include "primitives.alh" include "modelling.alh" include "object_operations.alh" include "conformance_scd.alh" include "io.alh" include "metamodels.alh" Boolean function main(model : Element): String cmd Boolean running Element schedule_init Element schedule_run Element schedule String conforming schedule_init = create_schedule(model) schedule_run = read_root() while (bool_not(has_input())): if (read_attribute(model, "time", "start_time") == read_attribute(model, "time", "current_time")): schedule = schedule_init else: if (element_eq(schedule_run, read_root())): schedule_run = create_schedule(model) schedule = schedule_run //schedule = create_schedule(model) step_simulation(model, schedule) log("Finishing simulation, as we got input!") return True! Element function create_schedule(model : Element): // Create nice graph first Element nodes Element successors String element_name Element incoming_links Element all_blocks nodes = allInstances(model, "Block") successors = create_node() while (read_nr_out(nodes) > 0): element_name = set_pop(nodes) if (bool_not(dict_in(successors, element_name))): dict_add(successors, element_name, create_node()) if (is_nominal_instance(model, element_name, "ICBlock")): if (element_eq(read_attribute(model, element_name, "last_in"), read_root())): incoming_links = allIncomingAssociationInstances(model, element_name, "InitialCondition") else: incoming_links = create_node() if (is_nominal_instance(model, element_name, "DerivatorBlock")): Element new_incoming_links new_incoming_links = allIncomingAssociationInstances(model, element_name, "Link") while (read_nr_out(new_incoming_links) > 0): list_append(incoming_links, set_pop(new_incoming_links)) else: incoming_links = allIncomingAssociationInstances(model, element_name, "Link") while (read_nr_out(incoming_links) > 0): String source source = readAssociationSource(model, set_pop(incoming_links)) if (bool_not(dict_in(successors, source))): dict_add(successors, source, create_node()) set_add(successors[source], element_name) Element values values = create_node() dict_add(values, "S", create_node()) dict_add(values, "index", 0) dict_add(values, "indices", create_node()) dict_add(values, "lowlink", create_node()) dict_add(values, "onStack", create_node()) dict_add(values, "successors", successors) dict_add(values, "SCC", create_node()) nodes = allInstances(model, "Block") while (read_nr_out(nodes) > 0): strongconnect(set_pop(nodes), values) return values["SCC"]! Integer function min(a : Integer, b : Integer): if (a < b): return a! else: return b! Void function strongconnect(v : String, values : Element): if (dict_in(values["indices"], v)): return! dict_overwrite(values["indices"], v, values["index"]) dict_overwrite(values["lowlink"], v, values["index"]) dict_overwrite(values, "index", cast_integer(values["index"]) + 1) list_append(values["S"], v) dict_overwrite(values["onStack"], v, True) Element successors String w successors = values["successors"][v] while (read_nr_out(successors) > 0): w = set_pop(successors) if (bool_not(dict_in(values["indices"], w))): strongconnect(w, values) dict_overwrite(values["lowlink"], v, min(values["lowlink"][v], values["lowlink"][w])) elif (dict_in(values["onStack"], w)): if (values["onStack"][w]): dict_overwrite(values["lowlink"], v, min(values["lowlink"][v], values["indices"][w])) if (value_eq(values["lowlink"][v], values["indices"][v])): Element scc scc = create_node() // It will always differ now w = list_pop_final(values["S"]) list_append(scc, w) dict_overwrite(values["onStack"], w, False) while (w != v): w = list_pop_final(values["S"]) list_append(scc, w) dict_overwrite(values["onStack"], w, False) list_insert(values["SCC"], scc, 0) return! String function readType(model : Element, name : String): return reverseKeyLookup(model["metamodel"]["model"], dict_read_node(model["type_mapping"], model["model"][name]))! Boolean function solve_scc(model : Element, scc : Element): Element m Integer i Integer j String block String blocktype Element incoming String selected Float constant Element t // Construct the matrix first, with as many rows as there are variables // Number of columns is 1 higher i = 0 m = create_node() while (i < read_nr_out(scc)): j = 0 t = create_node() while (j < (read_nr_out(scc) + 1)): list_append(t, 0.0) j = j + 1 list_append(m, t) i = i + 1 log("Matrix ready!") // Matrix initialized to 0.0 i = 0 while (i < read_nr_out(scc)): log("Creating matrix row") // First element of scc block = scc[i] blocktype = readType(model, block) // First write 1 in the current block dict_overwrite(m[i], i, 1.0) // Now check all blocks that are incoming if (blocktype == "AdditionBlock"): constant = 0.0 elif (blocktype == "MultiplyBlock"): constant = 1.0 log("Generating matrix for " + blocktype) log("Block: " + block) incoming = allIncomingAssociationInstances(model, block, "Link") Integer index_to_write_constant index_to_write_constant = -1 log("Iterating over incoming") while (read_nr_out(incoming) > 0): log("Iteration") selected = readAssociationSource(model, set_pop(incoming)) if (set_in(scc, selected)): // Part of the loop, so in the index of selected in scc // Five options: if (blocktype == "AdditionBlock"): // 1) AdditionBlock // Add the negative of this signal, which is as of yet unknown // x = y + z --> x - y - z = 0 dict_overwrite(m[i], list_index_of(scc, selected), -1.0) elif (blocktype == "MultiplyBlock"): // 2) MultiplyBlock if (index_to_write_constant != -1): return False! index_to_write_constant = list_index_of(scc, selected) elif (blocktype == "NegatorBlock"): // 3) NegatorBlock // Add the positive of the signal, which is as of yet unknown dict_overwrite(m[i], list_index_of(scc, selected), 1.0) elif (blocktype == "DelayBlock"): // 5) DelayBlock // Just copies a single value dict_overwrite(m[i], list_index_of(scc, selected), -1.0) else: // Block that cannot be handled return False! else: // A constant, which we can assume is already computed and thus usable if (blocktype == "AdditionBlock"): constant = constant + cast_float(read_attribute(model, selected, "signal")) dict_overwrite(m[i], read_nr_out(scc), constant) elif (blocktype == "MultiplyBlock"): constant = constant * cast_float(read_attribute(model, selected, "signal")) // Not written to constant part, as multiplies a variable // Any other block is impossible: // * Constant would never be part of a SCC // * Delay would never get an incoming constant // * Negation and Inverse only get 1 input, which is a variable in a loop // * Integrator and Derivator never get an incoming constant if (index_to_write_constant != -1): dict_overwrite(m[i], index_to_write_constant, -constant) i = i + 1 // Constructed a complete matrix, so we can start! log("Constructed matrix to solve:") log(matrix2string(m)) // Solve matrix now eliminateGaussJordan(m) // Now go over m and set signals for each element // Assume that everything worked out... i = 0 while (i < read_nr_out(m)): block = scc[i] unset_attribute(model, block, "signal") instantiate_attribute(model, block, "signal", m[i][read_nr_out(scc)]) log((("Solved " + block) + " to ") + cast_string(m[i][read_nr_out(scc)])) i = i + 1 return True! Integer function list_index_of(lst : Element, elem : Element): Integer i i = 0 while (i < read_nr_out(lst)): if (value_eq(list_read(lst, i), elem)): return i! else: i = i + 1 return -1! Void function step_simulation(model : Element, schedule : Element): String time Float signal Element incoming String selected String block String elem String blocktype Element memory_blocks Integer i Float delta_t Element scc time = "time" delta_t = 0.1 memory_blocks = create_node() output("SIM_TIME " + cast_string(read_attribute(model, time, "current_time"))) i = 0 while (i < read_nr_out(schedule)): scc = list_read(schedule, i) i = i + 1 if (list_len(scc) > 1): log("Solving algebraic loop!") if (bool_not(solve_scc(model, scc))): output("ALGEBRAIC_LOOP") return ! else: block = set_pop(scc) // Execute "block" blocktype = readType(model, block) if (blocktype == "ConstantBlock"): signal = read_attribute(model, block, "value") elif (blocktype == "AdditionBlock"): signal = 0.0 incoming = allIncomingAssociationInstances(model, block, "Link") while (read_nr_out(incoming) > 0): selected = readAssociationSource(model, set_pop(incoming)) signal = signal + cast_float(read_attribute(model, selected, "signal")) elif (blocktype == "MultiplyBlock"): signal = 1.0 incoming = allIncomingAssociationInstances(model, block, "Link") while (read_nr_out(incoming) > 0): selected = readAssociationSource(model, set_pop(incoming)) signal = signal * cast_float(read_attribute(model, selected, "signal")) elif (blocktype == "NegatorBlock"): incoming = allIncomingAssociationInstances(model, block, "Link") signal = 0.0 while (read_nr_out(incoming) > 0): selected = readAssociationSource(model, set_pop(incoming)) signal = float_neg(cast_float(read_attribute(model, selected, "signal"))) elif (blocktype == "InverseBlock"): signal = 0.0 incoming = allIncomingAssociationInstances(model, block, "Link") while (read_nr_out(incoming) > 0): selected = readAssociationSource(model, set_pop(incoming)) signal = float_division(1.0, cast_float(read_attribute(model, selected, "signal"))) elif (blocktype == "DelayBlock"): signal = 0.0 if (element_eq(read_attribute(model, block, "last_in"), read_root())): // No memory yet, so use initial condition incoming = allIncomingAssociationInstances(model, block, "InitialCondition") while (read_nr_out(incoming) > 0): selected = readAssociationSource(model, set_pop(incoming)) signal = cast_float(read_attribute(model, selected, "signal")) else: signal = read_attribute(model, block, "last_in") unset_attribute(model, block, "last_in") set_add(memory_blocks, block) elif (blocktype == "IntegratorBlock"): if (element_eq(read_attribute(model, block, "last_in"), read_root())): // No history yet, so use initial values incoming = allIncomingAssociationInstances(model, block, "InitialCondition") while (read_nr_out(incoming) > 0): selected = readAssociationSource(model, set_pop(incoming)) signal = cast_float(read_attribute(model, selected, "signal")) else: signal = cast_float(read_attribute(model, block, "last_in")) + (delta_t * cast_float(read_attribute(model, block, "last_out"))) unset_attribute(model, block, "last_in") unset_attribute(model, block, "last_out") instantiate_attribute(model, block, "last_out", signal) set_add(memory_blocks, block) elif (blocktype == "DerivatorBlock"): if (element_eq(read_attribute(model, block, "last_in"), read_root())): // No history yet, so use initial values incoming = allIncomingAssociationInstances(model, block, "InitialCondition") while (read_nr_out(incoming) > 0): selected = readAssociationSource(model, set_pop(incoming)) signal = cast_float(read_attribute(model, selected, "signal")) else: incoming = allIncomingAssociationInstances(model, block, "Link") while (read_nr_out(incoming) > 0): selected = readAssociationSource(model, set_pop(incoming)) signal = (cast_float(read_attribute(model, selected, "signal")) - cast_float(read_attribute(model, block, "last_in"))) / delta_t unset_attribute(model, block, "last_in") set_add(memory_blocks, block) elif (blocktype == "ProbeBlock"): incoming = allIncomingAssociationInstances(model, block, "Link") while (read_nr_out(incoming) > 0): selected = readAssociationSource(model, set_pop(incoming)) signal = cast_float(read_attribute(model, selected, "signal")) output((("SIM_PROBE " + cast_string(read_attribute(model, block, "name"))) + " ") + cast_string(signal)) unset_attribute(model, block, "signal") instantiate_attribute(model, block, "signal", signal) output("SIM_END") while (read_nr_out(memory_blocks) > 0): block = set_pop(memory_blocks) // Update memory incoming = allIncomingAssociationInstances(model, block, "Link") while (read_nr_out(incoming) > 0): selected = readAssociationSource(model, set_pop(incoming)) instantiate_attribute(model, block, "last_in", cast_float(read_attribute(model, selected, "signal"))) // Increase simulation time Float new_time new_time = cast_float(read_attribute(model, time, "current_time")) + delta_t unset_attribute(model, time, "current_time") instantiate_attribute(model, time, "current_time", new_time) return ! Void function eliminateGaussJordan(m : Element): Integer i Integer j Integer f Integer g Boolean searching Element t Float divisor i = 0 j = 0 while (i < read_nr_out(m)): // Make sure pivot m[i][j] != 0, swapping if necessary while (cast_float(m[i][j]) == 0.0): // Is zero, so find row which is not zero f = i + 1 searching = True while (searching): if (f >= read_nr_out(m)): // No longer any rows left, so just increase column counter searching = False j = j + 1 else: if (cast_float(m[f][j]) == 0.0): // Also zero, so continue f = f + 1 else: // Found non-zero, so swap row t = cast_float(m[f]) dict_overwrite(m, f, cast_float(m[i])) dict_overwrite(m, i, t) searching = False // If we have increased j, we will just start the loop again (possibly), as m[i][j] might be zero again // Pivot in m[i][j] guaranteed to not be 0 // Now divide complete row by value of m[i][j] to make it equal 1 f = j divisor = cast_float(m[i][j]) while (f < read_nr_out(m[i])): dict_overwrite(m[i], f, float_division(cast_float(m[i][f]), divisor)) f = f + 1 // Eliminate all rows in the j-th column, except the i-th row f = 0 while (f < read_nr_out(m)): if (bool_not(f == i)): g = j divisor = cast_float(m[f][j]) while (g < read_nr_out(m[f])): dict_overwrite(m[f], g, cast_float(m[f][g]) - (divisor * cast_float(m[i][g]))) g = g + 1 f = f + 1 // Increase row and column i = i + 1 j = j + 1 return ! String function matrix2string(m : Element): Integer i Integer j String result result = "" i = 0 while (i < read_nr_out(m)): j = 0 while (j < read_nr_out(m[i])): result = result + cast_string(m[i][j]) + ", " j = j + 1 i = i + 1 result = result + "\n" return result!