resolved by moving the instruction pointer there, and the call is
already put on the stack (Figure 5.11a). After the function is resolved (Figure 5.11c), the call is made by creating a new
execution frame and making it the active frame.

2. One parameter: similar to the previous situation, the function is first resolved (Figure 5.11b), but instead of putting the
call on the stack, the first parameter is used. Afterwards (Figure 5.12b), the stack is created for the resolved function,
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the instruction pointer is set to evaluate the argument, and the call is put on the stack. When the parameter is evaluated
(Figure 5.11d), the result is put in the symbol table of the new execution frame and the new frame is made active.

3. Two parameters: similar to a single parameter, the first parameter is again put on the stack for after the function resolution
(Figure 5.11c). When evaluating the first parameter (Figure 5.12a), the next_param parameter is put on the stack, instead
of the call phase. The second parameter is already the last parameter, so we then put the call on the stack (Figure 5.12c).
Finally, the function is called as with only a single parameter (Figure 5.11d).

4. More than two parameters: similar to two parameters, but with an iteration rule (Figure 5.12d) for all parameters except
the first and last. This iteration rule simply evaluates the parameters in order of their next_param links.

In all cases, the finish is put on the stack during the call to the function. As soon as the called function has finished, it will invoke
a return and thus pop the active execution frame. This will make the current frame active again, which will then progress towards
the next instruction.

Parameter passing happens through the use of both named variables and positional parameters. However, the positional parame-
ters are only used to determine the evaluation order, and not for binding of actual to formal parameter. It is possible for a front-end
to offer positional parameters, by automatically mapping them onto their formal parameters.
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(b) Set first and only parameter

username

username

(c) Set last parameter of multiple (d) Set next parameter

Figure 5.12: Function call rules for parameter evaluation
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5.3.9 Return
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(c) Return with the evaluated value

Figure 5.13: Return rules

For the Return construct, there are again two options: either there is a value to return, or there is none. If there is no return value
(Figure 5.13a), the current execution frame is removed and the previous one is made active again, without touching the return
value of the underlying frame. If there is a return value (Figure 5.13b), it is first evaluated by moving the instruction pointer there.
After evaluation (Figure 5.13c), the evaluated value is stored in the returnvalue of the previous frame, and the current frame is
deleted.
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5.3.10 Input and Output
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(c) Input rule consumes input

The Output construct will first evaluate the element the *value’ link points to (Figure 5.14a), and afterwards it puts the returnvalue
in the output queue (Figure 5.14b).

The Input construct will read the value that is in the input queue and put it in place of the returnvalue. No evaluation whatsoever
is done on the values.

36



5.3.11 Constant access
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Figure 5.15: Constant access rule

The Const construct is used for constants, which are closely linked to the primitive data types presented in the Modelverse State.
It is only used as an ’executable wrapper’ for a literal: evaluation of this construct will yield the contained node (Figure 5.15).
The phase is also set to finish, to indicate termination of the construct.

5.3.12 Helper rules
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Figure 5.16: Next rules

When the instruction pointer points to an instruction which is marked as finished, one of these helper rules becomes active. These
are responsible for progressing towards the next instruction. Either there is a next link (Figure 5.16a), which links towards the
next instruction to execute. If it is present, the instruction pointer is moved to this instruction, and the phase is reset to init as it is
the first time this construct is executed. In case no next link exists (Figure 5.16b), the next instruction is popped from the stack,
together with its phase. This popping not only sets the instruction pointer, but also copies the saved phase, making it possible to
progress where we left off.
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5.3.13 Declare

’symbols’

Figure 5.17: Declare instruction

The Declare instruction will add the specified node to the symbol table, so that it can be assigned a value, or read out. As the
declare does not take a value, the default value of the node is just an empty node. Future instructions can use the node connected
to the Declare instruction to reference to the variable.

5.3.14 Global

Figure 5.18: Global declare instruction

Apart from a declaration in the symbol table of the current user, it is also possible to declare it in the global namespace. This
makes sure that other users can also find it and access the values. Its primary use will be function resolution though, as functions
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should be declared in a higher scope than the current scope. Nonetheless, it is possible to define everything else as a global too,
making it accessible.

5.4 Primitive operations

As there are no special, built-in constructs for basic operations, such as mathematical operations, all of them have to map to a
normal, user-level function. But these functions cannot implement the specified behaviour either, as the provided data values
are MvS primitives. Such functions are primitive functions, which form the core of the MvK, and are hardcoded in the MvK
implementation.

Primitive functions are hardcoded functions in the MvK, which get loaded like normal operations (i.e., their parameters are
evaluated and loaded on the stack). The execution of their body differs though, as it is executed without intermediate steps. As
they cannot be written in Action Language, they do not have an implementation in the Action Language either. It is the MvK
which recognizes that there is a primitive function available for the called function. If so, it calls the primitive instead of the
(empty) body.

To comply with our axioms (Axiom IV: Model Everything), we need to model these functions explicitly. This can be done by
taking the same approach as Squeak [3], where an interpreter is written in the interpreted language. Doing this, we can map the
interpreted function (in the code being executed) to the primitive function of our used interpreter (in the implementation of the
interpreter). Optionally, the interpreter could also be compiled, where these functions are then changed to primitive operations in
the target language.

The operations in Table 5.2 and 5.3 need to be defined as a primitive by all Modelverse Kernel implementations, with the specified
semantics. None of them are allowed to modify any of the incoming parameters. Semantics are given in simple Python code.

An MvK is free to implement additional functions as primitives, as long as each primitive instruction is guaranteed to terminate
and does not violate the fairness between different users (Axiom X: Multi-User). Additionally, all additional functions need to
have an equivalent implementation in Action Language for interoperability between different MvKs (Axiom XI: Interoperability).
To enforce this fairness, and guarantee that all users have a fairly low response time, an upper bound is placed on the time allocated
for such a primitive. If the operation times out, the operations done by the primitive are ignored and the function is interpreted as
usual. The mandatory primitive operations should never time out due to their simplicity.

Modelled functions can therefore be compiled to new primitives for performance reasons (Axiom II: Scalability): they get mapped
to native code, and they no longer need to update the execution context after every instruction. As the execution context is not
updated, primitive operations cannot be debugged easily. For debugging, the user needs to be able to toggle an interpreter-only
flag, which forces the Modelverse Kernel to execute in interpreter mode, bypassing all possible optimizations. This flag also
requires the Modelverse Kernel to continuously update the execution context, as described in the previous sections. Execution of
the primitives defined in Table 5.2 and 5.3 will still be through their hardcoded implementation though.

As almost everything is a function call, including mathematical operations, no order of operations is imposed, apart from the one
in the function calls. Instead, the user is required to expand this to the correct function call. Most users, however, will use an MvI
with a parsed concrete syntax, which can generate an automatically modified abstract syntax graph from this. Therefore, the user
might still be able to write d = a+ b * ¢, as long as the MvI expands this to d = integer_add(a,integer_mul(b,c)), taking into
account the typing and order of evaluation during parsing. This offloads the work required for the implementation of a MvK.

Several primitive operations require some additional explanation:

e float operations only work on floats and not on integers, due to possible loss of accuracy. To get the desired results, explicit
type conversions are required using the cast operations.

e string operations work on both strings and characters, as a character is a string of length 1.

e type will return the type of the provided element. This is possible as types of primitives are primitive data values too.

e cast operations are used to switch between types. Casts from a string will try to parse the result, whereas casting to a string

will pretty-print the value. Boolean True is equal to integers or floats different from 0 or 0.0, respectively. Conversion from

float to integer is rounded down if necessary.

create operations are a one-to-one mapping with the MvS CRUD interface.

read_nr_(out/in) returns the number of outgoing and incoming edges, respectively.

read_(out/in) returns the specified outgoing or incoming edge, respectively.

read_dict is a one-to-one mapping with the Rgj;; MvS CRUD operation, thus reading out from the dictionary based on

value in the node.

e read_dict is a one-to-one mapping with the Ry;c;_noqe MVS CRUD operation, thus reading out from the dictionary based on
the actual node.

e The delete operation will automatically determine the correct MvS delete operation to call.
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Name Parameters Returns Semantics
integer_addition a : Integer; b : Integer ¢ : Integer c=a+b
integer_subtraction a : Integer; b : Integer c : Integer c=a—b
integer_multiplication a : Integer; b : Integer c : Integer c=axb
integer_division a : Integer; b : Integer c : Integer c=a/b
integer_eq a : Integer; b : Integer ¢ : Bool c=a==b
integer_neq a : Integer; b : Integer ¢ : Bool c=a#b
integer_It a : Integer; b : Integer ¢ : Bool c=a<b
integer_lte a : Integer; b : Integer ¢ : Bool c=a<b
integer_gt a : Integer; b : Integer ¢ : Bool c=a>b
integer_gte a : Integer; b : Integer ¢ : Bool c=a>b
integer_neg a : Integer ¢ : Bool c=—a
float_addition a : Float; b : Float c : Float c=a+b
float_subtraction a : Float; b : Float ¢ : Float c=a—>b
float_multiplication a : Float; b : Float ¢ : Float c=axb
float_division a : Float; b : Float ¢ : Float c=a/b
float_eq a : Float; b : Float ¢ : Bool c=a==2»>b
float_neq a : Float; b : Float ¢ : Bool c=a#b
float_It a : Float; b : Float c : Bool c=a<b
float_lte a : Float; b : Float ¢ : Bool c=a<b
float_gt a : Float; b : Float ¢ : Bool c=a>b
float_gte a : Float; b : Float ¢ : Bool c=a>b
float_neg a : Float ¢ : Bool c=—a
bool_and a : Bool; b : Bool ¢ : Bool c=alb
bool_or a: Bool; b : Bool ¢ : Bool c=aVb
bool_not a : Bool ¢ : Bool c=-a
list_append a : Element; b : Element a : Element at+=>b
list_insert a : Element; b : Element; ¢ : Integer a : Element a.insert(b,c)
list_delete a : Element; b : Integer a:Element a=a.pop(b)
list_len a : Element b : Integer b =len(a)
dict_add a : Element; b : Element, ¢ : Element a : Element alb] =c
dict_delete a : Element; b : Element a: Element  delete alb)
dict_read a : Element; b : Value c: Element ¢ =a[b]
dict_read node a : Element; b : Element c: Element ¢ =a[b]
dict_len a : Element b : Integer b=len(a)
dict_in a : Element; b : Value ¢ : Boolean ¢ = bina
dict_in_node a : Element; b : Element ¢ : Boolean ¢ = bina
string_join a : String; b : String ¢ : String c=ab
string_get a : String; b : Integer ¢ : String ¢ =alb]
string_substr a : String; b : Integer; c : Integer d : String d=alb: (]
string_len a : String b : Integer b =len(a)
set_add a : Element; b : Element a: Element  a.add(b)
set_pop a : Element b:Element b=a.pop()
set_remove a : Element; b : Element a: Element  a.remove(b)
set_in a : Element; b : Element ¢ : Boolean ¢ = bina
action_eq a : Action; b : Action ¢ : Bool c=a==
action_neq a : Action; b : Action ¢ : Bool c=a#b
type_eq a : TypeType; b : TypeType ¢ : Bool c=a==b
type_neq a : TypeType; b : TypeType ¢ : Bool c=a#b
typeof a : Element b: TypeType b =rtype(a)

Table 5.2: Primitive functions modifying primitive datavalues. If a Value is taken or returned, this refers to the value of the

returned node.
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Name Parameters Returns Semantics

cast_i2f a : Integer b : Float b = float(a)

cast_i2s a : Integer b : String b =str(a)

cast_i2b a : Integer b : Bool b bool(a)

cast_f2i a : Float b : Integer = int(a)

cast_f2s a : Float b : String =str(a)

cast_f2b a : Float b : Bool b bool(a)

cast_s2i a : String b : Integer = int(a)

cast_s2f a : String b : Float b float(a)

cast_s2b a : String b : Bool b = bool(a)

cast_b2i a : Bool b:Integer b =int(a)

cast_b2f a : Bool b : Float b = float(a)

cast_b2s a : Bool b : String b = str(a)

cast_e2s a : Element b : String b =str(a)

create_node — a: Element create node and return ID

create_edge a : Element; b : Element ¢ : Edge create edge from a to b and return ID

create_value a : Value b : Element create node with value a and return ID

is_edge a : Element b : Boolean return whether a is an edge or not

read_nr_out a : Element b : Integer  return number of outgoing links from a

read_out a: Element; b : Integer ¢ : Element return the bth element which has an outgoing link from a
read_nr_in a : Element b :Integer  return number of incoming links from a

read_in a: Element; b : Integer ¢ : Element return the bth element which has an incoming link from a
read_edge_src  a: Edge b : Element return the source of edge a

read_edge_dst a: Edge b : Element return the destination of edge a

delete_element  a : Element a: Boolean delete element a

element_eq a : Element; b : Element c¢: Boolean return whether or not a and b are exactly equal
deserialize a : String b : Element merge serialized graph with current and return initial node
import_node a : String b : Element import a previously exported node

export_node a : String; b : Element b : Element export a node so it can be imported

Table 5.3: Lower-level primitive functions to implement. If a Value is taken or returned, this refers to the value of the returned
node.

5.5 Interface

Since the MvK is not an autonomous process, it requires input from the user, and needs to forward output to the user when
required. Therefore, an interface towards the Mvl is required, which offers only two functions: add something to the input queue,
and pop something from the output queue.

This interface is sufficient to execute all operations, as the input value can be any element in the modelverse, for example a
function signature or name to resolve and subsequently execute. While this makes the interface very minimal, it pushes all API
definitions to the MvK itself, thus explicitly modelling parts that were normally hardcoded.

Another advantage of this very versatile API, is that the MvK can be customized per-user. The running process of the user will
just have to function as the API itself, and process all incoming messages. It also makes sure that all desired functionality is
present, as users can manually implement it if necessary.

We now formalize the behaviour of these two functions (set_input and get_output) just like the execution rules. It should be
noted however, that these rules are not executed when they are applicable, but only when they are invoked through the API. The
rules also reference elements that are passed to the invoking API call, and returns the marked node.
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Modelverse Interface

6.1 Browser

As the Modelverse uses ordinary XML/HTTP requests, it is possible to easily transfer data through normal web clients, such
as internet browsers. Since these clients are not built with the Modelverse in mind, users will have to use the raw API of the
Modelverse Kernel (i.e., using set_input and get_output).

6.2 Serialized Graph

The most efficient, though also most low-level, way of transferring a model to the Modelverse, is through the serialisation
of a graph structure. This graph, following a very minimal description format, will subsequently be merged into the current
Modelverse graph. After serialization, the entry point to the graph is returned.

This approach is very efficient, as it constitutes a single call to the Modelverse with the complete graph. All serialization and
deserialization will happen in pure Python code (thus not explicitly modelled!), so basically everything is possible.

The problem with this approach is that the interface needs to know the internal representation of models inside of the Modelverse.
All connections need to be made manually, and the serialization format also needs to be known. It is therefore not recommended
to use this interface, unless no other option is possible (i.e., during bootstrapping).

6.3 HUTN for Action Language

The more elegant way of sending action code to the Modelverse, is by using the explicitly modelled constructors. These con-
structors are simple action code that was previously loaded inside the Modelverse, which interprets the requests send to it as
creation requests. While this is much less efficient, models can be created on-the-fly (without first creating the complete graph in
the interface), and follows a standardized interface. Future changes to the internal representation of models will not affect these
calls, as the actual creation of the model happens in the Modelverse itself. Users need thus only know Table ??, which contains
a list of all understood construction requests.

Apart from hiding basic complexity (the names of the links), it also has simple requests to make more difficult constructs, such
as function declarations or function calls. Furthermore, all complexity is hidden from the user, as all identifiers are kept in the
Modelverse. Only those identifiers that need to be passed (i.e., variable declarations), will be provided to the interface.

This is the recommended interface to use when transferring models to the Modelverse.

6.4 HUTN for Models
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instruction | parameter type
if condition  instruction
then instruction
else? instruction
next? instruction
while condition  instruction
body instruction
next? instruction
access Ivalue instruction
resolve variable variable
assign lvalue instruction
rvalue instruction
next? instruction
call function instruction
nrParams  integer
name# string
value# instruction
next? instruction
return value? instruction
const value anything
declare variable! variable
global variable!  variable
output value instruction
next? instruction
input
deref link string
funcdef variable variable
nrParams  integer
name# string
formal!#  variable
body instruction
next? instruction
break
continue

Table 6.1: List of constructor keywords and parameters they take (in order). Questionmark after a parameter means that you first
need to pass true/false for whether or not the element exists. Exclamation mark indicates that this is output at this place. A hash
means that it occurs as often as previously specified.
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Network communication

7.1 Motivation

7.2 Modelverse State

7.2.1 Interface

The XML/HTTPRequest back-end of the MvS will simply host an HTTP server, which responds to POST requests. The reply of
the server is again encoded in the same format as the POST request.

All requests should be send via POST, and contain the following two parameters:
e op: this indicates which operation to execute on the MvS.
e params: contains the parameters for the function, encoded in JSON format. While we require JSON encoding, the data

can never be complex due to the simple signature of the supported operations. This parameter should always be a list of
the parameters to pass. If there is only a single parameter, a list with a single element is still required.

The operations all use coding, to reduce the amount of data that needs to be transfered. Table 7.1 shows the mapping between the
operation and the formalized function name.

Listing 7.1: Example request and reply

Request: op=RE&params=[1]
Reply: data=[[2, 3], 100]

An example request, and corresponding reply, is shown in Listing 7.1, where an edge with identifier 1 is read. The reply indicates
that the request was succesful (statuscode 100), and the returnvalue indicates that edge 1 goes from element 2 to element 3.

Note that the G parts of the request and reply, as were formalized previously, are not included. This is because the MvS itself is
the instance of G being modified.

Sockets are kept open until explicitly closed, so it is possible to reuse a single socket for every request. It is also possible to send
a request before the previous request is handled of. In that case, the order of the replies will be the same as of the requests.

7.2.2 Statechart

7.3 Modelverse Kernel

7.3.1 Interface

Communication with the Modelverse Kernel is very similar to the communication with the Modelverse State. The Modelverse
accepts two different operations: set_input and get_output. Data is to be send as a POST request, and has to consist of the
following fields:
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Operation

Formal function

CN create_node

CE create_edge
CNV create_nodevalue
CD create_dict

RV read_value

RO read_outgoing
RI read_incoming
RE read_edge

RD read_dict

RDN read_dict_node
RDE read_dict_edge
RRD read_reverse_dict
RR read_root

RDK read_dict_keys
DE delete_edge

DN delete_node

Table 7.1: Mapping between operations and formalized function name

1. op: the operation to perform. It can be either “set_input” or “get_output”. Depending on the value of this entry, some

additional elements need to be present in the request.

2. username: the name of the user whose input or output queue is modified. Always present for both operations.

3. element_type: how to interpret the value parameter. It is either ”R”, to indicate that the value parameter is a reference,
and therefore an element identifier. The other option is ”V”, to indicate that the value parameter is a JSON encoded value.

Only present if the operation is set_input.

4. value: the actual parameter to the operation. Its interpretation is given by the element_type operation. If it has to be
interpreted as a value, it needs to be an instance of a primitive for the MvS. Only present if the operation is set_input.

For both requests, a reply will be returned containing an id and value entry.

For the set_input, the id and value are a status code and human-readable description. Generally, giving input should always

succeed, resulting in id 100 and value success.

For the get_output, the id will be the identifier of the node that is to be output. The value is the value of the node with the
provided identifier. Getting output is a blocking call, so the request will stay open until input is actually generated. As soon as

the output is generated, it will be sent out.

An example request and reply is shown in Listing 7.2 and 7.3, for set_input, and Listing ?? and ??, for get_output.

Listing 7.2: Example: create new user

Request: op=set_inputé&username=user_manhageré&element_type=V&value="user_1"

Reply: id=100&value="success"

Listing 7.3: Example: input element ID 15 for user

Request: op=set_inputé&username=user_lé&element_type=R&value=15

Reply: id=100&value="success"

Listing 7.4: Example: read output valuelabel

Request: op=get_outputé&username=user_1
Reply: id=123&value="node_value"

7.3.2 Statechart

7.4 Modelverse Interface
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Conformance

Model management operations (e.g., conformance checking, or versioning) frequently act upon both the model and the meta-
model, or should be applicable on all models, independently of their metamodel. As such, they are often in conflict with the
principle of strict metamodelling. We try to find a balance between strict metamodelling (Axiom V: Human Interaction), and the
principle of modelling everything explicitly (Axiom IV: Model Everything).

By introducing multiple definitions of conformance, we can keep strict metamodelling while still implementing such model
management functions. The basic idea is to allow a single model to conform to multiple metamodels. The conceptual graph, rep-
resenting the model, is interpreted depending on the metamodel being used. Examples of metamodels might be a domain-specific
metamodel (e.g., a Petri Net metamodel), or a more physically-oriented metamodel (e.g., a Graph metamodel). Depending on
the interpretation given to the levels, different level hierarchies are constructed. It is these level hierarchies that impose the
restrictions on strict metamodelling.

Fig. 8.1 presents some different notions of conformance that can be devised on the Modelverse. While the amount of conformance
relations can vary, each model will have a mapping to the PTM, which is required to physically represent the model. And it will
have a mapping to the Linguistic Type Model (LTM), using conformance; . This relates to Axiom VII: Multi-View, as a single
model can be seen from different views, and relates to Axiom XI: Interoperability, as it allows for the uniform representation of
all data.

— 2
.. mcL, MMCL;
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E lé%
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Figure 8.1: Different conformance relations
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8.1 Graph conformance

As all our data is (conceptually) represented using a graph, the graph instance can also be interpreted as a linguistic instance of a
graph metamodel. Because all defined CRUD operations constrain the result to a well-formed graph, all models in the Modelverse
conform to this metamodel by construction. Every model represented in the Modelverse is conceptually representable as a graph.
Knowing this, the complete Modelverse can be flattened to a single level, which conforms to the graph formalism. Within this
single level, all operations and links between elements are non-level crossing, and are therefore correctly typed (by the graph
metamodel). Note however, that these methods are unable to guarantee conformance to any linguistic metamodel, apart from
the graph metamodel. As such, all multi-formalism models can also be represented using this single metamodel, thus partially
addressing Axiom VIII: Multi-Formalismand Axiom IX: Multi-Abstraction. Multiple users (Axiom X: Multi-User) can also use
this view to collaborate on a single model, while having different interpretations of it.

8.2 Linguistic conformance

Finally there is the linguistic conformance between the model and the metamodel, which is necessary to complete the support
for our axioms (Axiom V: Human Interaction). It is the highest level, and offers the most features to the user, but is also the most
fragile. Linguistic conformance cannot be guaranteed at all, and requires continuous checking to make sure it is enforced for the
desired model and metamodel. In contrast, conformance; was guaranteed by design.

Because a conformance; view is only a specific view on a model, a single model can conform to multiple metamodels. The
function conforms : G x G x 2!P5=IDS _; B is defined to determine linguistic conformance, and can be implemented by the user.
It takes three parameters: two graphs — a model and a metamodel, both subgraphs of the MvS graph — and a mapping between
them. This mapping encapsulates all typing information, thus typing is completely separated from the model and metamodels.
Since multiple mappings can be stored, multiple typing relations are supported. During syntax-directed editing, a mapping will
be constructed (and used) with the information provided by the user. Retyping can be done by modifying the mapping, and
checking conformance afterwards.

We define a possible conformance; relation, to be seen as an example of our approach. This relation bases itself on the top
level model: the Model at the MetaCircular Level (MMCL). In this model, we have three basic elements: a Class (mapped to
nodes), an Association (connecting classes; mapped to edges), and Inheritance between classes (mapping to the union type).
Using Inheritance, the Association becomes a special kind of Class in our MMCL. We call our example conformance relation
conformanceg, to indicate that it is one of many possible implementations.

First, we define a subfunction which defines transitive closure of inheritance links, where A < B means that A is a (possibly
indirect) subclass of B. A —» B means that there is an association, typed by the Inheritance link, from A to B.

AB=A<B
A<CAC<B=A<B
A==B=A<B

A conformance relation for the primitive elements is defined, constraining the provided map.

conforms: (NUE) x (NUE) x IDSXIDS _, g

Nr(Ny (x)) == Ny (y) if x,y € dom(Ny)A(x,y) €m

_J True if x,y € NAx,y & dom(Ny)A(x,y) €Em
Conforms(-my =4 con forms(xyy.m) Aconforms(ayim) if (£.3), (k). (i,30) € A (x.5,%), (e 0s30) € E
False else

The first line is for nodes with a primitive value: a node x conforms to a node y if both nodes have a value, with the type of
the value of node x being the value of node y. The second line is for nodes without a primitive value: a node x conforms to a
node y if such a mapping exists in the provided mapping. Neither node is allowed to have a primitive value. The third line is
for edges: an edge x conforms to an edge y if their sources and targets conform to each other. It is thus basically a recursive
call. However, there is no possibility for an infinite loop, because of our restriction on the IDs of edges: the source and target ID
are always smaller than the ID of the edge. The final line is for all other cases (e.g., comparing nodes to edges, or primitives to
non-primitives), in which case there is no conformance possible.

Finally, conformsgc : G x G x 2!PS71PS _; B is the actual conformance function being called. It tries to find a mapping between
the specified model and metamodel, for which the conforms function holds.
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Listing 8.1: HUTN | construction of the MMCL

Node Class ()

Value Type (Type)

Value String(String)

Edge Attribute_ (Class, Type)

Edge AttributeAttrs (Attribute_, Type)
Edge Attribute (Class, Type)

Edge Name (Attribute, String)

Edge Association (Class, Class)

Edge Inheritance (Class, Class)

Edge inherit_association (Association, Class)
Edge inherit_attribute (Attribute_, Class)

conformsq c(M,MM,map) = True
&
map’ = {(a,b) | a € IDSp,b € IDSyy}
Vn € Ny : 3n’ € Nyy.conforms(n,n’,map’)
Ve € IDSg p : 3¢’ € IDSE ym.conforms(e,e’ ;map")
V(ai,bi), (ai,bj) € map": (b; < b;)
V(ai,b;) € map’ : (a; — by) € map ANby < b;
VYa,beIDS:a<bANb<a=a==b
A map is generated which contains all possible mappings between the model and metamodel. This map is then constrained by
enforcing a mapping for the nodes and edges. Source and target of the edges are recursively checked for conformance using the
mapping. We finally prune the set of possible mappings by only keeping a single type mapping for every node, with the exception

being subclasses. Finally, this mapping is pruned to a function by keeping the most specific (or a more specific) subclass of all
present mappings.

Just like a model can conform to multiple metamodels, a model can also conform to the same metamodel multiple times, with
different mappings.

Using this function, we can now check whether a model conforms to a specified metamodel, using a specified mapping. It is also
possible to generate a set of all possible mappings between a model and a metamodel.

MAP — 21DS—)1DS

mappingse.c: G X G — oMAP

mappingsa.c(M,MM) = s
s = {map € MAP | conformsy,c(M,MM,map)}

8.3 MMCL

We present an encoding of our MMCL, in Listing 8.1, using the HUTN language respecting conformance . The action code in
this language is translated to an abstract syntax graph in the Modelverse, by a HUTN compiler. The HUTN compiler lives in a
Modelverse Interface (MvI).

Using this MMCL, we can now re-encode it, as in Listing 8.2, now using the HUTN language with conformance;. Alternatively,
it is possible to directly use the definition in Listing 8.2, as elements can directly be typed by themselves in the Modelverse.

Finally, we encode our conformance checking algorithm, in Listing 8.3, using the HUTN action language. With this example we
show (1) an example of modelling, as the action code is a model, and thus an element of the Modelverse; (2) an example of our
action code; (3) the possibility for reflection and introspection, as the conformance check can also run on itself, to check whether
or not it conforms to some kind of metamodel; and (4) the possibility for metamodelling, as type hierarchies can be built using
the provided conformance function.

Listing 8.3: HUTN conformance check algorithm
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Listing 8.2: HUTN/, construction of the MMCL

Class Class ()

Type Type (Type)

Type String(String)

Attribute_ Attribute_ (Class, Type)
Attribute_ AttributeAttrs (Attribute_, Type)
Attribute_ Attribute (Class, Type)
AttributeAttrs Name (Attribute, String)
Association Association (Class, Class)
Association Inheritance (Class, Class)
Inheritance (Association, Class)
Inheritance (Attribute_, Class)

include "primitives.al"

Element function set_copy(elem : Element):
Element result
Integer counter
Integer max

result = create_node ()

// Expand the provided list by including all elements that need to be checked
counter = 0
max = read_nr_out (elem)
while (integer_1lt (counter, max)):
set_add (result, read_edge_dst (read_out (elem, counter)))
counter = integer_addition (counter, 1)

return result

Boolean function is_subclass_of (superclass : Element, subclass : Element, types : Element,
Integer counter_iso
Integer i
Element edge
Element destination

if (element_eqg(superclass, subclass)):
return True

counter_iso = read_nr_out (subclass)
i =0
while (integer_1lt (i, counter_iso)):
edge = read_out (subclass, 1)
if (dict_in_node (types, edge)):
if (element_eqg(dict_read_node (types, edge), inheritance_link)):
// It is an inheritance edge, so follow it to its destination
destination = read_edge_dst (edge)

if (is_subclass_of (superclass, destination, types, inheritance_link)):
return True
i = integer_addition (i, 1)

// No link seems to have been found, so it is False
return False

String function conformance_scd (model : Element, extra : Element):
// Initialization
Element work_conf
Element model_src
Element metamodel_src
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Element
Element
Element
Element
models

Element
typing

model_dst
metamodel_dst
models
metamodels

= set_copy (model)

typing
= dict_read(extra, "typing")

metamodels = set_copy(dict_read_node (typing, model))

Element
inherit

inheritance
ance = dict_read(extra, "inheritance")

// Iterate over all model elements and check if they are typed (in "typing") and their type is in t

while (integer_gt (dict_len (models), 0)):
work_conf = set_pop (models)
// Basic check: does the element have a type
if (bool_not (dict_in_node (typing, work_conf))):
return string_join ("Model has no type specified: ", cast_e2s(work_conf))
// Basic check: is the type of the element part of the metamodel
if (bool_not (set_in(metamodels, dict_read_node (typing, work_conf)))):
return string_join ("Type of element not in specified metamodel: ", cast_e2s(work_conf)
// Basic check: type of the value agrees with the actual type
// this 1is always checked, as it falls back to a sane default for non-values
if (bool_not (type_eqg(dict_read_node (typing, work_conf), typeof(work_conf)))):
output (dict_read_node (typing, work_conf))
output (typeof (work_conf))
return string_join ("Primitive type does not agree with actual type: ", cast_e2s(work_conf))
// For edges only: check whether the source is typed according to the metamodel
if (is_edge (work_conf)):
model_src = read_edge_src (work_conf)
metamodel_src = read_edge_src(dict_read_node (typing, work_conf)
if (bool_not (is_subclass_of (metamodel_src, dict_read_node (typing, model_src), typing, inher
return string_Jjoin ("Source of model edge not typed by source of type: ", cast_e2s (work_
// For edges only: check whether the destination is typed according to the metamodel
if (is_edge (work_conf)):
model_dst = read_edge_dst (work_conf)
metamodel_dst = read_edge_dst (dict_read_node (typing, work_conf))
if (bool_not (is_subclass_of (metamodel_dst, dict_read_node (typing, model_dst), typing, inher
return string_Jjoin ("Destination of model edge not typed by destination of type: ", cast
return "OK"

53



Integer

ition f-----_

Trans

"weight"

>

Integer

>

A

<
-

"tokens"

p2

Figure 8.2: Conformance example for a petri net.

54



Practical information

This chapter describes how to execute and use our proof of concept implementation of the Modelverse. This implementation
follows the previously defined interface, and is implemented in Python. Other implementations are possible, since each part
of the service runs separately and they communicate through the use of sockets. As such, more efficient implementations in
compiled programming languages (e.g., C++) are possible.

9.1 Requirements

The proof of concept implementation uses Python 2.7. As all aspects are explicitly modelled, this platform is the only dependency.
For the testing framework, py . test is recommended, though it is compatible with the default unittest module of Python.

All mentioned scripts are developed primarily for Linux, using shell scripts. Often though, Windows batch scripts are provided
which should have identical behaviour.

9.2 Test suite

To run the tests, it suffices to execute py.test in the folder of the project. Since the Modelverse project consists of several
subprojects (Modelverse State, Modelverse Kernel, and Modelverse Interface), it should be invoked in each folder seperately.
For this, a script run_tests. sh is provided.

Additionally, some “integration” tests are provided, which set up a complete Modelverse process and accesses it through the
usual Modelverse Interface API. These tests are also ran using the run_tests. sh script.

9.3 Running the Modelverse

Manually running the Modelverse happens, again, through the invocation of the script run_local_modelverse.sh. This script
takes a single parameter: a file containing the initial state of the Modelverse, called bootstrap.m.

Note that this section uses the run_local modelverse.sh script, instead of run_ modelverse.sh. The former contains an
optimized implementation of the Modelverse, which directly couples the Modelverse Kernel and Modelverse State, instead of
having them communicate through sockets. Both situations will work, though the former is much more efficient at this time. No
modifications to either component is necessary for this, as it only changes a small part of the network communication between
them (directly coupling both components).

This script will first compile the necessary Modelverse wrapper statechart, and afterwards executes it. Now that the Modelverse
is running, by default on port 8001, it can be accessed through XML/HTTP requests.

9.4 Bootstrap file

The bootstrap file contains the initial state of the Modelverse upon startup. It contains essential constructs, such as the primitives
(e.g., integer_addition, create_node), and the initial user (user_manager, for generating further users). While it should
normally not be changed, this initial content can be automatically generated through the bootstrap/bootstrap.py script. The
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script contains a basic configuration for determining which primitives need to be loaded, and what the initial structure of the
Modelverse should be upon creation.

By default, the bootstrap file initializes each user with code to deserialize an encoded string to a graph that will be merged in the
Modelverse State. After merging, the provided graph will be executed. If the provided code returns True, a deserialize call will
be invoked again, otherwise the user stops execution.

9.5 XML/HTTP requests

As the Modelverse listens for XML/HTTP requests, every possible XML/HTTP request-capable client can be used. In the limit,
this can be even a simple command line tool, such as curl. An example curl invocation to create a new user called “test” is curl
http://localhost:8001 -d "op=set_input&username=user_managerselement_type=Vevalue=test™ To get output of
the user, the curl invocation is curl http://localhost:8001 -d "op=get_output&username=test&element_type=V&value=".

9.6 Compiling with HUTN

Manually using the XML/HTTP interface is clearly not desirable for end-users. As such, an Mvl is needed to hide this complexity
from the users. An example MvI, in the form of a HUTN compiler, is provided and will be introduced now. The compiler can be
invoked through the script . /execute_as.sh. It takes two parameters: the name of the user that needs to be created, and a file
containing the HUTN to execute. The script automatically creates the specified user, compiles the provided file, uploads it, and
finally executes it.

As mentioned previously, the default bootstrap file waits for an encoded string that contains a graph. This graph is then executed
and will further act as the service that is being executed. This way, it is actually possible to define every possible interface by
explicitly modelling it.

9.7 Examples

Finally, we introduce some simple examples that show how the HUTN compiler can be used and what the results are. More
examples are provided in the test suite.

9.7.1 Simple Action Language Services

First, to show that every kind of service can be modelled explicitly, we define a simple arithmetic service, shown in Listing 9.1.
This service will continuously wait for input, and respond with the factorial of this number. The example essentially consists of
three parts:

1. Imports: as everything is explicitly modelled, even the primitive operations need to be explicitly loaded. This can be done
by including the file “primitives.al”’. More specific imports are also possible, like “integer.al”, “float.al”, etc.

2. Code The actual algorithm is stored here, and is written in a minimal action language syntax. The core of the algorithm is
very similar to how the implementation would be in another implementation langauge. Most notably, there is currently no
support for operators, so each part has to be explicitly invoked as a function.

3. Main loop As the code defines its own interface, a main loop will also be required for our example. This main loop is just
a simple inifite while loop, which takes input, passes it to the defined algorithm, and outputs the result. In more complex
situations, this main loop can contain the actual decoding of the incoming message.

Listing 9.1: Example factorial service.

include "integer.al"

Integer function factorial(n : Integer):
if (integer_lte(n, 1)):
return 1
else:
return integer_multiplication(n, factorial (integer_subtraction(n, 1))

while (True) :
output (factorial (input ()))

To have the Modelverse execute this piece of code for a specific user, the execute_as.sh script can be invoked as follows:
./execute_as.sh test factorial.al. This will initiate compilation of the action language code to a graph representation,
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which is subsequently uploaded to the Modelverse. Now, the Modelverse will start to execute the provided graph, and blocks for
input.

A user can now provide input to this method, by sending the input to the previously defined user. This can be done as follows:
curl http://localhost:8001 -d "op=set_input&username=testé&element_type=V&value=5". After which the Model-
verse will start to compute this value. Immediately after, the output can be requested (as it will block anyway) as follows:
curl http://localhost:8001 -d "op=get_output&username=test&element_type=V&value=". This request will even-
tually return with a response similar to this: id=12345&value=120. Note that the id might be different, though the value should
be identical.

9.7.2 Model Conformance Checks

A more complex example is closer to the problem the Modelverse tries to solve: modelling operations. Special syntax is provided
to create models. After the models are created, they can be used just like any other element of the Modelverse. As such, there is
no fundamental distinction between a user-made model, and a built-in primitive.

The example in Listing 9.3 shows how three models are constructed: the SimpleClassDiagram metametamodel, the PetriNet
metamodel, and finally a PetriNet model. Together with the models, a simple conformance check algorithm is defined. This
check can subsequently be executed on each of the exported models, to check whether or not they comply to their metamodel.

A model consists of a name, a colon, the name of the type, and the type mapping between parentheses. The type mapping should
be a dictionary (or an empty node), which will be augmented with the typing information. The type mapping of multiple models
can be stored in a single dictionary, though only a single type per model is allowed. In the modelling language, the first part
constitutes the type of the element, which will be looked up in the specified metamodel. The second part is the identifier, which
will be stored in the model for future referencing.

Listing 9.2: Simple modelling hierarchy, stored in models.al.

include "primitives.al"

Element typing_scd
typing_scd = create_node ()

SimpleClassDiagram : SimpleClassDiagram (typing_scd) {
Class Class ()
Type Type (Type)
Type String(String)
Attribute_ Attribute_ (Class, Type)
Attribute_ AttributeAttrs (Attribute_, Type)
Attribute_ Attribute (Class, Type)
AttributeAttrs Name (Attribute, String)
Association Association (Class, Class)
Association Inheritance (Class, Class)
Inheritance (Association, Class)
Inheritance (Attribute_, Class)

PetriNet : SimpleClassDiagram (typing_scd) {
Class Place ()
Attribute Place.tokens = Integer
Name = "tokens"

Class Transition ()
Association T2P (Transition, Place)
Attribute T2P.weight = Integer
Name = "weight"
Association P2T (Place, Transition)

Attribute P2T.weight = Integer
Name = "weight"

my_net : PetriNet (typing_scd) {
Place pl ()
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Place.tokens = 3

Place p2()
Place.tokens = 0

Transition tl ()

P2T (pl, t1)
P2T.weight = 1

T2P (tl, p2)

T2P.weight = 2
}
export_node ("metamodels/simpleclassdiagram", SimpleClassDiagram)
export_node ("metamodels/petrinet", PetriNet)
export_node ("models/my_net", my_net)

Listing 9.3: Conformance service, stored in conformance.al.

include "models.al"
include "conformance_scd.al"

while (True):
output (conforms (input ()))
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Conclusion

In this paper, we described the Modelverse: a self-describable multi-paradigm modelling tool. Several axioms were presented,
which served as guidelines while making decisions on the specification of the models. Our architecture was briefly presented,
showing the distinction between the Interface (Mvl), Kernel (MvK), and State (MvS).

We presented a model of the Modelverse, which defines how an implementation has to behave. The model covers both the way
data is represented (in the MvS), and the semantics of its action language constructs (in the MvK).

Concerning data representation, we leave open how the graph could be physically implemented. This allows for a variety of
implementations, allowing the developer to choose between available technologies. And as all implementations will be interop-
erable, users can try out different implementations and check whether it better matches with their goals.

Concerning the action language, we described the execution context representation, and how language primitives modify this
execution context. This needs to be explicitly specified if multiple tools need to interoperate on the same piece of execution
data. For example, an external debugger can now access all internal execution data, as its representation has been specified.
For performance, we allow implementations to ignore updates to the execution context, allowing for optimized execution or
primitive operations. This allows users to achieve higher efficiency, for example through compiled functions, although limiting
debugability.

Tools can create and use additional elements in the execution context, which can be interpreted by compatible tools. However,
tools have no obligation to support all these additional elements. An example is additional debugging information, such as tracing
information.

By splitting up the components of the Modelverse, and requiring that all parts need to be explicitly modelled, we arrived at
different notions of conformance. We distinguished between a conformance closer to the physical level (conformance | ), and a
linguistic type of conformance closer to the user level (conformance;). Whereas the physical notion allows users to circumvent
strict metamodelling, by switching to a graph representation, linguistic conformance allows the MvK, and ultimately the user
through the MvlI, to reason about the model in a level that is close to the problem domain.

In future work, we will create a reference implementation of this specification. Apart from the reference implementation, multiple
variations of components will be created, each with a different goal.

After the creation of the reference implementation, the implementation will be scaled up to a distributed and parallel version.

Multiple Modelverse Interfaces will also be created, each with a different kind of user in mind. First, a textual HUTN interface
will be created. Afterwards, a graphical tool will be created.

Our different notions of conformance will also be further extended with the introduction of ontological conformance. This would
allow us to have three different kinds of mappings: physical, linguistic, and ontological [26].
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