main.py 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409
  1. from modelverse_state import status
  2. import sys
  3. from collections import defaultdict
  4. import os
  5. import gzip
  6. import time
  7. import cPickle as pickle
  8. # Work around Python 2 where a 'big integer' automatically becomes a long
  9. if sys.version > '3': # pragma: no cover
  10. integer_types = (int,)
  11. primitive_types = (int, float, str, bool)
  12. else: # pragma: no cover
  13. integer_types = (int, long)
  14. primitive_types = (int, long, float, str, bool, unicode)
  15. complex_primitives = frozenset(["if", "while", "assign", "call", "break", "continue", "return","resolve","access", "constant", "input", "output", "declare", "global"])
  16. def instance_to_string(value):
  17. return value["value"]
  18. def string_to_instance(value):
  19. return {'value': value}
  20. class ModelverseState(object):
  21. def __init__(self, bootfile = None):
  22. self.free_id = 0
  23. self.edges = {}
  24. self.outgoing = defaultdict(set)
  25. self.incoming = defaultdict(set)
  26. self.values = {}
  27. self.nodes = set()
  28. self.GC = True
  29. self.to_delete = set()
  30. self.cache = {}
  31. if bootfile is not None:
  32. self.root = self.parse(bootfile)
  33. else:
  34. self.root, _ = self.create_node()
  35. def dump_modelverse(self):
  36. with open("/tmp/modelverse.out", "w") as f:
  37. f.write("digraph main {\n")
  38. for n in self.nodes:
  39. if n in self.values:
  40. f.write("a_%s [label=\"a_%s (%s)\"];\n" % (n, n, self.values[n]))
  41. else:
  42. f.write("a_%s [label=\"a_%s\"];\n" % (n, n))
  43. for i, e in self.edges.iteritems():
  44. f.write("%s -> %s [label=\"%s\"];\n" % (e[0], e[1], i))
  45. f.write("}")
  46. return (self.root, status.SUCCESS)
  47. def parse(self, filename):
  48. picklefile = filename + ".pickle"
  49. try:
  50. if os.path.getmtime(picklefile) > os.path.getmtime(filename):
  51. # Pickle is more recent than grammarfile, so we can use it
  52. self.root, self.free_id, self.nodes, self.edges, self.values = pickle.load(open(picklefile, 'rb'))
  53. for name in self.edges:
  54. source, destination = self.edges[name]
  55. self.outgoing[source].add(name)
  56. self.incoming[destination].add(name)
  57. return self.root
  58. else:
  59. raise Exception("Invalid pickle")
  60. except Exception as e:
  61. # We have to parse the file and create the pickle
  62. symbols = {}
  63. def resolve(symb):
  64. try:
  65. return int(symb)
  66. except:
  67. if symb[0] == "?":
  68. derefs = symb[1:].split("/")
  69. v, _ = self.read_dict(symbols["root"], "__hierarchy")
  70. for deref in derefs:
  71. v, _ = self.read_dict(v, deref)
  72. return v
  73. else:
  74. return symbols[symb]
  75. with gzip.open(filename, 'rb') as f:
  76. for line in f:
  77. element_type, constructor = line.split(None, 1)
  78. name, values = constructor.split("(", 1)
  79. name = name.split()[0]
  80. values, _ = values.rsplit(")", 1)
  81. if element_type == "Node":
  82. if values == "":
  83. symbols[name], status = self.create_node()
  84. else:
  85. value = values
  86. if value in complex_primitives:
  87. value = string_to_instance(value)
  88. else:
  89. value = eval(value)
  90. symbols[name], status = self.create_nodevalue(value)
  91. elif element_type == "Edge":
  92. values = [v.split()[0] for v in values.split(",")]
  93. symbols[name], status = self.create_edge(resolve(values[0]), resolve(values[1]))
  94. else:
  95. raise Exception("Unknown element type: %s" % element_type)
  96. if status != 100:
  97. raise Exception("Failed to process line for reason %s: %s" % (status, line))
  98. # Creation successful, now also create a pickle
  99. with open(picklefile, 'wb') as f:
  100. pickle.dump((symbols["root"], self.free_id, self.nodes, self.edges, self.values), f, pickle.HIGHEST_PROTOCOL)
  101. return symbols["root"]
  102. def read_root(self):
  103. return (self.root, status.SUCCESS)
  104. def create_node(self):
  105. self.nodes.add(self.free_id)
  106. self.free_id += 1
  107. return (self.free_id - 1, status.SUCCESS)
  108. def create_edge(self, source, target):
  109. if source not in self.edges and source not in self.nodes:
  110. return (None, status.FAIL_CE_SOURCE)
  111. elif target not in self.edges and target not in self.nodes:
  112. return (None, status.FAIL_CE_TARGET)
  113. else:
  114. self.outgoing[source].add(self.free_id)
  115. self.incoming[target].add(self.free_id)
  116. self.edges[self.free_id] = (source, target)
  117. self.free_id += 1
  118. return (self.free_id - 1, status.SUCCESS)
  119. def is_valid_datavalue(self, value):
  120. if isinstance(value, dict):
  121. if "value" in value and value["value"] in complex_primitives:
  122. return True
  123. else:
  124. return False
  125. elif not isinstance(value, primitive_types):
  126. return False
  127. elif isinstance(value, integer_types) and not (-2**63 <= value <= 2**64 - 1):
  128. return False
  129. return True
  130. def create_nodevalue(self, value):
  131. if not self.is_valid_datavalue(value):
  132. print("Not correct: " + str(value))
  133. #raise Exception()
  134. return (None, status.FAIL_CNV_OOB)
  135. self.values[self.free_id] = value
  136. self.nodes.add(self.free_id)
  137. self.free_id += 1
  138. return (self.free_id - 1, status.SUCCESS)
  139. def create_dict(self, source, data, destination):
  140. if source not in self.nodes and source not in self.edges:
  141. return (None, status.FAIL_CDICT_SOURCE)
  142. if destination not in self.nodes and destination not in self.edges:
  143. return (None, status.FAIL_CDICT_TARGET)
  144. if not self.is_valid_datavalue(data):
  145. return (None, status.FAIL_CDICT_OOB)
  146. n = self.create_nodevalue(data)[0]
  147. e = self.create_edge(source, destination)[0]
  148. self.create_edge(e, n)
  149. self.cache.setdefault(source, {})[data] = e
  150. return (None, status.SUCCESS)
  151. def read_value(self, node):
  152. if node not in self.nodes:
  153. return (None, status.FAIL_RV_UNKNOWN)
  154. v = self.values.get(node, None)
  155. if v is None:
  156. return (None, status.FAIL_RV_NO_VALUE)
  157. else:
  158. return (v, status.SUCCESS)
  159. def read_outgoing(self, elem):
  160. if elem in self.edges or elem in self.nodes:
  161. return (list(self.outgoing[elem]), status.SUCCESS)
  162. else:
  163. return (None, status.FAIL_RO_UNKNOWN)
  164. def read_incoming(self, elem):
  165. if elem in self.edges or elem in self.nodes:
  166. return (list(self.incoming[elem]), status.SUCCESS)
  167. else:
  168. return (None, status.FAIL_RI_UNKNOWN)
  169. def read_edge(self, edge):
  170. v = self.edges.get(edge, None)
  171. if v is None:
  172. return ([None, None], status.FAIL_RE_UNKNOWN)
  173. else:
  174. s, t = v
  175. return ([s, t], status.SUCCESS)
  176. def read_dict(self, node, value):
  177. e, s = self.read_dict_edge(node, value)
  178. if s != status.SUCCESS:
  179. return (None, {status.FAIL_RDICTE_UNKNOWN: status.FAIL_RDICT_UNKNOWN,
  180. status.FAIL_RDICTE_UNCERTAIN: status.FAIL_RDICT_UNCERTAIN,
  181. status.FAIL_RDICTE_OOB: status.FAIL_RDICT_OOB,
  182. status.FAIL_RDICTE_NOT_FOUND: status.FAIL_RDICT_NOT_FOUND,
  183. status.FAIL_RDICTE_AMBIGUOUS: status.FAIL_RDICT_AMBIGUOUS}[s])
  184. return (self.edges[e][1], status.SUCCESS)
  185. def read_dict_keys(self, node):
  186. if node not in self.nodes and node not in self.edges:
  187. return (None, status.FAIL_RDICTKEYS_UNKNOWN)
  188. result = []
  189. for e1 in self.outgoing.get(node, set()):
  190. data_links = self.outgoing.get(e1, set())
  191. for e2 in data_links:
  192. result.append(self.edges[e2][1])
  193. return (result, status.SUCCESS)
  194. def read_dict_edge(self, node, value):
  195. try:
  196. first = self.cache[node][value]
  197. # Got hit, so validate
  198. if (self.edges[first][0] == node) and \
  199. (len(self.outgoing[first]) == 1) and \
  200. (self.values[self.edges[list(self.outgoing[first])[0]][1]] == value):
  201. return (first, status.SUCCESS)
  202. # Hit but invalid now
  203. del self.cache[node][value]
  204. except KeyError:
  205. # Didn't exist
  206. pass
  207. if node not in self.nodes and node not in self.edges:
  208. return (None, status.FAIL_RDICTE_UNKNOWN)
  209. if not self.is_valid_datavalue(value):
  210. return (None, status.FAIL_RDICTE_OOB)
  211. # Get all outgoing links
  212. found = None
  213. for e1 in self.outgoing.get(node, set()):
  214. data_links = self.outgoing.get(e1, set())
  215. # For each link, we read the links that might link to a data value
  216. for e2 in data_links:
  217. # Now read out the target of the link
  218. target = self.edges[e2][1]
  219. # And access its value
  220. v = self.values.get(target, None)
  221. if v == value:
  222. # Found a match
  223. # Now get the target of the original link
  224. if found is not None:
  225. print("Duplicate key on value: %s : %s (%s <-> %s)!" % (v, type(v), found, e1))
  226. return (None, status.FAIL_RDICTE_AMBIGUOUS)
  227. found = e1
  228. self.cache.setdefault(node, {})[value] = e1
  229. if found is not None:
  230. return (found, status.SUCCESS)
  231. else:
  232. return (None, status.FAIL_RDICTE_NOT_FOUND)
  233. def read_dict_node(self, node, value_node):
  234. e, s = self.read_dict_node_edge(node, value_node)
  235. if s != status.SUCCESS:
  236. return (None, {status.FAIL_RDICTNE_UNKNOWN: status.FAIL_RDICTN_UNKNOWN,
  237. status.FAIL_RDICTNE_UNCERTAIN: status.FAIL_RDICTN_UNCERTAIN,
  238. status.FAIL_RDICTNE_AMBIGUOUS: status.FAIL_RDICTN_AMBIGUOUS,
  239. status.FAIL_RDICTNE_OOB: status.FAIL_RDICTN_OOB,
  240. status.FAIL_RDICTNE_NOT_FOUND: status.FAIL_RDICTN_NOT_FOUND}[s])
  241. return (self.edges[e][1], status.SUCCESS)
  242. def read_dict_node_edge(self, node, value_node):
  243. if node not in self.nodes and node not in self.edges:
  244. return (None, status.FAIL_RDICTNE_UNKNOWN)
  245. # Get all outgoing links
  246. found = None
  247. for e1 in self.outgoing.get(node, set()):
  248. data_links = self.outgoing.get(e1, set())
  249. # For each link, we read the links that might link to a data value
  250. for e2 in data_links:
  251. # Now read out the target of the link
  252. target = self.edges[e2][1]
  253. # And access its value
  254. if target == value_node:
  255. # Found a match
  256. # Now get the target of the original link
  257. if found is not None:
  258. print("Duplicate key on node: %s (%s <-> %s)!" % (value_node, found, e1))
  259. return (None, status.FAIL_RDICTNE_AMBIGUOUS)
  260. found = e1
  261. if found is not None:
  262. return (found, status.SUCCESS)
  263. else:
  264. return (None, status.FAIL_RDICTNE_NOT_FOUND)
  265. def read_reverse_dict(self, node, value):
  266. if node not in self.nodes and node not in self.edges:
  267. return (None, status.FAIL_RRDICT_UNKNOWN)
  268. elif not self.is_valid_datavalue(value):
  269. return (None, status.FAIL_RRDICT_OOB)
  270. # Get all outgoing links
  271. matches = []
  272. for e1 in self.incoming.get(node, set()):
  273. data_links = self.outgoing.get(e1, set())
  274. # For each link, we read the links that might link to a data value
  275. for e2 in data_links:
  276. # Now read out the target of the link
  277. target = self.edges[e2][1]
  278. # And access its value
  279. v = self.values.get(target, None)
  280. if v == value:
  281. # Found a match
  282. if len(data_links) > 1:
  283. return (None, status.FAIL_RRDICT_UNCERTAIN)
  284. else:
  285. matches.append(e1)
  286. if len(matches) == 0:
  287. return (None, status.FAIL_RRDICT_NOT_FOUND)
  288. else:
  289. return ([self.edges[e][0] for e in matches], status.SUCCESS)
  290. def delete_node(self, node):
  291. if node == self.root:
  292. return (None, status.FAIL_DN_UNKNOWN)
  293. if node not in self.nodes:
  294. return (None, status.FAIL_DN_UNKNOWN)
  295. self.nodes.remove(node)
  296. if node in self.cache:
  297. del self.cache[node]
  298. if node in self.values:
  299. del self.values[node]
  300. s = set()
  301. for e in self.outgoing[node]:
  302. s.add(e)
  303. for e in self.incoming[node]:
  304. s.add(e)
  305. for e in s:
  306. self.delete_edge(e)
  307. del self.outgoing[node]
  308. del self.incoming[node]
  309. return (None, status.SUCCESS)
  310. def delete_edge(self, edge):
  311. if edge not in self.edges:
  312. return (None, status.FAIL_DE_UNKNOWN)
  313. s, t = self.edges[edge]
  314. self.incoming[t].remove(edge)
  315. self.outgoing[s].remove(edge)
  316. del self.edges[edge]
  317. s = set()
  318. for e in self.outgoing[edge]:
  319. s.add(e)
  320. for e in self.incoming[edge]:
  321. s.add(e)
  322. for e in s:
  323. self.delete_edge(e)
  324. del self.outgoing[edge]
  325. del self.incoming[edge]
  326. if (self.GC) and (not self.incoming[t]) and (t not in self.edges):
  327. # Remove this node as well
  328. # Edges aren't deleted like this, as they might have a reachable target and source!
  329. # If they haven't, they will be removed because the source was removed.
  330. self.to_delete.add(t)
  331. return (None, status.SUCCESS)
  332. def garbage_collect(self):
  333. while self.to_delete:
  334. t = self.to_delete.pop()
  335. if not self.incoming[t]:
  336. self.delete_node(t)
  337. def purge(self):
  338. self.garbage_collect()
  339. values = set(self.nodes) | set(self.edges)
  340. visit_list = [self.root]
  341. while visit_list:
  342. elem = visit_list.pop()
  343. if elem in values:
  344. # Remove it from the leftover values
  345. values.remove(elem)
  346. if elem in self.edges:
  347. visit_list.extend(self.edges[elem])
  348. visit_list.extend(self.outgoing[elem])
  349. visit_list.extend(self.incoming[elem])
  350. # All remaining elements are to be purged
  351. if len(values) > 0:
  352. while values:
  353. v = values.pop()
  354. if v in self.nodes:
  355. self.delete_node(v)
  356. #print("Remaining nodes: " + str(len(self.nodes)))