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Abstract-This paper presents a simple representation of traffic on a highway with a single 
entrance and exit. The representation can be used to predict traffic’s evolution over time and 
space, including transient phenomena such as the building, propagation, and dissipation of 
queues. The easy-to-solve difference equations used to predict traffic’s evolution are shown to be 
the discrete analog of the differential equations arising from a special case of the hydrodynamic 
model of traffic flow. The proposed method automatically generates appropriate changes in 
density at locations where the hydrodynamic theory would call for a shockwave; i.e., a jump in 
density such as those typically seen at the end of every queue. The complex side calculations 
required by classical methods to keep track of shockwaves are thus eliminated. The paper also 
shows how the equations can mimic the real-life development of stop-and-go traffic within moving 
queues. 

1. INTRODUCTION 

Accurate descriptions of highway traffic flow over transportation networks, whether at 
the planning or operations level, must recognize that the vehicles traveling on any section 
of the network must be bound for specific destinations. 

Static traffic assignment models used for transportation planning (see Sheffi, 1985, 
for example) achieve this goal by describing the flow on a link of the network by its 
components by final destination; e.g., by specifying a variable yid that represents the 
amount of flow on link i that is ultimately bound for destination d. Unfortunately, this is 
much more difficult to do for dynamic network flow problems (with time-dependent 
origin-destination (O-D) flows) because the functional dependence of the link flows at 
time t, yid(f), on the collection of all past flows is quite complex. This problem manifests 
itself both at the planning level, where networks are quite complex, and at the operations 
level, where networks are simpler, but more detail is sought about the system’s evolution. 

Although dynamic traffic assignment models -planning level models involving large 
networks- typically recognize that traffic travels to many destinations, the models are 
based on simplistic flow relationships that are not perfectly consistent with the conserva- 
tion laws of traffic. A planned sequel to this paper will discuss this in more detail. 

Traffic operations models can be microscopic or macroscopic. Microscopic simula- 
tions (e.g., Schwerdtfeger, 1984; Cremer and Ludwig, 1986; Nagel and Schreckenberg, 
1992) assume that the behavior of an individual vehicle is a function of the traffic condi- 
tions in its environment. Although microscopic simulations usually keep track of each 
vehicle’s destination, their assumptions are difficult to validate because humans’ behavior 
in real traffic (not in contrived “car-following” experiments) is difficult to observe and 
measure. This is unfortunate because for a simulation to work the microscopic details 
have to be just right. (As is well known from nonlinear system theory, microscopic details 
have a way of affecting the macroscopic world unpredictably.) In this paper, thus, we 
focus on macroscopic models. 

Macroscopic models assume that the aggregate behavior of sets of vehicles, easier 
to observe and validate, depends on the traffic conditions in their environment. The 
hydrodynamic theory of traffic flow (Lighthill and Whitham, 1955; Richards, 1956) 
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underlies most of these models. While not perfect, its shortcomings are well understood. 
It is justifiably and routinely used in traffic engineering analyses. Unfortunately, most 
macroscopic models do not differentiate their component flows by destination; each 
stream is treated as the flow yi of a single commodity. Thus, when the flow reaches a fork 
in the road, or some other junction where there is a route choice, the models usually 
specify either a fixed proportion of turns or a fixed exit flow. In reality, though, neither 
is fixed; both depend on when vehicles bound for the various destinations reach the 
junction in question. 

This deficiency was addressed by Vaughan, Hurdle, and Hauer (1984), Vaughan and 
Hurdle (1992), and Hurdle (1992), who formulated the problem for a simple network 
consisting of a series of links connected by junctions. Unfortunately, the solution to the 
differential equations resulting from the hydrodynamic model of traffic flow, using the 
classical method of characteristics, is tedious even for a single link, let alone a series of 
links. In an attempt to solve the multiple link problem, Newell (1993) proposed a shortcut 
solution method for the hydrodynamic model of one link. The new method predicts the 
variation of traffic flow at one end of the link from the behavior of traffic at the other 
end, without evaluating the behavior at intermediate points. (Based on the cumulative 
flow curves at the entrance and exit to the link, the method had also been proposed by 
Luke (1972) for the solution of a geological erosion problem.) This ability to “jump” 
from one end of the link to the other is exploited by Newell (1991) to solve the freeway 
traffic flow prediction problem formulated by Vaughan, Hurdle, and Hauer. 

This paper presents an alternative way of predicting traffic behavior for one link by 
evaluating flow at a finite number of carefully selected intermediate points, including the 
entrance and exit. As in Newell (1993), the difference equations that form the basis for 
this procedure are shown to be discrete approximations to the differential equations of 
the hydrodynamic theory for a special form of the equation of state. Although it requires 
more computer memory than Newell’s method, the proposed procedure can be readily 
extended to complex networks such as those involving loops and diverging branches; this 
will be shown in a planned sequel. 

The paper is organized as follows: After introducing the basic model (in Section 2), 
it is shown to be a discrete equivalent of the classical hydrodynamic model: first when the 
traffic density is continuous in time and space (Section 3), and then in the presence of 
discontinuities (Section 4). Sections 5 and 6 present and evaluate two simple generaliza- 
tions aimed at (a) representing more general equations of state (Section 5), and (2) captur- 
ing instability phenomena (Section 6). Section 7 concludes the paper with some remarks 
of importance for network extensions. 

2. THE CELL-TRANSMISSION MODEL 

This paper examines the evolution of traffic over a one-way road without any inter- 
mediate entrances or exits, so that vehicles enter at one end and leave at the other. We 
propose to simulate the system with a “time-scan” strategy where current conditions are 
updated with every tick of a clock. 

To this end the road is divided into homogeneous sections (cells), numbered consecu- 
tively starting with the upstream end of the road, from i = 1 to I. The lengths of the 
sections are not chosen arbitrarily; they are set equal to the distances traveled in light 
traffic by a typical vehicle in one clock tick. Under light traffic then, all the vehicles in a 
cell can be assumed to advance to the next with each tick; it is unnecessary to know where 
within the cell they are located. Thus, the system’s evolution obeys: 

ni+,(t + 1) = f&(t), 

where n,(t) is the number of vehicles in cell i at time t. We will assume that the above 
recursion holds for all flows, unless traffic is slowed down by queuing from a downstream 
bottleneck. This seems reasonable because, for crowded conditions as might arise during 
the rush hour, most of the delays can be attributed to queuing at bottlenecks where flow 
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temporarily exceeds capacity, rather than to any dependence between flow and speed. (It 
has been empirically observed that the space-mean speed of freeway traffic remains 
relatively constant, independent of flow, unless flow is close to capacity.) 

To incorporate queuing we introduce two constants: N,(t), the maximum number of 
vehicles that can be present in cell i at time t, and Qi(t), the maximum number of vehicles 
that can flow into cell i when the clock advances from t to t + 1 (time interval t). The 
first constant is the product of the cell’s length and its “jam density,” and the second one 
is the minimum of the “capacity flows” of cells i - 1 and i. It will be called the “capacity” 
of cell i-short for input capacity- with the understanding that it represents the maxi- 
mum flow that can be transferred from i - 1 to i. We allow these constants to vary with 
time to be able to model transient traffic incidents. The number of vehicles that can flow 
from cell i - 1 to cell i when the clock advances from t to t + 1 (the flow into “i” for the 
time interval after “t”), n(t), is assumed to be the smallest of three quantities: 

ni- I(t) 
Qi(t) : 

the number of vehicles in cell i - 1 at time t, 
the capacity flow into i for time interval t, and 

N;(t) - n,(t) , the amount of empty space in cell i at time t. 

(This last quantity ensures that the vehicular density on every section of the road remains 
below jam density.) Our proposed simulation, called the “cell-transmission model,” will 
be based on a recursion where the cell occupancy at time t + 1 equals its occupancy at 
time t, plus the inflow and minus the outflow; i.e., 

ni(t + 1) = 4(t) + Yi(t) - Yi+l(t) (la) 

where the flows are related to the current conditions at time t as indicated below: 

Yi(t) = min(n,_,(t), Qi(t), Ni(t) - ni(t)}. (lb) 

The simulation would step through time, updating the cell occupancies (for all i) with 
each tick of the clock. 

Boundary conditions can be specified by means of input and output cells. The output 
cell, a sink for all exiting traffic, should have infinite size (N,,, = 03) and a suitable, 
possibly time-varying, capacity. Input flows can be modeled by a cell pair. A “source” cell 
numbered “00” with an infinite number of vehicles (n,(O) = 03) that discharges into an 
empty “gate” cell “0” of infinite size, N,(t) = 03. The inflow capacity Qo(t) of the gate 
cell is set equal to the desired link input flow for time interval t + 1. The gate cell then 
acts as a metering device that releases traffic at the desired rate while holding (as a parking 
lot would) any flow that is unable to enter the link. 

Note that the result of the simulation is independent of the order in which the cells 
are considered at each step. This important property of the cell-transmission model will 
permit the analysis of complex networks, e.g., with loops. The property arises because we 
are specifying that the number of vehicles that enter a cell is unrelated to the number of 
vehicles that will leave it; thus, only current conditions influence the inflow to a cell. 
Although the first two restrictions (yi(t) s ni_l(t) and yi(t) 5 Qi(t)) are reasonable in 
this regard, one may argue that if a cell is rapidly being emptied then the third (occu- 
pancy) restriction yi(t) I Ni(t) - ni(t) may be overly conservative. The counter- 
argument is that empty slots for cars can only travel backwards at a finite speed (the wave 
propagation speed) unlikely to be greater than the free flow speed. Therefore, the effects 
of the outflow should only be noticed upstream after some time. Because this lag is one 
tick of the clock for our model, this is akin to assuming that density waves propagate 
backwards at the free flow speed. Sections 3 and 4 demonstrate that our simulation 
indeed behaves as a hydrodynamic model of traffic flow with this property. An extension 
in which backward waves move more slowly is introduced in Section 5. 
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3. EQUIVALENCE TO A HYDRODYNAMIC MODEL 

We now consider a homogeneous highway and show that eqns (1) are a discrete 
approximation to the Lighthill, Whitham, Richards hydrodynamic model with a density- 
flow (k-q) relationship in the shape of an isosceles trapezoid, as in Fig. 1. This relation- 
ship can be expressed as: 

4 = min{vk, qmax, v(kj - k)}, for 0 s k I k,, (2) 

where v is the free-flow speed (and the speed of all backward moving waves), k, is the jam 
density, and qmax I kjv/2 is the maximum flow. 

If eqn (2) is replaced into the flow conservation equation: 

dq(x,t)/dx = -8k(x,t)/dt, 

we obtain the differential equation that would define the evolution of the system under 
the hydrodynamic model: 

8 min{vk(x,t), qmax, v(kj - k(x,t))}/dx = -tlk(x,t)/&. (3) 

We now show that eqn (3) is equivalent to our simulation. Note that for our homo- 
geneous highway, the cell characteristics would be independent of i and t: Ni(t) = N and 
Qi(t) = Q. To demonstrate the equivalence of the discrete and continuous approaches, 
we now define the tick of the clock to be equal to dt and choose the unit of distance such 
that vdt = 1. Then the cell length is 1, v is also 1, and the following equivalences hold: x 
c i, kj E N, qmax E Q, and k(x,t) = n,(t). With these conventions, the variable in braces 
in eqn (3) is equivalent to: 

min{ni(t), Q, N - ni(t)}v 

which coincides with the definition of y,+,(t) of eqn (lb), except for the subindex of n in 
the last term which should have been i + 1 instead of i. This, however, is immaterial 
unless the density is discontinuous. Because the hydrodynamic differential equations are 
only meaningful when the density is differentiable in x (discontinuities -shocks-are 
treated outside of the differential equations with the hydrodynamic model), we can state 
that the variable in braces is equivalent to yi+ ,(t), and as a result the left hand side of eqn 
(3) is: 

FL0 W, q 

A 

” kj I2 - ------- I’\ \ /I \ 
9 

/ \ 
max 

DENSITY, k 

Fig. 1. Flow-density relationship for the basic cell-transmission model. 
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Yi+l tt) - Yi tt)* 

The right side of eqn (3), of course, is: 

-[ni(t + l) - ni(t)l, 

and the equality of these two quantities justifies the simulation recursion, eqn (la). 
To be sure, there are other forms of eqn (lb) that would also be consistent with eqn 

(3). For example, the flow into cell i, y,(t) could have been specified only as a function of 
the occupancy of the sending cell, i - 1, so that eqn (lb) would have been: 

Yitt) = min{kl(t), Qi(t)v N,_,(t) - ni_,(t)}. 

Alternatively, _Yi(t) could have been specified only as a function of the occupancy in the 
receiving cell. While these, and possibly other specifications are consistent with eqn (3) 
for any slow varying density, their behavior in the face of discontinuities is not equivalent 
and may not be reasonable. 

That consistency with eqn (3) is no guarantee of reasonable behavior across disconti- 
nuities is clearly illustrated by the expression above. It should be clear from inspection 
that such an expression would predict zero flow downstream of any discontinuous drop 
in density from the jam density to any lower value. Thus, such a model would predict 
that vehicles queued at a traffic light would not advance even after the light turned green! 
(Unrealistic predictions also arise if flows are based only on the status of the receiving 
cell, as then a receiving cell would continue to attract vehicles even after upstream occu- 
pancies have dropped to zero.) 

Because discontinuities are common - arising spontaneously when low density traffic 
catches up with denser, slower downstream traffic- their effect on model performance 
must be examined. We claim here that eqn (lb) will replicate the behavior of the continu- 
ous model even across discontinuities. Thus, it should be possible to iterate eqn (1) and 
automatically track varying densities and the paths of any resulting shocks, This property, 
very useful for automatic computation, is discussed in the next two sections. 

4. PROPAGATION OF DISTURBANCES AND CREATION OF SHOCKS 

Here we compare the predictions of the hydrodynamic theory and our model, when 
the density along the road is known at an initial time (t = 0) and discontinuities may be 
created. 

Consider a portion of road where the density varies within a narrow range in the 
direction of travel; i.e., k(x,O) changes with X, but remains either (a) between 0 and kA (in 
Fig. I), (b) between k+, and kr,, or (c) between kB and kje Then the hydrodynamic theory 
predicts that the same density profile will be preserved over time, except for a position 
shift; no shocks are created. That is, k&t) = k(x - wkt,O), where w, is the wave speed 
for the portion of the diagram corresponding to our initial densities. For our chosen 
time-distance units of measurement (with v = 1) the wave speed is 1 for case (a), 0 for 
case (b), and - 1 for case (c). (This result arises because in the special case we are 
considering the characteristics-loci of constant density in time-space-are parallel 
straight lines with slope wk.) 

It is not difficult to see that the cell-transmission model also satisfies k&t) = k(x 
- wg,O): According to eqn (lb) the number of vehicles transmitted from cell i - 1 to 
cell i is either n,_,, Qi, or Ni - ni, depending on whether k is in [O,k,], [kA,kB] or [ke,kj]; 
and as a result, it should be clear from eqn (la) that ni(t + 1) will be either n,_,(t), n,(t), 
or ni+l(t), depending on whether k is in [O,k,], [kA,kB] or [kB,kj]. Thus, the density profile 
(vehicle counts) move with the wave speed. 

If the initial density profile is not entirely within a narrow range, the evolution is 
more complicated-discontinuities are created. We consider first situations in which the 
density increases only in the direction of travel. 

TRW 28:4-c 
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4.1. Increasing density 

C. F. DAGANZO 

Let us assume that k(x,O) increases from a point slightly below kA of Fig. 1 to a point 
above, and examine a range of x where the increase is roughly linear. 

Without loss of generality, we assume that the units of measurement for time and 
space are chosen so that v = 1 (as before) and S(X,~)/C~X = 1. Further, we assume that 
vehicles are counted in units (e.g., pairs, halves, dozens . . . ) such that the maximum 
flow is qmax = 50 units/time, and also assume that the origin of (spatial) coordinates is 
located where the initial density is 50 count units per unit distance. Thus, without any loss 
of generality we have reduced all of the problems of interest to a unique one for which 
the diagram of Fig. 1 has only one free parameter kj (since qmax = 50, k, = 50, and k, 
= k, - kA = kj - 50), and such that the initial density profile is k(x,O) = 50 
+ x. Furthermore, because neither k, nor kj affect the evolution of our density profile as 
long as the densities remain below kg, the free parameter doesn’t need to be specified (we 
could select for example kB = 100 and ki = 150). 

Figure 2a depicts the map of characteristics for this problem and the shockwave 
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Fig. 2. Traffic evolution with an increasing density. (a) Map of characteristics. (b) Density profile. (c) Numerical 
result. 
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resulting from the convergence of the characteristics. The shock path is defined by the 
line: x = t/2. On one side of the shock, the density is defined by the horizontal character- 
istics and is k(x,t) = 50 + x; the flow is q(x,t) = 50. On the other side the density, 
defined by the slanted characteristics, is 50 + x - t; the flow is q(x,t) = k(x,t). As the 
reader can easily verify, the curve in the figure is the only x(t) satisfying the vehicle 
conservation condition: 

ax(t,/at = LA (x9 t) - q,(wlm, (XJ) - k2W)l, (4) 

where the subscripts “1” and “2” refer to the state on either side of the shock. (This 
condition ensures that vehicles don’t disappear; i.e., those entering the shock on one side 
also leave it on the other side.) 

Figure 2b depicts the density profile k(x,t) for different t. Note how the shock moves 
forward at speed l/2, gradually increasing in size. 

Figure 2c depicts the result of the cell transmission model, eqn (l), when the initial 
conditions are as stipulated and the clock tick has been chosen to equal one time unit - 
this also implies that cells are one distance unit long. Note the similarity of Figs. 2c 
(viewed sideways) and 2a. The arrows in Fig. 2c follow the characteristics of constant 
density. The shock path, highlighted by circles between cells, alternates between 1 and 2 
cells wide; as in Fig. 2a, it advances 1 cell (distance unit) for every 2 clock ticks. The rows 
of Fig. 2c are also consistent with the evolution pattern depicted in Fig. 2b. 

The close agreement is not a result of the clock speed used. If a clock that was 10 
times faster had been chosen, cells would have been 10 times shorter and the entries in the 
first row of Fig. 2c would have been 10 times smaller. Because Q and N would also have 
been 10 times smaller, the result of the recursion would reveal the exact same pattern of 
Fig. 2c, except that the entries would have been 10 times smaller. Note in particular that 
the shock path would have remained 1 or 2 cells wide so that its actual spatial range 
would have been 10 times smaller than before. Thus, in agreement with the continuous 
hydrodynamic model, the spatial dimension of the shock could be made to vanish with 
infinitely fast clocks and negligible cell sizes. 

A density profile k(x,O) that increases past kB yields similar results. The same set of 
parameters for Fig. 1 (with k, = 100 and k, = 150) also suffices to describe this case 
exhaustively as long as the upstream density remains above kA. As the reader can verify, 
the map of characteristics is now simply an upside down version of Fig. 2a, with back- 
ward-moving characteristics ahead of stationary ones and a shockpath defined by x = 
-t/2. The numerical results of a simulation with first row cell contents increasing past 
“100” ( . . . 98, 99, 100, 101, . . . ) are also consistent with this pattern; as a whole they 
resemble an upside down version of Fig. 2c, including a backward moving shock that is 1 
or 2 cells wide. 

Suppose now that the density profile k(x,O) increases past kA and then past k,. Then, 
the forward-moving shock generated when the density increases beyond kA will eventually 
be met by the backward moving shock generated by the growth past kB. The shocks would 
coalesce into a (forward or backward) moving shock that would separate upstream traffic 
states with density in the interval [O,k,] from downstream traffic states with density in 
[k,,kJ. The speed of the coalesced shock would be governed by eqn (4). 

The numerical model replicates the behavior of the coalesced shock with a l- or 2-cell 
interface that moves at the correct speed. That the interface must move at the speed given 
by eqn (4) should be obvious, because eqn (4) is a direct result of vehicle conservation, 
and the numerical model conserves vehicles.’ This fact is illustrated by the example in 
Section 5. 

‘To see that the interface spans only 1 or 2 cells, start with an initial set of occupancies such as ( . . . , n’, 
n , no, n “, n u, . . ) where n ’ would correspond to a density below kA, n” to a density above kB. and n, would 
be in the interval [n’,n”]. Then, it suffices to check that at the next iteration there would be at most one cell 
with an occupancy different from n ’ and n ” , and that cell could only be the cell previously containing no, or 
one of its neighbors. Care must be exercised in checking this property, because the flows between cells depend 
on the magnitude of no relative to n ’ , Q, N-Q, n ” , and N. 
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4.2. Decreasing density 

C. F. DAGANZO 

This subsection shows that the cell transmission model is not disrupted by discontinu- 
ities in the derivative of the density profile, which are generated by a decreasing density. 

With the flexibility to choose the units of measurement for counts, time, and distance 
as described in Section 4.1, the diagram of Fig. 1 with qmax = 50, kA = 50, kB = 100, 
and kj = 150 still suffices to describe exhaustively the evolution of any density profile 
decreasing smoothly past either kA or &. The origin of spatial coordinates is chosen so 
that k(O,O) = 50 if the initial density profile decreases past kA, and k(O,O) = 100 if it 
decreases past ka. 

With these conventions, the maps of characteristics for both cases are as depicted in 
Fig. 3a. Note the constant-density, wedge-shaped regions that appear in the time-space 
continuum. Because the characteristics diverge, no shocks are formed. 

The figure also displays the density profile predicted by the hydrodynamic theory at 
t = 0 and 1 for both cases. In the first case, densities below kA are propagated forward at 
speed 1, and higher densities remain stationary; an expanding road section with density 
/rA separates the high and low densities. In the second case, the low density section 
remains stationary, and the high density section is propagated backward at speed - 1. 

Figure 3 also displays the results of the cell-transmission model, using as before a 
one time unit clock tick. The results closely replicate the hydrodynamic predictions. 
Note in particular the wedge-shaped regions of constant count and the direction of the 
characteristics. 

We have thus established that if the density changes gradually over space, the cell 
transmission model is equivalent to the continuous hydrodynamic model. Discontinuities 
in this density (shocks) are also captured adequately by the cell-transmission model; they 
are represented by transition sections comparable with the lattice width and spanning 1 or 
2 cells. 

An example involving the build-up and dissipation of a queue, and confirming the 
phenomena just discussed, is given in Daganzo (1993). An appendix in that reference also 
provides a spreadsheet that can be used to solve similar problems with the cell transmis- 
sion model. 

5. THE CELL-TRANSMISSION MODEL: GENERAL CASE 

Although the equation of state in Fig. 1 allows one to choose three basic engineering 
parameters (the free flow speed, the maximum flow, and the jam density), the relation- 
ship forces the backward wave speed to match the free flow speed. This is somewhat 
unrealistic because in reality waves move several times more slowly than free flowing 
traffic, changing the manner in which vehicles approach the bottleneck and the location 
of queues. In turn, this may change the times when an intersection upstream of a bottle- 
neck might be blocked by the queue because, with slow waves, queues persist for a longer 
time behind temporary bottlenecks and are dissipated further upstream. Without close 
intersections upstream, the wave speed discrepancy is less important-it can be shown not 
to change the time when approaching vehicles would pass the bottleneck and, hence, not 
to influence the resulting vehicle delay. 

Here, thus, we examine an extension of the cell-transmission model that would 
approximate the hydrodynamic model for an equation of state that allows backward 
waves with speed w I v. Said equation of state, depicted in Fig. 4, is: 

4 = min{vk, qmax, W(kj - k)}, for 0 I k I kj, (9 

where w I v and qmax I kj/[l/V + l/w]. 

The cell-transmission model intended to represent this relationship is identical in all 
respects to the one in Section 2, except that eqn (lb) is modified slightly and now is: 

.Yi(t) = min{ni-r(t), Qi(t), (w/v)[Ni(t) - ni(t)l}- (6) 

5.1. Equivalence to the hydrodynamic theory 
For a homogeneous highway, the differential equation defining the system evolution 

under the hydrodynamic model, formerly given by eqn (3), is now: 

a min{vk(x,t), qmax, w(kj - k(x,t))j/ax = -ak(x,t)/at. (7) 
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Fig. 3. Traffic evolution with a decreasing density. (a) Map of characteristics. (b) Density profile. (c) Numerical result. 
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Fig. 4. Flow-density relationship for the generalized cell-transmission model. 

It is not difficult to see repeating the arguments of Section 3 (explicitly given in 
Daganzo, 1993) that eqns (6) and (7) are equivalent wherever k&t) is differentiable. 

As in Section 3, other subindex choices for eqn (6) could also preserve the equiva- 
lence, but the ones adopted here ensure that the recursion behaves properly in the pres- 
ence of discontinuities. The following subsection explores this fact in more detail. 

5.2. Behavior of difference equations with finite clock ticks 
As happened for the basic cell-transmission model, finite difference eqns (la) and (6) 

solve the continuous hydrodynamic model of Fig. 4 when an infinitesimally small clock 
tick is used. We now explore the model behavior with finite clock ticks and discontinuous 
densities. Section 4 demonstrated that for finite clock ticks the difference between the 
continuous and discrete solutions to the basic model is minimal: the largest discrepancy 
between the two arises with the representation of shocks, which take no space in the 
continuous model but span either 1 or 2 cells in the discrete model. The generalized 
model, although equivalent to the continuous model in the limit, is not as well behaved 
for finite clock ticks. 

To illustrate the issues, the current subsection describes the evolution of both a shock 
and an acceleration wave as predicted by both the continuous and discrete equations. 
Then, the following subsection introduces a modification to eqn (6) that improves the 
finite clock tick performance of the model. 

In this subsection, we use the diagram of Fig. 4 with v = 1 and k, = 50 (no loss of 
generality here) and also assume when an illustration is needed that w = 0.25 (a reason- 
able value) and kB = kA. As a result, qmax = 50 and kj = 250. 

Consider first a density profile, representing traffic running into the back of a sta- 
tionary queue at position x = 15; i.e.: 

k(x,O) = k, if xc 15 

= k,, if x 1 15. 

The discontinuity at x = 15 is a shockwave that will propagate backward. If k is greater 
than kB (e.g., k = 70), then the shock will propagate at speed - 0.25 (see Fig. 4). 

In a plot of cumulative vehicle count (recall that we may be counting vehicle pairs, 
dozens, etc.) vs. distance, the shock will appear as a convex break in the slope of the 
curve. The position of this break is independent of the count label assigned to the vehicle 
at x = 0, and for this reason we will always assign label 0 to the vehicle immediately 
upstream of x = 0; then the cumulative count K(x,t), called from now on the “cumulative 
profile,” is the integral over x of k(x,t). (Note that this scheme does not identify individual 
vehicles.) For our example, the initial cumulative profile is: 
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K&O) = x/C , ifx< 15 

= 15k + (X - 15)kj, if x 2 15. 

Because the shock travels at speed 0.25, the break in slope is at x = 15 - 0.25t for any t 
> 0. Hence, for any t c 60, the cumulative profile predicted by the hydrodynamic 
theory is: 

K(x,t) = xk , if x < 15 - 0.25t 

= (15 - 0.25t)k + [x - (15 - 0.25t)]kj, if x 2 15 - 0.25t. 

The cumulative profile can also be evaluated with the cell-transmission model. If the 
clock ticks once every time unit and cells are defined so that cell 1 extends from x = 0 to 
x = 1, then the cumulative profile at any (integer valued) x is simply the sum of the 
vehicle counts in cells 1 to x - 1. For the case with kj = 250 and k = 70, the initial cell 
contents would then be: ( . . . , 70, 70,250, 250, . . . ). Figure 5 displays the approxima- 
tion to K(x,t) at various times; dashed lines show the exact result. Notice how as time 
passes the discrete approximation “softens” the shock, so that it spreads to a growing 
number of cells. 

A similar spreading phenomenon occurs with acceleration waves (Le., concave bends 
in the cumulative profiles). Daganzo (1993) contains an illustration. 

We claim that the prediction errors caused by numerical spreading are minor because 
as illustrated in Fig. 5: (a) the maximum error in the count increases at a decreasing rate 
with the passage of time, (b) the disturbances still travel at the appropriate speed, (c) the 
vehicle counts and densities on either side of the shock (or wave) are not corrupted, and 
(d) the accuracy of the count near a shock (or wave) can be controlled by modifying the 
clock tick-as per dimensional arguments already seen. 

5.3. A modification that eliminates spreading for certain shocks 
Repetition of the arguments in Section 3 shows that the following modification to 

eqn (6) preserves its consistency with eqn (7) wherever k(x,t) is differentiable: 

Yi(t) = min(ni-l(t), Qi(t), a[N,(t) - ni(t)]}, @a) 
where 

a=1 , if ni_,(t) s Qi(t) 

= w/v, if n,_,(t) > Qi(t). 
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Fig. 5. Generalized cell-transmission mohel: softening of a shock with distance. 
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The modification ensures that shocks separating an upstream density lower than k, from 
a downstream density greater than kA cannot spread. This should be clear because for 
shocks of this nature (Y = 1; eqn (8a) is then identical to eqn (lb), which does not exhibit 
spreading. 

We claim that with this improvement any errors in the cumulative count near a shock 
(wave) should disappear once upstream light traffic (v = 1, k < kA) catches up with the 
spreading shock (wave); as a result, any numerical errors should be short lived. We base 
this observation on the fact that the shock preceding the advancing light traffic is of the 
nonspreading type, and that it eventually must separate accurate upstream and down- 
stream counts. 

Perhaps, the above argument can be best understood if it is illustrated with an 
example. Consider the following initial density profile: 

k(x,O) = k,, if8sxs 11 

= 25, otherwise. 

A diagram of k(x,t) for this problem, also displaying the acceleration waves and shocks 
predicted by the hydrodynamic theory, is provided in Fig. 6b. We can see from it that all 
the changes in density for this problem are discontinuous and that, as a result, the 
cumulative profile K(x,t) at any t should be a piecewise linear function, as shown in Fig. 
6c. The solid lines in Fig. 7 are graphs of the cumulative profile for t = 0, 8, 16, 24 and 
32 as predicted with eqns (la) and (8); the dashed lines in the figure are the (piecewise 
linear) exact results. Although the acceleration waves spread (as shown by the concave 
bends of the curves), the (convex) shocks remain sharp. The figure clearly illustrates how 
the spreading wave is gradually “eaten up” by the advancing shock, until at time 24 and 
thereafter the exact and approximate results essentially coincide. 

150 200 250 
X 

@I t 
k=25 
/ 

5p++$ , ,+ 
(c) Kix,+l 

8 16 32 
21.6 

Fig. 6. Hydrodynamic solution to an example with a generalized flow-density relationship. (a) the q-k relation- 
ship. (b) The resultine d?rcir\, map k!r 11 fc) Cumulative density profiles at dif’f:~ ‘11’ f;v.. ‘I 
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Fig. 7. Cumuiative density profiles predicted by the generalized cell-transmission model for the example of Fig. 6. 

6. INSTABILITY 

So far we have argued that the cell-transmission model in one of its forms can easily 
produce results consistent with the hydrodynamic theory of traffic flow. This section 
takes an extra step; it shows that the cell-transmission model has the potential for captur- 
ing real-life instability phenomena, not included in the hydrodynamic theory. 

Research on the stop-and-go phenomenon of congested freeway traffic dates back at 
least to Edie and Foote’s (1961) and Edie’s (1963) observations at the Lincoln and Holland 
Tunnels, and the George Washington Bridge in New York. Despite substantial efforts on 
the subject since then (witness for example the extensive car-following literature of the 
1960’s) a model of traffic instability that would account for the long periods of oscillation 
(approximately 1 minute long) observed in practice seems to have eluded researchers. 

Newell (1963) had stated that an instability would arise if drivers catching up with 
denser/slower traffic ahead were to delay braking, perhaps in the hope that traffic would 
clear up before they had to slow down. This behavior would result in average spacings 
shorter than usual when traffic was decelerating (as observed by Edie) and would cause 
an instability. Of course, a microscopic car-following model to mimic this behavior would 
be extremely difficult to build (and validate) because in making their decisions drivers 
consider the recent evolution of the traffic stream immediately ahead, and not just the 
current status of one vehicle. A macroscopic model, consistent with Edie’s observation 
that spacings are shorter when platoons are compressing, may be a more sensible goal to 
pursue. 

Perhaps because of these difficulties, current efforts (see, for example, Ferrari, 1991) 
typically avoid seeking a behavioral explanation for instability and tend to focus instead 
on its control, using on-line macroscopic traffic measurements. This section also exam- 
ines instability at the macroscopic level. It shows that the cell-transmission model, with a 
very simple modification that makes it consistent with Edie’s observations, can duplicate 
real-life instability features. 

Here we postulate that drivers operate in one of two modes depicted by the two q-k 
diagrams of Fig. 8a, depending on the traffic conditions prevailing in a “look-ahead” 
road section extending a fixed distance ahead of their current location. If the traffic 
density in this “look-ahead” section is greater than the traffic density in the vehicles’ 
immediate neighborhood (assumed to be smaller than the “look-ahead” section), then we 
will assume that the vehicles would advance position as if they were regulated by the top 
curve of the figure. Otherwise, they will advance according to the lower curve’. 

‘Other conditions for the on-off switching mechanism could have been postulated. For example we could 
have stipulated that drivers wili advance more aggressively (according to the upper curve) if the traffic density 
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A 

(a) 

Fig. 8. Flow-density relationships for the generalized cell-transmission model with built-in instability. (a) 
General case. (b) Specific case. 

The cell-transmission model can capture such conditions quite naturally. Without 
loss of generality, we define the cell length to be the distance of “the immediate neighbor- 
hood,” and examine a special case where the “look-ahead” distance is two cells. Then, 
only the occupancies of two neighboring cells need to be compared to determine any 
inter-cell flow. For the purposes of illustration the q-k curves are assumed to be of the 
special form depicted in Fig. 1 lb, as then no additional parameters need to be introduced. 
For this special case, the cell-transmission model will capture the desired behavior if the 
variable a! of eqn (8a) is redefined as: 

a=1 ) if n,_,(t) I ni(t) or Q,(t) W 

= w/v, otherwise. (9b) 

Although much experimental evidence would be needed to make a strong claim for 
realism, the results described below at least seem to be qualitatively consistent with 
real-life behavior. 

6.1. Results 
Here we describe the numerical results of a number of simulations that were done 

with the cell-transmission model, using eqns (8a) and (9). The tests involve a homoge- 
neous finite section of highway with a large input flow and a restricted steady output. 
Because the output is constant, the (stable) hydrodynamic steady state solution is a 
spatially uniform density. (The value of said density is given by the point on the congested 
part of the q-k curve that has q equal to the output flow.) If the system is assumed to be 
in steady state at time t = 0, eqns (9) don’t generate any instability; they produce the 
same result as eqn (6) and eqns (8), of course, matching the hydrodynamic prediction. 

We explore here the evolution of the system as predicted by eqns (9) when a single 

in their neighborhood has been increasing in time. Alternatively, aggressive behavior could be stipulated when 
both conditions are met (or else either one of them). Fortunately, the specific trigger is not important because, 
with backward moving waves (relative to a vehicle) as result from our model, if one of the conditions is met so 
are the others: all the models should be similar. 
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random disturbance to the exit flow is introduced at time t = 0 (i.e., a slightly larger or 
smaller output flow for the first clock tick only). Experiments have been conducted for a 
number of examples, and these will be discussed here qualitatively. Numerical results will 
be given for one of the examples (for illustration only) corresponding to the following 
parameters of Fig. 8b: qmax (QJ = 50, kj (Ni) = 150, W/V = 0.5; and the following initial 
conditions: Qoutput = 25 and ni = 100. 

In all the cases tested, and independently of the magnitude of the initial impulse, a 
flow disturbance was generated that grew in duration and magnitude as it traveled back- 
ward. The disturbance is first noticed by a temporary increase in flow, which is then 
followed by a shorter but sharp reduction, finally terminating with a gradual return to 
normalcy. The disturbance does not generate any lasting effects; after its passage, vehicles 
are observed to go by any location at the time they would have passed without the 
disturbance. However, affected vehicles are observed to pass . . . earlier! We are not sure 
whether this would also occur in reality, and unfortunately it seems difficult to design an 
experiment to verify it. In a way the answer to this question is moot because, with a 
constant output flow, every vehicle will pass the bottleneck at its appointed time. A small 
disturbance cannot cause any delay. 

Figure 9a contains plots of cumulative count VS. time at 5 locations separated by 3 
cells. Notice how the disturbance grows as described, eventually including time intervals 
with nearly zero flow. From the time at which the shock front (the crest of each cumula- 
tive count curve) passes the various locations we can infer the disturbance’s speed. In the 
figure, as in the other cases tested, the disturbance traveled (roughly) with the wave speed 
w. This should not be surprising for a disturbance that is no longer growing: the disturb- 
ance must move with the speed of its decreasing density portion, which must be w since 
eqns (9) and (8) are equivalent when the density decreases. 

We also performed experiments in which a steady random noise was added to the 
exit flow- the noise was identical to the described impulse at t = 0, but operating at all 

.- ,- -, 

Fig. 9. Curves of cumulative flow versus time observed at different positions. (a) A single impulse at the exit. 
(b) Steady noise at the exit. 
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times. With such noise, regularly oscillating waves would invariably develop upstream 
from the exit, with a period of oscillation that was the same at all locations and a phase 
shift of speed w. Both the wave growth pattern and the oscillation period were surpris- 
ingly reproducible, i.e., largely independent of the set of generating impulses, perhaps 
providing an explanation for the regularity of stop-and-go traffic waves. Figure 9b illus- 
trates these comments; the figure represents a situation identical in all respects to 9a, 
except that the single impulse has been replaced by steady noise. This figure can be 
compared with the flow-wave results of Edie and Foote (1961), given in Fig. 10. Note that 
a certain regularity was also observed in these experiments and that, as in Fig. 9, the 
disturbances also grew with the distance from the tunnel’s exit. 

For the same combination of parameters, Fig. 11 depicts the oscillations recorded in 
the q-k plane. Each point in the figure corresponds to a combination of y,(t) and the 
average of the occupancies in the sending and receiving cells during the two time intervals 
immediately preceding and following clock tick i: 

(1/4)]%.,(t) + n;(t) + nj-1 (t + 1) + n,(t + l)], 

The pattern of the figure, insensitive to the impulse set, is also observed at other locations, 
although, obviously, there will be a scaling discrepancy wherever the disturbance is not 
fully grown. Different patterns, also insensitive to the impulse set and the specific Ioca- 
tion, are obtained for other wave speeds and initial densities. 

The number of ticks for one oscillation was found to decline with w and to depend 
on the metering rate; the number was close to 8/(w/v) for q = q&2. Thus, a period of 
a few minutes, as reported in Edie and Foote (1961), would arise with w/v = l/6 and a 
clock tick of about 5 seconds- the “look-ahead” section would then be a few hundred 
feet long. 

Our findings seem to be consistent with the observations of Treiterer and Myers 
(1974), who documented the growth of one disturbance. Interesting to note is the similar- 
ity of Fig. 11 and Fig. 4 of this reference (reproduced here as Fig. 12a); the similarity 
should be qualified, however, because Treiterer and Myers’ figure depicts the q-k oscilla- 
tions seen by a moving observer, and Fig. 11 does not. Other comparisons can also be 
made. From the trajectories in Treiterer and Myers’ Fig. 2 (reproduced here as Fig. 12b), 
the following parameters can be estimated: v = 54 MPH, q,,,,, = 1850 VPH, and k, = 
240 VPM. For a diagram such as the lower one of Fig. 8b, this corresponds to a wave 
speed of about 9 MPH (consistent with the observed speed of the disturbance). We used 
a cell-transmission model with a 1 .O-set clock tick and 0.015mi cell length, which ensures 
that v = 1 cell per tick = 54 MPH. With these basic features, the parameters of the 
cell-transmission model are N = 3.6, Q = .51, and w/v = l/6. The original state ob- 
served in the figure (k = 80 VPM > k,,) corresponds to n = 1.2. In rough agreement 
with the trajectory pattern of Fig. 12b, the numerical results revealed a disturbance that 
grew in spatial dimension by about 60 meters per minute, traveling at about 7 MPH 
during this transitional phase. 

The above comparisons are not meant to establish the validity of the model in Fig. 
8b; only that it may have the potential for reproducing real-life phenomena. A very large 
empirical effort would be needed to pinpoint more precisely a “correct” model. After all, 
typical instability features such as a disturbance’s growth rate and its final equilibrium 
size may depend on local conditions, perhaps even changing across facilities just as kj, 

4 Ill&X, w, and v do. Besides changing the clock tick (and cell size), reducing the slope of the 
upper curve of Fig. 8b, and increasing the number of cells for the “look-ahead” section 
might also capture these variabilities. The clock tick should be adjusted to match observed 
oscillation periods, and the upper slope to match the disturbance’s growth pattern. (We 
have found from our experiments that with a shallower upper branch for the diagram in 
Fig. 8b the system becomes more stable, and when disturbances grow they grow at a 
slower rate.) We have not explored the effect of longer “look-ahead” sections. Another 
generalization might involve a model where the transition flows (eqn 8a) themselves 
include random noise. 
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Although the results in Sections 5 and 6 have been developed for the specific form of 
the q-k relationship depicted in Fig. 4, the form is rather general. It offers 4 degrees of 
freedom: the free flow speed, the maximum flow, the jam density, and the wave speed. 
As pointed out by Newell (1993), these are the most important determinants of traffic 
evolution; and even if a more general model were available, it is unlikely that in any 
practical application an engineer would have reliable data beyond these parameters. Ar- 
guably, thus, a model with so much flexibility should be accurate enough for modeling 
complex networks. Field experiments are currently being planned to assess the accuracy 
of the model. 

The method is very robust and matches the results of the hydrodynamic theory, even 
for long clock intervals and large cell sizes. Errors in timing are comparable to the clock 
interval, and errors in location are comparable to the cell size. Thus, in any practical 
application, one should choose the longest clock step consistent with one’s objectives. An 
illustration and further discussion of this property can be found in Daganzo (1993). 
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