4

statechart {inports: in; outports: out, semantics: {internal_event_lifeline=next_combo_step}}

SimulationFlow

(___Initialize) (InitializeDebugger)
N J\ J

after(sccd_yield())

/ self.initialize() / self.initializeDebugger()

[not self.hasNextStrongComponent()]

[IN(/SimulationState/Running/Realtime)]

CheckTermination

after(sccd_yield()) /

after(sccd_yield()) /

big_step_done

self.syncSimulatedTime()

[IN(/SimulationState/Running/Continuous)

(— Waiing

or IN(/SimulationState/Running/BigStep)
or IN(/SimulationState/Running/SmallStep)]

CreateDepGraph Y

onentry:
self.depGraph = self.createDepGraph()

(IsolateStrongComponents \

onentry:
self.strongComponentList = self.createStrongComponents()

[IN(/SimulationState/Stopped)]

[self.waitTime() <= sccd_yield()]
|

(ExecuteStep A

[not self.currentComponentIsCycle()] /
self.computeBlock(), small_step_done

[self.currentComponentIsCycle()] /
self.computeCycle(), small_step_done

o——

CheckNextComponent)
N J

T
after(sccd_yield() * 2)
[self.hasNextStrongComponent()]

(Stopped \
- 7

GodEventManager

in::god_event(state_var, new_val) [IN(/simulation_state/paused)] /
result = self.godEvent(state_var, new_val),
god_event_result(result)

-

(_PreCheckCycle (_ CheckCycle
N J C

[IN(/SimulationState/Running)]
o J

BreakpointManager

1 in::toggle_breakpoint(name) /
result = self.toggleBreakpoint(name),
! out::toggle_breakpoint_result(result)

in::del_breakpoint(name) /
result = self.delBreakpoint(name),
out::del_breakpoint_result(result)

(_Listening Y
-

in::add_breakpoint(name, function, enabled, disable_on_trigger) /
result = self.addBreakpoint(name, function, enabled, disable_on_trigger),
1 out::add_breakpoint_result(result)

SimulationState

pause
after(sccd_yield()*2) /
paused 4 Running N
>aced O in::icontinuous
.—'% (Continuous)
| Realtime

in::realtime(scale)

in::small_step

onentry:
self.resetStartTime()

(SmallStep

in::big_step

(BigStep

after(sccd_yield())

small_step_done
big_step_done

after(sccd_yield())

7 BigStepDone) (SmallStepDone)

N J

T J/

after(sccd_yield()*2) /
breakpoint_triggered

(PreBreakpointTriggered

UserOutput

paused /
out::paused,

[self.breakpointTriggers(INSTATE(Realtime))]

self.endCondition() /
termination_condition

(Stopped)

out::current_state(self.simulated_time, self.state)

breakpoint_triggered
out::breakpoint_triggered(self.simulated_time,
self.triggered_bp)

termination_condition /
out::terminated,

(waiting
-

big_step_done [IN(/simulation_state/running/realtime)

or IN(/simulation_state/running/big_step)

or IN(/simulation_state/running/big_step_done)] /
out::stepped,
out::current_state(self.simulated_time, self.state)

out::current_state(self.simulated_time, self.state)

[IN(/simulation_state/stopped)
and IN(/simulation_flow/stopped)] /
self.finalize()

—

