Claudio Gomes 3cf891e4c8 cbds running in jupyter преди 6 години
..
1-NewtonsLaws 6c908d974f bond graph materials and docker file преди 6 години
2-StationaryAction a120f9001f exercises преди 6 години
3-BondGraphs 6c908d974f bond graph materials and docker file преди 6 години
4-Modelica 51f67bddd2 tecnical issues solved with modelica tutorial преди 6 години
5-CBDModeling 3cf891e4c8 cbds running in jupyter преди 6 години
assets 8dbcd08f5b empirical experiment with stationary motion преди 6 години
lib 3cf891e4c8 cbds running in jupyter преди 6 години
DockerfileTutorials123 51f67bddd2 tecnical issues solved with modelica tutorial преди 6 години
DockerfileTutorials123567 00bbd20833 cbd преди 6 години
DockerfileTutorials4 00bbd20833 cbd преди 6 години
DockerfileTutorials45 51f67bddd2 tecnical issues solved with modelica tutorial преди 6 години
README.md 00bbd20833 cbd преди 6 години
generate_exercises.ps1 51f67bddd2 tecnical issues solved with modelica tutorial преди 6 години
generate_exercises.py a120f9001f exercises преди 6 години
notes.drawio 00bbd20833 cbd преди 6 години
notes.ipynb d491aae96e stationary action exercises done преди 6 години
notes.md d491aae96e stationary action exercises done преди 6 години
test.mo 83e4d35d95 materials and notes преди 6 години
test_bondgraphs.py 6c908d974f bond graph materials and docker file преди 6 години

README.md

Objective

This repository contains the materials that are used in the MoDELS tutorial of physical systems modelling for software engineers, in 2019.

Running the Materials

  1. Install Docker.

  2. Using docker's console, navigate to the root of this repository.

  3. Build the corresponding docker image:

    docker build -f DockerfileTutorials123567 -t jupyter .
    

    or

    docker build -f DockerfileTutorials4 -t jupyter .
    

This will download all dependencies you need to run the examples. You might need root access.

  1. Note the host's ip address by running:

    docker-machine ip
    

    Let us denote it by MACHINE_IP

  2. Run the docker container:

    docker run --name jupyterrun -p 8888:8888 -t jupyter
    

    This will start a container with name jupyterrun of the image tagged with jupyter and will forward any traffic going into port 8888 (in the host machine) to the same port in the virtual machine. If a token is given, copy it so that you can later access the jupyter notebook from your browser. Let TOKEN denote the token given.

  3. Open your browser and navigate to http://MACHINE_IP:8888/. If asked for a token, insert TOKEN.

  4. Explore the examples.

  5. Any changes made in the notebooks affect only the files inside the container. To retrieve them, either use the notebook interface to download them to your computer (File -> Download As -> Notebook), or detach from the jupyterrun container (typing Ctrl+C on docker's console), and use the following command on docker's console:

    docker cp jupyterrun:/opt/notebooks/tutorial mytutorial
    

    Which will copy all files under the tutorial folder to the mytutorial folder in the repository.

  6. To terminate and clean up, run the following commands

    docker stop jupyterrun && docker rm jupyterrun