
stopped

 [IN(/simulation_state/stopped)
and IN(/simulation_flow/stopped)] /
 self.finalize()

statechart {inports: in; outports: out, semantics: {internal_event_lifeline=next_combo_step}}

UserOutput

waiting

termination_condition /
 out::terminated,
 out::current_state(self.simulated_time, self.state)

paused /
 out::paused,
 out::current_state(self.simulated_time, self.state)

big_step_done [IN(/simulation_state/running/realtime)
 or IN(/simulation_state/running/big_step)
 or IN(/simulation_state/running/big_step_done)] /
 out::stepped,
 out::current_state(self.simulated_time, self.state)

breakpoint_triggered
 out::breakpoint_triggered(self.simulated_time,
 self.triggered_bp)

Listening

in::add_breakpoint(name, function, enabled, disable_on_trigger) /
 result = self.addBreakpoint(name, function, enabled, disable_on_trigger),
 out::add_breakpoint_result(result)

in::del_breakpoint(name) /
 result = self.delBreakpoint(name),
 out::del_breakpoint_result(result)

in::toggle_breakpoint(name) /
 result = self.toggleBreakpoint(name),
 out::toggle_breakpoint_result(result)

BreakpointManager

listening

in::god_event(state_var, new_val) [IN(/simulation_state/paused)] /
 result = self.godEvent(state_var, new_val),
 god_event_result(result)

GodEventManager

SimulationState

Paused

Stopped

in::continuous

self.endCondition() /
 termination_condition

Continuous

Running

in::pause

Realtime
in::realtime(scale) onentry:

 self.resetStartTime()

BigStep

BigStepDone

big_step_done

in::big_step

after(sccd_yield())

PrePaused

PreBreakpointTriggered

after(sccd_yield()*2) /
 paused

[self.breakpointTriggers(INSTATE(Realtime))]
after(sccd_yield()*2) /
 breakpoint_triggered

SimulationFlow

Initialize

/ self.initialize()

CheckTermination

[IN(/SimulationState/Running/Continuous)
or IN(/SimulationState/Running/BigStep)
or IN(/SimulationState/Running/SmallStep)]

after(sccd_yield()) /
 big_step_done

Waiting

[IN(/SimulationState/Running/Realtime)]

after(sccd_yield()) /
 self.syncSimulatedTime()

[self.waitTime() <= sccd_yield()]

InitializeDebugger

/ self.initializeDebugger()

ExecuteStep

CheckNextComponent

PreCheckCycle CheckCycle

IsolateStrongComponents
onentry:
 self.strongComponentList = self.createStrongComponents()

CreateDepGraph
onentry:
 self.depGraph = self.createDepGraph()

[IN(/SimulationState/Running)]

after(sccd_yield() * 2)
[self.hasNextStrongComponent()]

[not self.currentComponentIsCycle()] /
 self.computeBlock(), small_step_done

[self.currentComponentIsCycle()] /
 self.computeCycle(), small_step_done

after(sccd_yield())
[not self.hasNextStrongComponent()]

SmallStep

SmallStepDone

small_step_done

in::small_step

after(sccd_yield())

Stopped

[IN(/SimulationState/Stopped)]

