
Tutorial Proposal:
Physical Systems for Software Modellers

Hans Vangheluwe
University of Antwerp - Flanders Make

Belgium
Hans.Vangheluwe@uantwerpen.be

Cláudio Gomes
University of Antwerp - Flanders Make

Belgium
Claudio.Gomes@uantwerpen.be

BASIC INFORMATION

Title: Physical Systems for Software Modellers

Presenters

HANS VANGHELUWE is a Professor at the University
of Antwerp (Belgium). He heads the Modeling, Simulation
and Design Lab (MSDL). In a variety of projects, often with
industrial partners, he develops and applies the model-based
theory and techniques of Multi-Paradigm Modeling (MPM).
He is the chair of COST Action IC1404 “Multi-Paradigm
Modelling for Cyber-Physical Systems” (MPM4CPS). He
was a founding member of the Modelica® design team
and in the 1990s helped develop this standard language for
equation-based object-oriented modelling. His e-mail address
is Hans.Vangheluwe@uantwerpen.be.

CLÁUDIO GOMES is a PhD student in the Modelling,
Simulation and Design Lab (MSDL) at the University of
Antwerp (Belgium). He was awarded a scholarship from the
Research Foundation - Flanders, to work on the foundations
of co-simulation. Since 2016, he has connected the fields of
numerical analysis, optimization, and computer science to
investigate the effect of different co-simulation algorithms on
the quality of full-system overall simulation results, even in
the presence of “black-box” Functional Mockup Units. His
e-mail address is Claudio.Gomes@uantwerpen.be.

Abstract

The complex engineered systems we build today get their
value from the networking of multi-physical (mechanical, elec-
trical, hydraulic, biochemical, . . .) and computational (control,
signal processing, planning, . . .) processes, often interacting
with a highly uncertain environment. Software plays a pivotal
role, both as a component of such systems, often realizing
control laws, deployed on a resource-constrained physical
platform, and in the construction of enabling modelling and
simulation tools.

This two-part tutorial will introduce software modellers to
the two main facets of dealing with physical systems through
modelling, simulation and (controller) code synthesis.

In the first part, the different levels at which physical
systems may be modelled are introduced. This starts with the

technological level. At this level, components are considered
that can be physically realized with current materials and
production methods. Such components are often available
off the shelf. They are characterized by the very specific
context (also known as Experimental Frame) in which their
models are valid. The next level uses the full knowledge of
physics and engineering to describe the behaviour of physical
components to study a wide variety of properties. To study the
possibly turbulent flow of a viscous liquid through a pipe for
example, a Navier-Stokes Partial Differential Equations model
will be used. Such models are hard to calibrate and simulate
accurately and efficiently. The next level considers the often
occurring situation where, for the properties of interest, the
spatial distribution of the problem can be abstracted and a
lumped-parameter (as opposed to distributed-parameter) model
can be used. In a translational mechanical context for example,
an object with a complex geometry may still be considered
as a point mass characterized by a single parameter “mass”.
Such models still obey physical conservation laws such as
energy conservation. At this level, formalisms such as Bond
Graphs that focus on power flow through a system are used.
At the next level, the link with physics is weakened and com-
putational components (functions) are added. This leads to the
popular Equation-based Object-Oriented modelling languages
such as Modelica® and Simscape®. The semantics of such
computationally a-causal languages will be explained with
particular focus on the process of causality assignment. This
leads to the next level at which input-output computational
blocks are used. The main disadvantage of this level is that it
focuses on “how” to compute the evolution of state variables
over time as opposed the focus on “what” the governing
equations are in equation-based languages, leaving the “how”
to a model compiler.

Even the discretized level is still an idealization as the
numerical values as not Real numbers, but are implemented
as floating point approximations.

The second part of the tutorial starts from the compu-
tationally causal level. The formalisms used are known as
Causal Block Diagrams (CBDs) or Synchronous Data Flow
(SDF), with Simulink® as the most notable example. Three
different semantics of CBDs will be explained, bridging the
gap between the equations resulting from causality assignment
described in the first part of the tutorial and their realization

in software. This software can either be a simulator (or a
Functional Mockup Unit in case of co-simulation) on a digital
computer or a controller deployed on a micro-controller or
ECU.

A first semantics of such input-output Causal Block Di-
agrams focuses on algebraic CBDs only. Here, time has
been abstracted away, which may lead to “algebraic loops”
which need to be detected and revoled. The second semantics
focuses on discrete-time CBDs. Time is abstracted as a discrete
counter. The introduction of memory in the form of a delay
block allows, in combination with feedback loops in the CBD,
for the expression of complex dynamics. The third semantics
treats time as continuous. To allow for simulation on a digital
computer, discretization is required. As such, continuous-
time CBDs are approximated and mapped onto discrete-time
CBDs. Such approximation introduces numerical errors which
must be dealt with. Even the discretized level is still an
idealization as the numerical values as not Real numbers, but
are implemented as floating point approximations.

Once CBDs are well understood, the tutorial gives a very
basic introduction to automatic control. In engineering prac-
tice, the behaviour of virtually every physical systems (also
known as “plant”) is regulated by some form of controller.
The principles of automatic control will be explained by means
of the most simple Proportional, Integral and Derivative (PID)
controller. The effect of the different parts of such a controller
will be explained. A PID controller will be modelled in the
form of a continuous-time CBD. This is then the basis for
discritezation to a discrete-time CBD and subsequent synthesis
of control software. To demonstrate the concepts, a PID
controller will be developed and its optimal parameters will
be estimated for the simple cruise control of a vehicle.

Proposed Length

We propose a full-day (6 hours) tutorial.
The topic of dealing with Physical Systems is a complex

one, and quite outside the comfort zone of the intended
audience. To fully explain it requires a sufficient amount of
time.

The presenters have experience with giving similar tutorials
in the past. Notice that, especially for the MODELS com-
munity, it is important to cover the “why”, the “what” and
the “how” of the topic, as the audience is interested in deep
understanding.

Past experience, with a tutorial on a-causal modelling (and
Modelica in particular) at MODELS 2015 in Ottawa, showed
(1) that a proper explanation takes time and (2) that the topic of
(PID) control is the “missing link”: it demonstrates where code
gets generated and deployed (or conversely, where the code
running in modern software-intensive systems comes from).

The proposal has two main parts. The first three hour part
covers modelling of physical systems down to computational
causality assignment resulting in Causal Block Diagrams
(CBDs). The second three-hour part starts by explaining the
semantics of CBDs. This makes the link between the models of
physical systems and their ultimate realization in simulation

software (as used in the Functional Mockup Interface stan-
dard). The second link between physical systems and software
comes from the introduction of controllers which steer a
physical system (known as “plant”) to a desired behaviour.
It is these controllers that are first modelled as CBDs and
subsequently discretized and realized as software.

The two parts can be followed independently, but for full
understanding of the CBD/PID part, it is best taken after the
part focusing on the physics.

Level of the Tutorial

Introductory: Only basic knowledge of object-oriented soft-
ware design/programming, graph algorithms, and calculus are
required. Remembering some undergraduate physics helps.

Target Audience

Modellers with an interest in the link between physical sys-
tems and software modelling. Those who wish to understand
the broad range of languages available for physical system
modeling, and their rationale. In particular, (domain-specific)
modelling language engineers may find this a refreshing view
on a class of languages not rooted in software.

DESCRIPTION AND INTENDED OUTLINE

This tutorial aims to introduce the families of languages
used to model physical systems, to an audience of software
modellers. It goes to the essence of the following language
families, sorted from the lowest modeling effort to the highest:

1) problem/technology-specific (e.g., a nuclear power plant
modeling language);

2) domain-specific (e.g., SimMechanics); power-flow (e.g.,
Bond Graphs);

3) computationally a-causal (e.g., Modelica and Simscape);
4) computationally causal continuous (e.g., Simulink block

diagrams);
5) computationally causal discretized (e.g., discrete-time

block diagrams); and
6) black-box causal discretized (e.g., Functional Mockup

Units);
7) untimed “algebraic” block diagrams (and their link with

synchronous data flow).
Note that the first three topics are covered in the first three

hour part of the tutorial. The remaining four topics are covered
in the second three hour part of the tutorial.

This second part also introduces, at a very introductory
level, control theory in general, and Proportional – Integral
– Derivative (PID) control in particular. The introduction is
done by means of a simple example of cruise control of an
autonomous vehicle. Most importantly, the PID controller is
modelled as a continuous-time Causal Block Diagram which
allows, after discretization, for the synthesis of controller
software.

Having followed this tutorial, the audience will understand
how to write or generate software code that interacts with
physical systems (e.g., due to inertia, turning off a physical

systems does not stop it), including the crucial aspect of
control.

To achieve these goals, the tutorial will cover:
• general laws of physics used to derive physical system

equations,
• algorithms to transform models across the language

families introduced above (e.g., causality assignment to
translate a-causal models to causal ones, or numerical
discretization to transform continuous models to discrete
ones), and

• techniques to integrate and simulate multiple models,
even if the contents of these models are protected (e.g.,
in binary form), or represents physical subsystems (e.g.,
test rigs). These scenarios are common in industry as
externally supplied models contain Intellectual Property.

• PID controllers and how to realize them in software.

ADDITIONAL INFORMATION

Similar Tutorials and Novelty

We presented tutorials on a-causal modelling in 2014 and
2015 at MODELS in Valencia and Ottawa respectively. These
tutorials correspond to the first half of the current proposal.
The proposed tutorial is also based on a part of the MPM4CPS
COST Action Training School held 18 - 21 November 2018 in
Pisa, Italy (http://mpm4cps.eu/trainingSchools/pisa2018). The
audience at the Training School consisted, like at MODELS,
mostly of researchers with a software engineering background.
The addition of the PID controller part proved to fill the gap
identied earlier during the MODELS tutorials.

Required Infrastructure

Besides a data projector, a white-board or black-board (or
flipchart) is required.

Sample Slides

A number of sample slides of the previous versions of the
tutorial are attached in the appendix.

Virtual Build (technological)http://www.partsim.com/

Design (Space Exploration)
as a service

Boric Acid Transportation Pump

Product parameters

Design standards：RCC-M

Flow：16.6m3/h

Head：85m

Temperature：~80℃
Pressure：1.6MPa

Used in 600MWe、900MWe、1000MWe PWR nuclear power plant boric acid transportation system.

Model Validity … Context?

Spiegel, Reynolds, and Brogan

Participants were instructed to ignore any constraints
related to the implementation of the model. In the falling
body simulation, there are multiple implementation choices
of numerical methods and numerical precision. In comput-
ing position as a function of time, what sort of numerical
integration method should be employed? What effect
would it have on correctness of results? We have chosen
not to discuss implementation assumptions in order to fo-
cus attention on the model instead of the simulation. When
joining composable simulations it will be necessary to
validate both the combined model and then to validate the
combined simulation.

After a period of two weeks submissions were tabu-
lated and a master list was created and discussed among
the contestants and others. We defer discussion of the re-
sults to after the presentation of the challenge in the next
section.

3.2 Falling Body Model

The following model is an extended version of the model
presented in Appendix A of the monograph by Davis and
Anderson (2003). A sphere is falling through some me-
dium and experiencing drag as it falls. Let p(t) equal the
position of the sphere at time t and p(0) = p0 be the initial
position. Let v(t) = p′(t) equal the velocity of the sphere at
time t, and let v(0) = v0 be the initial velocity. Calculate
p(t) and v(t) for all t ≥ 0.

The sphere is perfectly smooth, it has diameter d and
mass m. The medium has uniform density ρf and uniform
kinematic viscosity ν. Assume that when the sphere im-
pacts with the earth, p(tearth) = 0, it will remain on the
ground for all t > tearth.

The following forces will act on the sphere (Chow
1979):

• Gravity: The sphere experiences constant accel-

eration, g ≈ 9.8 m/s
2
.

• Buoyancy: mf = (1/6)πd
3
ρf against gravity.

• Inertial drag: (1/2) mf v′ (t)
• Viscous drag: (1/2)ρf · v(t) ·│v(t)│· π/4 · d

2
·

cd(v(t))
• Wave drag: Wave drag is negligible at subsonic

speeds.

We apply Newton’s Second Law to determine acceleration,
and then employ numerical methods of integration to cal-
culate velocity and position.

Figure 1: Falling Body Model

The term cd is the drag coefficient and it is defined as a
function of the Reynolds number, which is Re = v(t) · d / ν.
The drag coefficient is determined experimentally as a
function of the Reynolds number. Both the drag coeffi-
cient and the Reynolds number are dimensionless values.
For a perfectly smooth sphere, cd can be approximated
piecewise with the following function,

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

=

≤ < ⋅

⋅ ≤ < ⋅ ⋅

⋅ ≤ <

≤ <

≤ <
−

7 6

6 5 4275 . 0

5

2

10 Re 10 2 18 . 0

10 2 Re 10 3 (Re) 000366 . 0

10 3 Re 400 5. 0

400 Re 1

1 Re 10

646 . 0
(Re)

24

Re
24

dc

The reader interested in pursuing the challenge without
bias from the challenge results should pause at this point,
continuing when identification of unstated constraints is
completed. We discuss the results of the challenge next.

3.3 Challenge Results and Constraint Taxonomy

The competition produced a master list of twenty-nine
validation constraints (see Appendix). From them we have
derived a taxonomy of validation constraint types. Every
effort has been made to remove redundant constraints and
to represent identified validation constraints as concisely as
possible. We make no claim to having found all validation
constraints for the falling body model.

It is illuminating to consider that the top three contest-
ants identified only 21, 19, and 16 constraints, respectively,
out of the master list (see Table 1). No single participant
was capable of identifying more than three-quarters of all
currently identified constraints. Like the component de-
signers of (Garlan, Allan, and Ockerbloom 1995) our chal-
lenge participants were neither “lazy, stupid, nor mali-
cious.” Each participant failed to identify several implicit

Spiegel, M., Reynolds, P. F., & Brogan, D. C.
A Case Study of Model Context for Simulation Composability and Reusability.
In Proceedings of the Winter Simulation Conference, 2005. (Vol. 2005, pp. 437–444). IEEE.
http://doi.org/10.1109/WSC.2005.1574279

Implicit Assumptions!

Spiegel, Reynolds, and Brogan

In an informal contest related to our study, no participant
identified more than 75% of the ultimate set of constraints
identified. Borrowing from Garlan, Allan, and Ocker-
bloom our challenge participants were neither “lazy, stu-
pid, nor malicious.” (1995)

We believe the study reported here can be useful to the
reader beyond the results above. The falling body model
presents a fine example for testing any proposed reusability
process. If the process cannot lead to the efficient extrac-
tion of the constraints listed in the Appendix, then it is of
questionable value.

In the future we anticipate further study of our initial
taxonomy of validation constraints. Will other types of
simulations yield new categories of constraints? The tax-
onomy is useful only if it can serve as a general guidepost
that suggests hidden constraints that have not been identi-
fied. Additionally the taxonomy for the simulation com-
munity may benefit from insights in the larger domain of
software design. Generic software applications contain
properties that are identified as invariant or time-
dependent. Can the lessons from formal software analysis
be applied to our objectives? We will be exploring these
issues.

ACKNOWLEDGEMENTS

We gratefully acknowledge support from the National Sci-
ence Foundation (ITR 0426971), as well as from our col-
leagues in the Modeling and Simulation Technology Re-
search Initiative (MaSTRI) at the University of Virginia.
We would also like to thank all the participants of the fal-
ling body challenge: Robert Bartholet, Joseph Carnahan,
Mark Farrington, Aleks Gershaft, William Kammersell,
Yinping Kuang, Xinyu Liu, Yannick Loitiere, Thomas Lu-
bitz, and Weide Zhang.

APPENDIX: FALLING BODY CONSTRAINTS

1. Invariant Constraints

 1.a Sphere Attributes

1. Sphere Property - The body is a sphere and it re-

mains spherical.
2. Smooth Property - The body is smooth and it re-

mains smooth.
3. Impermeable Property - The body is completely

impermeable.
4. Initial Velocity - The body has an initial velocity

of v0 that has no horizontal component of motion.
5. Angular Velocity - The body has no initial angu-

lar velocity.
6. Constant Mass - The mass of the body remains

constant over time. The body does not experience
ablation or accretion.

7. Constant Diameter - The diameter of the body
remains constant over time.

8. Distribution of Mass - The body has a centrally
symmetric mass distribution that remains constant
over time.

9. Uncertainty Principle - The diameter of the body
is much greater than the Plank length.

10. Brownian Motion - The mass and diameter of the
body are large enough such that Brownian motion
of the fluid has negligible impact on the body.

11. General Relativity - The mass of the body is low
enough to ignore the gravitational curvature of
space-time.

 1.b Fluid Attributes

12. Fluid Density - The fluid density is constant. The

fluid is incompressible.
13. Fluid Pressure - The fluid pressure is constant.
14. Fluid Temperature - The fluid temperature is con-

stant.
15. Kinematic Viscosity - The kinematic viscosity is

constant. The medium is a Newtonian fluid.
16. Stationary Fluid - The fluid is stationary apart

from being disturbed by the falling body.
17. Infinite Fluid - The volume of the fluid is large

enough to completely envelope the sphere. The
movement of the fluid is not restricted by a con-
tainer such as a pipe or tube.

 1.c Earth Attributes

18. Flat Terrain - The ground does not have terrain

and remains flat for all t > 0.
19. Coriolis Effect - The Earth is not rotating. We ig-

nore the Coriolis effect.

2. Dynamic Constraints

20. Mach Speed - The velocity of the body is suffi-

ciently less than the speed of sound for that me-
dium.

21. Special Relativity - The velocity of the body is
sufficiently less than the speed of light for that
medium.

22. Reynolds Number - The Reynolds number re-
mains between 10

-2
 and 10

7
 for all t > 0. The

Reynolds number is a function of velocity.

3. Inter-Object Constraints

23. Sphere/Fluid Interaction - The body and the fluid

interact only through buoyancy and drag. For ex-
ample, the body cannot dissolve in the fluid, nor
can the body transfer heat to the fluid.

Spiegel, Reynolds, and Brogan

In an informal contest related to our study, no participant
identified more than 75% of the ultimate set of constraints
identified. Borrowing from Garlan, Allan, and Ocker-
bloom our challenge participants were neither “lazy, stu-
pid, nor malicious.” (1995)

We believe the study reported here can be useful to the
reader beyond the results above. The falling body model
presents a fine example for testing any proposed reusability
process. If the process cannot lead to the efficient extrac-
tion of the constraints listed in the Appendix, then it is of
questionable value.

In the future we anticipate further study of our initial
taxonomy of validation constraints. Will other types of
simulations yield new categories of constraints? The tax-
onomy is useful only if it can serve as a general guidepost
that suggests hidden constraints that have not been identi-
fied. Additionally the taxonomy for the simulation com-
munity may benefit from insights in the larger domain of
software design. Generic software applications contain
properties that are identified as invariant or time-
dependent. Can the lessons from formal software analysis
be applied to our objectives? We will be exploring these
issues.

ACKNOWLEDGEMENTS

We gratefully acknowledge support from the National Sci-
ence Foundation (ITR 0426971), as well as from our col-
leagues in the Modeling and Simulation Technology Re-
search Initiative (MaSTRI) at the University of Virginia.
We would also like to thank all the participants of the fal-
ling body challenge: Robert Bartholet, Joseph Carnahan,
Mark Farrington, Aleks Gershaft, William Kammersell,
Yinping Kuang, Xinyu Liu, Yannick Loitiere, Thomas Lu-
bitz, and Weide Zhang.

APPENDIX: FALLING BODY CONSTRAINTS

1. Invariant Constraints

 1.a Sphere Attributes

1. Sphere Property - The body is a sphere and it re-

mains spherical.
2. Smooth Property - The body is smooth and it re-

mains smooth.
3. Impermeable Property - The body is completely

impermeable.
4. Initial Velocity - The body has an initial velocity

of v0 that has no horizontal component of motion.
5. Angular Velocity - The body has no initial angu-

lar velocity.
6. Constant Mass - The mass of the body remains

constant over time. The body does not experience
ablation or accretion.

7. Constant Diameter - The diameter of the body
remains constant over time.

8. Distribution of Mass - The body has a centrally
symmetric mass distribution that remains constant
over time.

9. Uncertainty Principle - The diameter of the body
is much greater than the Plank length.

10. Brownian Motion - The mass and diameter of the
body are large enough such that Brownian motion
of the fluid has negligible impact on the body.

11. General Relativity - The mass of the body is low
enough to ignore the gravitational curvature of
space-time.

 1.b Fluid Attributes

12. Fluid Density - The fluid density is constant. The

fluid is incompressible.
13. Fluid Pressure - The fluid pressure is constant.
14. Fluid Temperature - The fluid temperature is con-

stant.
15. Kinematic Viscosity - The kinematic viscosity is

constant. The medium is a Newtonian fluid.
16. Stationary Fluid - The fluid is stationary apart

from being disturbed by the falling body.
17. Infinite Fluid - The volume of the fluid is large

enough to completely envelope the sphere. The
movement of the fluid is not restricted by a con-
tainer such as a pipe or tube.

 1.c Earth Attributes

18. Flat Terrain - The ground does not have terrain

and remains flat for all t > 0.
19. Coriolis Effect - The Earth is not rotating. We ig-

nore the Coriolis effect.

2. Dynamic Constraints

20. Mach Speed - The velocity of the body is suffi-

ciently less than the speed of sound for that me-
dium.

21. Special Relativity - The velocity of the body is
sufficiently less than the speed of light for that
medium.

22. Reynolds Number - The Reynolds number re-
mains between 10

-2
 and 10

7
 for all t > 0. The

Reynolds number is a function of velocity.

3. Inter-Object Constraints

23. Sphere/Fluid Interaction - The body and the fluid

interact only through buoyancy and drag. For ex-
ample, the body cannot dissolve in the fluid, nor
can the body transfer heat to the fluid.

Spiegel, Reynolds, and Brogan

In an informal contest related to our study, no participant
identified more than 75% of the ultimate set of constraints
identified. Borrowing from Garlan, Allan, and Ocker-
bloom our challenge participants were neither “lazy, stu-
pid, nor malicious.” (1995)

We believe the study reported here can be useful to the
reader beyond the results above. The falling body model
presents a fine example for testing any proposed reusability
process. If the process cannot lead to the efficient extrac-
tion of the constraints listed in the Appendix, then it is of
questionable value.

In the future we anticipate further study of our initial
taxonomy of validation constraints. Will other types of
simulations yield new categories of constraints? The tax-
onomy is useful only if it can serve as a general guidepost
that suggests hidden constraints that have not been identi-
fied. Additionally the taxonomy for the simulation com-
munity may benefit from insights in the larger domain of
software design. Generic software applications contain
properties that are identified as invariant or time-
dependent. Can the lessons from formal software analysis
be applied to our objectives? We will be exploring these
issues.

ACKNOWLEDGEMENTS

We gratefully acknowledge support from the National Sci-
ence Foundation (ITR 0426971), as well as from our col-
leagues in the Modeling and Simulation Technology Re-
search Initiative (MaSTRI) at the University of Virginia.
We would also like to thank all the participants of the fal-
ling body challenge: Robert Bartholet, Joseph Carnahan,
Mark Farrington, Aleks Gershaft, William Kammersell,
Yinping Kuang, Xinyu Liu, Yannick Loitiere, Thomas Lu-
bitz, and Weide Zhang.

APPENDIX: FALLING BODY CONSTRAINTS

1. Invariant Constraints

 1.a Sphere Attributes

1. Sphere Property - The body is a sphere and it re-

mains spherical.
2. Smooth Property - The body is smooth and it re-

mains smooth.
3. Impermeable Property - The body is completely

impermeable.
4. Initial Velocity - The body has an initial velocity

of v0 that has no horizontal component of motion.
5. Angular Velocity - The body has no initial angu-

lar velocity.
6. Constant Mass - The mass of the body remains

constant over time. The body does not experience
ablation or accretion.

7. Constant Diameter - The diameter of the body
remains constant over time.

8. Distribution of Mass - The body has a centrally
symmetric mass distribution that remains constant
over time.

9. Uncertainty Principle - The diameter of the body
is much greater than the Plank length.

10. Brownian Motion - The mass and diameter of the
body are large enough such that Brownian motion
of the fluid has negligible impact on the body.

11. General Relativity - The mass of the body is low
enough to ignore the gravitational curvature of
space-time.

 1.b Fluid Attributes

12. Fluid Density - The fluid density is constant. The

fluid is incompressible.
13. Fluid Pressure - The fluid pressure is constant.
14. Fluid Temperature - The fluid temperature is con-

stant.
15. Kinematic Viscosity - The kinematic viscosity is

constant. The medium is a Newtonian fluid.
16. Stationary Fluid - The fluid is stationary apart

from being disturbed by the falling body.
17. Infinite Fluid - The volume of the fluid is large

enough to completely envelope the sphere. The
movement of the fluid is not restricted by a con-
tainer such as a pipe or tube.

 1.c Earth Attributes

18. Flat Terrain - The ground does not have terrain

and remains flat for all t > 0.
19. Coriolis Effect - The Earth is not rotating. We ig-

nore the Coriolis effect.

2. Dynamic Constraints

20. Mach Speed - The velocity of the body is suffi-

ciently less than the speed of sound for that me-
dium.

21. Special Relativity - The velocity of the body is
sufficiently less than the speed of light for that
medium.

22. Reynolds Number - The Reynolds number re-
mains between 10

-2
 and 10

7
 for all t > 0. The

Reynolds number is a function of velocity.

3. Inter-Object Constraints

23. Sphere/Fluid Interaction - The body and the fluid

interact only through buoyancy and drag. For ex-
ample, the body cannot dissolve in the fluid, nor
can the body transfer heat to the fluid.

Spiegel, Reynolds, and Brogan

24. Sphere/Earth Interaction - The body and the earth
interact only through the gravitational force.

25. Fluid/Earth Interaction - The fluid and the earth
do not interact.

26. Closed System - The Earth, sphere, and fluid do
not interact with any other objects.

27. Simple Gravity - Gravity is a constant downward
force of 9.8 m/s

2
.

28. One-Sided Gravity - The mass of the body is
much less than the mass of the Earth. The Earth
is not affected by the gravitational pull of the
body.

29. Inelastic Collision - The collision between the
sphere and the ground is perfectly inelastic.

REFERENCES

Bartholet, R., D.C. Brogan, P.F. Reynolds, and J.C.
Carnahan 2004. In search of the philosopher’s stone:
Simulation composability versus component-based
software design. In Proceedings of the Fall 2004
Simulation Interoperability Workshop, Orlando, FL.

Carnahan, J.C., D.C. Brogan and P.F. Reynolds. Simula-
tion-specific characteristics. Submitted for publica-
tion.

Chow, C. 1979. Introduction to computational fluid me-
chanics. Hoboken, New Jersey: John Wiley & Sons
Inc.

Davis, P.K. and R.H. Anderson 2003. Improving the com-
posability of Department of Defense models and simu-
lations, Rand Corporation Report.
<http://www.rand.org/publications/MG
/MG101/>

Garlan, D., R. Allen, and J. Ockerbloom 1995. Architec-
tural mismatch or why it’s hard to build systems out of
existing parts. In Proceedings of the Seventeenth In-
ternational Conference on Software Engineering. Se-
attle WA.

Hanks, K.S., K.C. Knight, and E.A. Strunk. 2001. Erro-
neous requirements: a linguistic basis for their occur-
rence and an approach to their reduction. In Proceed-
ings of the 26

th
 Annual NASA Goddard Software

Engineering Workshop. Greenbelt, MD
Hayhurst, K.J. and C.M. Holloway 2001. Challenges in

software aspects of aviation systems. In Proceedings
of the 26

th
 Annual NASA Goddard Software Engineer-

ing Workshop. Greenbelt, MD
Kasputis, S. and H.C. Ng 2000. Composable simulations.

In Proceedings of the 2000 Winter Simulation Confer-
ence, ed. J.A. Joines, R.R. Barton, K. Kang, and P.A.
Fishwick, 1577-1584.

Lutz, R. R. 1993. Analyzing software requirements errors
in safety-critical, embedded systems. In Proceedings
of the IEEE International Symposium on Requirements

Engineering. Piscataway, New Jersey: Institute of
Electrical and Electronics Engineers.

Malak, R. J., and C.J.J. Paradis 2004. Foundations of vali-
dating reusable behavioral models in engineering de-
sign problems. In Proceedings of the 2004 Winter
Simulation Conference, ed. R.G. Ingalis, M.D. Ros-
setti, J.S. Smith, and B.A. Peters, 420-428. Piscata-
way, New Jersey: Institute of Electrical and Electron-
ics Engineers.

Page, E.H. and J.M. Opper 1999. Observations on the
complexity of composable simulation. In Proceedings
of the 1999 Winter Simulation Conference, ed. P.A.
Farrington, H.B. Nembhard, D.T. Sturrock, and G.W.
Evans, 553-560. Piscataway, New Jersey: Institute of
Electrical and Electronics Engineers.

Petty, M.D. and E.W. Weisel 2003a. A composability
lexicon. In Proceedings of the Spring 2003 Simulation
Interoperability Workshop, 181-187. Simulation In-
teroperability Standards Organization.

Petty, M.D. and E.W. Weisel 2003b. A formal basis for a
theory of semantic composability. In Proceedings of
the Spring 2003 Simulation Interoperability Work-
shop, 416-423. Simulation Interoperability Standards
Organization.

Shaughnessy, E.J., I.M. Katz, and J.P. Schaffer. 2005. In-
troduction to fluid mechanics. New York: Oxford
English Press.

Sullivan, K.J. and J.C. Knight 1996. Experience assessing
an architectural approach to large-scale, systematic re-
use. In Proceedings of the 18th International Confer-
ence on Software Engineering (ICSE18), 220-229.
Berlin, Germany, March 25-29.

Yam, P. September 2004. Everyday Einstein. Scientific
American, 50-55.

Yilmatz, L. 2004. On the need for contextualized intro-
spective models to improve reuse and composability
of defense simulations. Journal of Defense Modeling
and Simulation 1 (3): 141-151.

Zeigler, B.P., H. Praehofer, and T.G. Kim. 2000. Theory
of Modeling and Simulation, 2

nd
 Edition. Burlington,

MA: Academic Press.

AUTHOR BIOGRAPHIES

MICHAEL SPIEGEL is a Ph.D. Candidate in Computer
Science and a member of the Modeling and Simulation
Technology Research Initiative (MaSTRI) at the Univer-
sity of Virginia. Michael earned his B.A. in Computer
Science at Swarthmore College. He has previously held
the position of research associate at StreamSage, Inc.
studying natural language processing for multimedia
search engines. His email addresses is
<mspiegel@cs.virginia.edu> and his web ad-
dress is <www.cs.virginia.edu/~ms6ep>.

force

displacem
ent

www.centuryspring.com

Denil, J., Klikovits, S., Mosterman, P. J., Vallecillo, A., & Vangheluwe, H. (2017).
The experiment model and validity frame in M&S.
In Proceedings of the Symposium on Theory of Modeling & Simulation (Vol. 49).

Vanherpen, K., Denil, J., De Meulenaere, P., & Vangheluwe, H. (2016).
Ontological Reasoning as an Enabler of Contract-Based Co-design.
In C. Berger, M. R. Mousavi, & R. Wisniewski (Eds.), Cyber Physical Systems. Design, Modeling, and Evaluation: 6th International Workshop, CyPhy
2016, Pittsburgh, PA, USA, October 6, 2016, Revised Selected Papers (pp. 101–115). Cham: Springer International Publishing.
http://doi.org/10.1007/978-3-319-51738-4_8

●

Validity “Frame” ~ reproducibility

●
 Problem-Specific (technological)

●
 Domain-Specific (e.g., translational mechanical)

●
 (general) Laws of Physics

●
 Power Flow/Bond Graphs (physical: energy/power)

●
 Computationally a-causal

 (Mathematical and Object-Oriented) ← Modelica
●
 Causal Block Diagrams (data flow)

●
 Numerical (Discrete) Approximations

●
 Computer Algorithmic + Numerical

 (Floating Point vs. Fixed Point)
●
 As-Fast-As-Possible vs. Real-time (XiL)

●
 Hybrid (discrete-continuous) modelling/simulation

●
 Hiding IP: Composition of Functional Mockup Units (FMI)

●
 Dynamic Structure

A-Causal Modelling in Context

Multi-Domain
Modeling

this slide from Peter Fritzson's Modelica tutorial

http://www.modelica.org

Acausal model
(Modelica)

Causal
block-based
model
(Simulink)

Keeps the
physical structure

Visual Acausal
Hierarchical
Component

Modeling

Multi-Domain
Modeling

this slide from Peter Fritzson's Modelica tutorial

●
Model exchange/re-use standard (Modelica Association)

●
Modelica Standard Library (MSL)

●
Object-oriented, hierarchical; semantics based on flattening

●
Computationally a-causal modelling; semantics based on DAEs

●
Originated in Hilding Elmquist's 1978 PhD thesis @ Lund

●
Early 1990's: Modelica Design Team (started in SiE)

●
hybrid (discrete-time/discrete-event) constructs

(e.g., used to model network protocols based
 on TrueTime http://www.control.lth.se/truetime/)

●
Limited support for Dynamic Structure models (i.e., no “agents”)

●
Separate model from its (numerical) solution ...

●
Generate Functional Mockup Interface (FMI) compliant simulation units

●
Currently: many commercial and open (e.g., OpenModelica) tools

●
Related: Mathworks Simscape, EcosimPro, NMF, gProms, ...

Beware: variables are signals (functions of time)!

Meaning: set of Differential Algebraic Equations (DAEs) obtained by

 1. expanding inheritance/instantiation
 2. flattening hierarchy, unique names
 3. expanding connect() into equations (across vs. flow)

Model-Solver Interface
Simulator-Environment Interface

