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Abstract

In this paper, we give an elaborate and understandable review of traffic cellular automata (TCA) models, which are a class of
computationally efficient microscopic traffic flow models. TCA models arise from the physics discipline of statistical mechanics,
having the goal of reproducing the correct macroscopic behaviour based on a minimal description of microscopic interactions.After
giving an overview of cellular automata (CA)models, their background and physical setup, we introduce themathematical notations,
show how to perform measurements on a TCA model’s lattice of cells, as well as how to convert these quantities into real-world
units and vice versa. The majority of this paper then relays an extensive account of the behavioural aspects of several TCA models
encountered in literature. Already, several reviews of TCA models exist, but none of them consider all the models exclusively from
the behavioural point of view. In this respect, our overview fills this void, as it focusses on the behaviour of the TCA models,
by means of time–space and phase-space diagrams, and histograms showing the distributions of vehicles’ speeds, space, and time
gaps. In the report, we subsequently give a concise overview of TCA models that are employed in a multi-lane setting, and some
of the TCA models used to describe city traffic as a two-dimensional grid of cells, or as a road network with explicitly modelled
intersections. The final part of the paper illustrates some of the more common analytical approximations to single-cell TCAmodels.
© 2005 Published by Elsevier B.V.
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0. Introduction

In the field of traffic flow modelling, microscopic traffic simulation has always been regarded as a time consuming,
complex process involving detailed models that describe the behaviour of individual vehicles. Approximately a decade
ago, however, new microscopic models were being developed, based on thecellular automataprogramming paradigm
fromstatistical physics. Themain advantage was anefficient and fast performancewhen used in computer simulations,
due to their rather low accuracy on a microscopic scale. These so-calledtraffic cellular automata(TCA) are dynamical
systems that are discrete in nature, in the sense that time advances with discrete steps and space is coarse-grained (e.g.,
the road is discretised into cells of 7.5m wide, each cell being empty or containing a vehicle). This coarse-graininess
is fundamentally different from the usual microscopic models, which adopt a semi-continuous space, formed by the
usage of IEEE floating-point numbers[1]. True to the spirit of statistical mechanics, all the TCA models discussed in
this report do not have a realistic microscopic description of traffic flows as their primary intent, but are rather aimed
at obtaining a correct macroscopic behaviour through their crude microscopic description. Such an approach would
involve more human-oriented aspects such as those found in socio-economic, behavioural, and psychological sciences.
Due to large lack of knowledge about the manner in which human beings operate in a traffic system, traffic engineers
currently stick with this higher-level scientific approach. As such, they are able to positively capture the first- and
second-order macroscopic effects of traffic streams. TCA models are very flexible and powerful, in that they are also
able to capture all previously mentioned basic phenomena that occur in traffic flows[2,3]. In a larger setting, these
models describeself-driven,many-particle systems, operating far from equilibrium. And in contrast to strictly gaseous
analogies, the particles in these systems are intelligent and able to learn from past experience, thereby opening the door
to the incorporation of behavioural and psychological aspects[4–6].
The cellular automata approach proved to be quite useful, not only in the field of vehicular traffic flowmodelling, but

also in other fields such as pedestrian behaviour, escape and panic dynamics, the spreading of forest fires, population
growth and migrations, cloud formation, material properties (corrosion, cracks, creases, peeling, etc.), ant colonies and
pheromone trails, etc.[7–11]. It is now feasible to simulate large systems containing many ‘intelligent particles’, such
that is it possible to observe their interactions, collective behaviour, self-organisation, etc.[12,13,7,6,14–17].
In this report, we provide a detailed description of the methodology of cellular automata applied to traffic flows.We

first discuss their background and physical setup, followed by an account of the mathematical notations we adopt. The
remaining majority of this report extensively discusses the behavioural aspects of several state-of-the-art TCA models
encountered in literature (our overview distinguishes between single-cell and multi-cell models). The report concludes
with a concise overview of TCA models in a multi-lane setting, and TCA models used to describe two-dimensional
traffic (e.g., a grid for city traffic).We endwith a description of several common analytical approximations to single-cell
TCA models.
Note that aside from our phenomenological discussion of different TCA models, we refer the reader to the work of

Chowdhury et al.[3], Santen[18], and Knospe et al.[19] for more theoretically and quantitatively oriented overviews.

1. Background and physical setup for road traffic

In this section, we give a brief overview of the historic origins of cellular automata, as they were conceived around
1950.We subsequently describe which main ingredients constitute a cellular automaton: the physical environment, the
cells’ states, their neighbourhoods, and finally a local transition rule. We then move on to a general description on how
cellular automata are applied to vehicular road traffic, discussing their physical environment and the accompanying
rule set that describes the vehicles’ physical propagation.

1.1. Historic origins of cellular automata

The mathematical concepts of cellular automata (CA) models can be traced back as far as 1948, when Johann Louis
vonNeumann introduced them to study (living) biological systems[20]. Central to vonNeumann’swork, was the notion
of self-reproductionand theoretical machines (calledkinematons) that could accomplish this. As his work progressed,
von Neumann started to cooperate with Stanislaw Marcin Ulam, who introduced him to the concept ofcellular spaces.
These described the physical structure of a cellular automaton, i.e., a grid of cells which can be either ‘on’ or ‘off’
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Fig. 1. An example of the Game of Life, with a rectangular grid of cells. Live cells are coloured black, whereas dead cells remain white. The image
shows a snapshot during the game’s course, illustrating many different shapes to either die out, or live indefinitely by remaining stationary or moving
around (image adapted from[143]).

[21,22]. Interestingly,Alan Mathison Turing proposed in 1952 amodel that illustrated reaction–diffusion in the context
ofmorphogenesis(e.g., to explain the patterns of spots on giraffes, of stripes on zebras,. . .). His model can be seen as
a type of continuous CA, in which the cells have a direct analogy with a simplified biological organism[23].
In the 1970s, CAmodels found their way to one of themost popular applications called ‘simulation games’, of which

John Horton Conway’s “Game of Life” [24] is probably the most famous. The game found its widespread fame due
to Martin Gardner who, at that time, devoted a Scientific American column, called “Mathematical Games”, to it. Life,
as it is called for short, is traditionally ‘played’ on an infinitely large grid of cells. Each cell can either be ‘alive’ or
‘dead’. The game evolves by considering a cell’s all surrounding neighbours, deciding whether or not the cell should
live or die, leading to phenomenon called ‘birth’, ‘survival’, and ‘overcrowding’ (or ‘loneliness’). An example of a Life
game board can be seen inFig. 1. Typical of Life, is the spawning of a whole plethora of patterns or shapes, having
illustrious names such as gliders, guns, space ships, puffers, beehives, oscillators,. . .TheGame of Life is now all about
how these shapes evolve, and whether or not they die out or live indefinitely (either by remaining stationary or moving
around).
Thewidespread popularisation of CAmodelswas achieved in the 1980s through thework of StephenWolfram. Based

onempirical experiments using computers, he gaveanextensive classification ofCAmodels asmathematicalmodels for
self-organising statistical systems[21,25].Wolfram’s work culminated in his mammothmonograph, calledANewKind
of Science[25]. In this book, Wolfram related cellular automata to all disciplines of science (e.g., sociology, biology,
physics, mathematics,. . .). Despite the broad range of science areas touched upon, Wolfram’s book has received its
share of criticism. As an example of this, we mention the comments of Gray, who points out that Wolfram’s results
suffer from a rigorous mathematical test. As a consequence, the physical examples in his book are deemed either
uncheckable or unconvincing. Gray’s final critique is that “. . . he [Wolfram] has helped to popularise a relatively
little-known mathematical area(CA theory), and he has unwittingly provided several highly instructive examples of
the pitfalls of trying to dispense with mathematical rigour” [26]. However, with respect to their computational power,
CA models can emulate universal Turing machines within the theories of computation and complexity. Recently, Chua
took Wolfram’s empirical observations one step further, proving that some of the CA models are capable of Turing
universal computations. He furthermore introduced the paradigm ofcellular neural networks(CNN), which provide a
very efficient method for performing massive parallel computations, and are a generalisation of cellular automata[27].
Finally, an important step in this direction, is Bill Gosper’s proof that the Game of Life is computationally uni-

versal, i.e., it can mimic arbitrary algorithms[28]. Notably, one of the most profound testimonies related to this
concept, is the work of Konrad Zuse and Edward Fredkin at the end of the 1960s. Their Zuse–Fredkin thesis states that
“The Universe is a cellular automaton”, and is based on the assumption that the Universe’s physical laws are discrete
in nature[29–31]. This latter statement was also conveyed byWolfram in his famous CA compendium[25].

1.2. Ingredients of a cellular automaton

Froma theoretical point of view, fourmain ingredients play an important role in cellular automatamodels[32,22,33]:
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Fig. 2. Some examples of different Euclidean lattice topologies for a cellular automaton in two dimensions.Left: rectangular.Middle: triangu-
lar/isometric.Right: hexagonal.
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Fig. 3. Two commonly used two-dimensional CA neighbourhoods with a radius of 1: the von Neumann neighbourhood (left) consisting of the central
cell itself plus 4 adjacent cells, and the Moore neighbourhood (right) where there are 8 adjacent cells. Note that for one-dimensional CA’s, both types
of neighbourhoods are the same.

1.2.1. The physical environment
This defines theuniverseon which the CA is computed. This underlying structure consists of adiscrete lattice of

cellswith a rectangular, hexagonal, or other topology (seeFig. 2for some examples). Typically, these cells are all equal
in size; the lattice itself can be finite or infinite in size, and its dimensionality can be 1 (a linear string of cells called an
elementary cellular automatonor ECA), 2 (a grid), or even higher dimensional. In most cases, a common—but often
neglected—assumption, is that the CAs lattice is embedded in aEuclidean space.

1.2.2. The cells’ states
Each cell can be in a certain state, where typically an integer represents the number of distinct states a cell can be in,

e.g., a binary state. Note that a cell’s state is not restricted to such an integer domain (e.g.,Z2), as a continuous range
of values is also possible (e.g.,R+), in which case we are dealing withcoupled map lattices(CML) [34,35]. We call
the states of all cells collectively a CAsglobal configuration. This convention asserts that states are local and refer to
cells, while a configuration is global and refers to the whole lattice.

1.2.3. The cells’ neighbourhoods
For each cell, we define a neighbourhood that locally determines the evolution of the cell. The size of neighbourhood

is the same for each cell in the lattice. In the simplest case, i.e., a one-dimensional lattice, the neighbourhood consists
of the cell itself plus its adjacent cells. In a two-dimensional rectangular lattice, there are several possibilities, e.g.,
with a radius of 1 there are, besides the cell itself, the four north, east, south, and west adjacent cells (von Neumann
neighbourhood), or the previous five cells as well as the four north–east, south–east, south–west, and north–west
diagonal cells (Moore neighbourhood); seeFig. 3 for an example of both types of neighbourhoods. Note that as the
dimensionality of the lattice increases, the number of direct neighbours of a cell increases exponentially.
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Fig. 4. Schematic diagram of the operation of a single-lane traffic cellular automaton (TCA); here, the time axis is oriented downwards, the space
axis extends to the right. The TCA’s configuration is shown for two consecutive time stepst andt + 1, during which two vehiclesi andj propagate
through the lattice.

1.2.4. A local transition rule
This rule (also called function) acts upon a cell and its direct neighbourhood, such that the cell’s state changes

from onediscrete time stepto another (i.e., the system’s iterations). The CA evolves in time and space as the rule is
subsequently applied to all the cellsin parallel. Typically, the same rule is used for all the cells (if the converse is true,
then the termhybridCA is used). When there are no stochastic components present in this rule, we call the model a
deterministicCA, as opposed to astochastic(also calledprobabilistic) CA.
As the local transition rule is applied to all the cells in the CAs lattice, the global configuration of the CA changes.

This is also called the CAsglobal map, which transforms one global configuration into another. This corresponds to the
notion ofcomputing a functionin automata theory, see also Section 2.1. Sometimes, the CAs evolution can be reversed
by computing past states out of future states. By evolving the CA backwards in time in this manner, the CAsinverse
global mapis computed. If this is possible, the CA is calledreversible, but if there are states for which no precursive
state exists, these states are calledGarden of Eden(GoE) states and the CA is said to beirreversible.
Finally, when the local transition rule is applied to all cells, its global map is computed. In the context of the theory

of dynamical systems, this phenomenon oflocal simple interactionsthat lead to aglobal complex behaviour(i.e., the
spontaneous development of order in a system due tointernal interactions), is termedself-organisationor emergence.
Whereas thepreviousparagraphsdiscussed the classic approach toCAmodels, the following sectionswill exclusively

focus on vehicular traffic flows, leading to traffic cellular automata (TCA) models: Section 1.3 discusses the physical
environment on which these TCA models are based, and Section 1.4 deals with their accompanying rule set that
determines the vehicular motion.

1.3. Road layout and the physical environment

When applying the cellular automaton analogy to vehicular road traffic flows, the physical environment of the system
represents the road on which the vehicles are driving. In a classic single-lane setup for traffic cellular automata, this
layout consists of a one-dimensional lattice that is composed of individual cells (our description here thus focuses on
unidirectional, single-lane traffic). Each cell can either be empty, or is occupied byexactlyone vehicle; we use the
termsingle-cell modelsto describe these systems. Another possibility is to allow a vehicle to span several consecutive
cells, resulting in what we callmulti-cell models. Because vehicles move from one cell to another, TCA models are
also calledparticle–hopping models[36].
An example of the tempo-spatial dynamics of such a system is depicted inFig. 4, where two consecutive vehicles

i andj are driving on a one-dimensional lattice. A typical discretisation scheme assumes�T = 1 s and�X = 7.5m,
corresponding to speed increments of�V =�X/�T = 27 km/h. The spatial discretisation corresponds to the average
length a conventional vehicle occupies in a closely jam packed (and as such, its width is neglected), whereas the
temporal discretisation is based on a typical driver’s reaction time and we implicitly assume that a driver does not react
to events between two consecutive time steps[37].
With respect to the layout of the system, we can distinguish two main cases: closed versus open systems. They cor-

respond to periodic (or cyclic) versus open boundary conditions. The former is usually implemented as a closed ring of
cells, sometimes called theIndianapolis scenario, while the latter considers anopen road.This last typeof system, is also
called thebottleneck scenario. The name is derived from the fact that this situation can be seen as the outflow from a
jam, where vehicles are placed at the left boundary whenever there is a vacant spot. Note that, in closed systems,
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the number of vehicles is always conserved, leading to the description ofnumber conserving cellular automata
(NCCA) [38].

1.4. Vehicle movements and the rule set

The propagation of the individual vehicles in a traffic stream, is described by means of a rule set that reflects the
car-following and lane-changing behaviour of a traffic cellular automaton evolving in time and space. The TCAs local
transition rule actually comprises this set of rules. They are consecutively applied to all vehicles in parallel (called a
parallel update). So in a classic setup, the system’s state is changed throughsynchronous position updatesof all the
vehicles: for each vehicle, the new speed is computed, after which its position is updated according to this speed and
a possible lane-change manoeuvre. Note that there are other ways to perform this update procedure, e.g., a random
sequential update (see Section 3.2.4). Because time is discretised in units of�T seconds, animplicit reaction time
is assumed in TCA models. It is furthermore assumed that a driver does not react to events between consecutive
time steps.
For single-lane traffic, we assume that vehicles act asanisotropic particles, i.e., they only respond to frontal stimuli.

So typically, the car-following part of a rule set only considers the direct frontal neighbourhood of the vehicle to which
the rules are applied. The radius of this neighbourhood should be taken large enough such that vehicles are able to
drive collision-free. Typically, this radius is equal to the maximum speed a vehicle can achieve, expressed in cells
per time step.
From a microscopic point of view, the process of a vehicle following its predecessor is typically expressed using a

stimulus–response relation[1]. Typically, this response is the speed or the acceleration of a vehicle; in TCA models, a
vehicle’s stimulus is mainly composed of its speed and the distance to its leader, with the response directly being a new
(adjusted) speed of the vehicle. In a strict sense, this only leads to the avoidance of accidents. Some models however,
incorporate more detailed stimuli, such as anticipation terms. These forms of ‘anticipation’ only take leaders’ reactions
into account,without predictingthem.When these effects are taken into account together with a safety distance, strong
accelerations and abrupt braking can be avoided. Hence, as the speed variance is decreased, this results in a more stable
traffic stream[39–41].
To conclude this section, we note that a TCAmodel can also be derived from a so-called Gipps car-following model.

All speeds in this Gipps model are directly computed from one discrete time step to another[1]. If now the spatial
dimension is also discretised (a procedure calledcoarse graining), then this will result in a TCA model.

2. Mathematical notation

In this section, we give an overview of the mathematical notation adopted throughout this report. The focus will be
on the variables in TCA models, the measurements that can be done on a TCA model’s lattice, and their conversion
to real-world units. We first take a look at the notation that is commonly used in automata theory, from which cellular
automata sprung.

2.1. Classic notation based on automata theory

Let us first briefly present the notation for cellular automata models, adopted in spirit ofautomata theory. As
mentioned in Section 1, a CA model represents a discrete dynamic system, consisting of four ingredients:

CA = (L,�,N, �) , (1)

where the physical environment is represented by the discrete latticeL and the set of possible states denoted by�.
Eachith cell of the lattice, has at time stept a state�i (t) ∈ �. Furthermore, the associated neighbourhood with this
cell is represented byNi (t), i.e., a (partially) ordered set of cells. Finally, the local transition rule is represented as

� : �|N| −→ � :
⋃

j∈Ni (t)

�j (t) 	−→ �i (t + 1) . (2)
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Eq. (2) shows that the state of theith cell at the next time stept + 1 is computed by� based on the states of all the
cells in its neighbourhood at the current time stept. In the previous equation,|N| represents the number of cells
in this neighbourhood, which is taken to be invariant with respect to time and space. Note that the local transition
rule is commonly given by arule table, where the output state is listed for each possible input configuration of the
neighbourhood. Given the sizes of� andN, the total number of possible rules equals:

|��N | , (3)

where each of the|�N| possible configurations of a cell’s neighbourhood is mapped to the number of possible states
a cell can be in.
Considering the ordered set of all the states of all cells collectively at time stept, a CAs global configuration is

obtained as

C(t)=
⋃
j∈L

�j (t) , (4)

with C(t) ∈ �L where the latter refers to the set of all possible global configurations a CA can be in (also called its
phase space). Sometimes, such a global configurationC(t) is also represented by its characteristic polynomial (i.e.,
generating function)[42]:

C(t)=
|L|∑
j=0

�j (t)x
j . (5)

If we now apply the local transition rule to all the cells in the CAs lattice, the next configuration of the CA can be
computed by its induced global map:

G : �L −→ �L : C(t) 	−→ C(t + 1) . (6)

Note that if the CA is reversible, the inverse global mapG−1 can be computed. As the CA evolves in time and space,
the global map is iterated from a certain initial configurationC(0) at t = 0, leading to the following sequence of
configurations:

C(0)→ G(C(0))→ G2(C(0))→ G3(C(0))→ · · · (7)

The above sequence is called thetrajectoryof the initial configurationC(0) under the global mapG, and we denote
it by

TC(0)|G = {Gn(C(0))|n ∈ N} . (8)

When this trajectory is periodic or chaotic, we use the terminologyforward orbitand denote it byO+C(0)|G. Similarly,
thebackward orbit(i.e., the reverse trajectory) is denoted byO−

C(t)|G−1, where we specify a certain global configuration
C(t) at time stept under the inverse global mapG−1.

2.1.1. Classification of CA rules
Computing the global mapG is rather difficult, as it may require many or even an infinite amount of iterations in

order to obtain the trajectories. In practice, the system’s lattice size should be taken infinitely large, but even only
considering 1000 cells of a binary elementary cellular automaton (ECA) would increase the size of the search space of
global configurations to 21000≈ 10300.
A more intuitive methodology, is to observe a CAs tempo-spatial behaviour, i.e., its evolution on the lattice in the

course of time. To this end, Stephen Wolfram empirically studied many configurations of binary ECA rules, with a
neighbourhood of three cells. According to Eq. (3), this amounts to 223 = 256 different rules. In 1984, based on this
research, Wolfram conjectured four distinctuniversality classes[43]:
ClassI: These CA evolve after a finite number of iterations to a unique homogeneous state, i.e., alimit point.
ClassII: These CA generate regular, periodic patterns, i.e., entering alimit cycle.
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ClassIII: CAs in this class evolve to a periodic patterns, independent of the initial configuration; their trajectories in
the configuration space lie on achaotic attractor.
ClassIV: This class encompasses all theCAs that seem to behave in acomplexway, with features such as propagating

structures, long transients; they are thought to have the capability of universal computation.
Although Wolfram’s classification scheme is widely adopted, it still remains a tentative result as he himself states

[25]. Note that the type of classification he provides isphenotypic, in the sense that it is based on observed behaviour,
whereas agenotypicclassification would be based on the intrinsic structure of the rules in each class.
Despite these observations, classification still remains a difficult task as is evidenced by the ongoing research in

dynamical systems. Other attempts at classification of ECA rules include the following. Firstly,Čulik and Yu gave a
formalisation ofWolfram’s classes[44]. Secondly, Li and Packard studied the structure of the ECA rule space according
to a certain distance metric, resulting in five classes[45]. Then, Braga et al. identified three classes based on the growth
of patterns observed in CAmodels[46]. Next,Wuensche used awhole arsenal of local measures to automatically create
complex rules, thereby classifying the rule space for the CAs’ dynamics[47]. Furthermore, Dubacq et al. classified
CA models based on their algorithmic complexity by measuring the information content of the local transition rule
[48]. And finally, Fatès who used a macroscopic parameter, i.e., the density of 1’s, to separate chaotic ECA rules from
non-chaotic ones[49].

2.1.2. An example of a CA
To end this section, let us give some definitions of a one-dimensional, infinitely large, binary state CA with a

neighbourhood of radius 1:

L= Zd (with d = 1) , (9)

�= Z2= {0,1} , (10)

Ni = {i − 1, i, i + 1} , (11)

�(i, t) : Z3
2 −→ Z2

: {�i−1(t), �i (t), �i+1(t)} 	−→ �i (t + 1) , (12)

G(C(t)) : ZZ
2 −→ ZZ

2

: C(t) 	−→ C(t + 1) . (13)

Note that in Eq. (11), we assume that theith cell’s neighbourhood is represented by integer indices (i.e., the cells form a
totally ordered set). This alleviates the need for an explicit representation of the cells themselves, as it is now sufficient
to work with the cells’ indices and states. The transition rule� in Eq. (12) takes as its arguments a cell’s indexi and
current time stept, but operates on the states of this cell’s neighbourhood. The global map in Eq. (13) operates on the
global configuration of the CA at time stept.

2.2. Basic variables and conventions

Conforming to the setup and notation discussed in the previous sections, we denote a TCAs discrete lattice byL
(for the remainder of this section, we assume arectangular lattice). This lattice physically represents the road on which
vehicles will drive in a TCAmodel. It consists ofLL lanes, each of which hasKL cells, so in total there areLL×KL

cells in the lattice (LL,KL ∈ N0). Each cell can either be empty, or occupied with a single vehicle that spans one or
more consecutive cells. An example of a lattice containing several vehicles, can be seen inFig. 5.
Based on the microscopic vehicle characteristics of a vehicle’s space headway, space gap, length, time headway,

time gap, and occupancy time, we propose to use the following set of definitions formulti-lanevehicular road traffic
flows that areheterogeneous(in the sense of having different vehicle lengths)[50]:

g
l,f
si = x

l,f
i − xi − li , (14)

g
r,f
si = x

r,f
i − xi − li , (15)

gl,b
si
= xi − x

l,b
i − l

l,b
i , (16)

gr,b
si
= xi − x

r,b
i − l

r,b
i (17)
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gl,fsigl,bsi

gr, fsigr,bsi

Fig. 5.A portion of the latticeL at a certain time step; it hasLL=3 lanes, containing six vehicles. The central vehiclei has a space headwayhsi =6
cells, consisting of a space gapgsi =4 cells and its lengthli =2 cells. There are four other space gaps to be considered when the neighbouring lanes
are taken into account:gl,fsi

(left-front), gl,bsi
(left-back),gr,fsi

(right-front), andgr,bsi
(right-back), equalling 6, 4, 2 and 2 cells, respectively.

for which we assume that a vehicle’s position is denoted by the cell that contains its rear bumper. For the example in
Fig. 5, the left and right frontal and backward space gaps of the central vehiclei are 6, 4, 2 and 2 cells, respectively
(all these space gaps thus represent effective distances, corresponding to the number of empty cells between vehicles).
Similar definitions hold for the space headwaysh

l,f
si , hr,f

si , hl,b
si , andh

r,b
si , i.e., the vehicle lengths in the right-hand sides

of Eqs. (14)–(17) are dropped. Derivations for the time gapsg
l,f
ti

, gr,f
ti

, gl,b
ti
, andgr,b

ti
, and time headwayshl,f

ti
, hr,f

ti
,

h
l,b
ti
, andhr,b

ti
are analogous.

Discriminating between frontal an backward neighbours in the adjacent lanes to theith vehicle, is done based on
their positions, i.e.:

{xl,b
i , x

r,b
i }<xi �{xl,f

i , x
r,f
i } . (18)

According to Eq. (18), a vehicle that is driving alongside in an adjacent lane to theith vehicle, will be considered as a
backward neighbour as long as its rear bumper is located strictly behind the rear bumper of theith vehicle (even if this
neighbour has a large length that ‘sticks out’ in front of theith vehicle).
Under the above set of assumptions, we can now write the conditions for a successful lane change (i.e., a possible

gap acceptance) as the following constraints:

g
l,f
si �0∧ gl,b

si
�0 (left lane change) , (19)

g
r,f
si �0∧ gr,b

si
�0 (right lane change) . (20)

With respect to the domains of all variables, we note that all vehicle lengths, space gaps, and space headways are
expressed as integers, or more specifically:

li , hsi , h
l,b
si

, hr,b
si
∈ N0 ,

gsi , h
l,f
si , h

r,f
si ∈ N ,

gl,b
si

, gr,b
si

, g
l,f
si , g

r,f
si ∈ Z .

In contrast to this, the occupancy times, time headways, and time gaps are not restricted to the domain of integers, i.e.:

�i , hti , h
l,b
ti

, h
r,b
ti
∈ R+0 ,

gti , h
l,f
ti

, h
r,f
ti
∈ R+ ,

g
l,b
ti

, g
r,b
ti

, g
l,f
ti

, g
r,f
ti
∈ R .

For example, the occupancy time�i as defined by�i = li/vi [50], corresponds to the time a vehicle ‘spends’ in its
own cells.
To conclude, each vehiclei in the lattice has an associated speedvi ∈ N (expressed in cells per time step�T ), which

is bounded by a maximum speedvmax ∈ N0. For example, if we set�T = 1.2 s,�X= 7.5m, andvmax= 5 cells/time
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step, thenvi ∈ {0, . . . ,5} which corresponds to a maximum of 5× �X/�T = 5× 7.5m/s÷ 1.2 s= 31.25m/s=
112.5 km/h.As can be seen in this derivation, we only consider positive speeds in ourmodels, i.e., vehicles alwaysmove
forward.

2.3. Performing macroscopic measurements

The previously discussed quantities are all microscopic traffic stream characteristics. In this section, we reconsider
the macroscopic quantities densities, flows, and mean speeds[50]. As we now have to measure these quantities on a
TCAs latticeL, we present three possibilities for obtaining the data points:

• by performing local measurements with an artificial loop detector of finite length (open and closed systems),
• by performing global measurements on the entire lattice (closed system),
• and by performing local measurements with an artificial loop detector of unit length (open and closed
systems).

In the following three sections, we give detailed derivations of each of these measurement techniques. Locally
measured quantities are indicated by a ‘l’ subscript, whereas globally measured ones are indicated by an ‘g’ sub-
script. A temporal and spatial discretisation of, respectively,�T (in seconds) and�X (in metres) is implicitly
assumed.
For all following techniques, we assume an integer measurement period ofTmp time steps. Thus, aggregating data

into intervals of 60 s with�T = 1.2 s, requires a measurement period of:

Tmp=
[
60

1.2

]
= 50 time steps . (21)

Furthermore, densities are expressed in vehicles per cell, flows in vehicles per time step, and space-mean speeds in
cells per time step.

2.3.1. Local measurements with a detector of finite length
In this section, we deal with an artificial loop detector of finite lengthKld ∈ N0, located in a single lane. Note that

typically,Kld�vmax, so as to ensure that no vehicles can ‘skip’ the detector between consecutive time steps. The first
step in our approach for performing these measurements, is based on obtaining local measurements of the density and
flow for such a spatial measurement region at a certain time stept [50]. Once these are known, the space-mean speed
can be derived using the fundamental relation of traffic flow theoryq = kvs [50]:

kl(t)= N(t)

Kld
, (22)

ql(t)= 1

Kld

N(t)∑
i=1

vi(t) , (23)

⇓

vsl (t)=
ql(t)

kl(t)
= 1

N(t)

N(t)∑
i=1

vi(t) , (24)

where we assumedN(t) vehicles are present at timet in the loop detector’s segment. The density and flow mea-
surements of consecutive time steps are now temporally averaged over subsequent spatial measurement regions.
In similar fashion as before, the space-mean speed is derived using the previously mentioned fundamental
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relation:

kl = 1

Tmp

Tmp∑
t=1

kl(t)= 1

TmpKld

Tmp∑
t=1

N(t) , (25)

ql = 1

Tmp

Tmp∑
t=1

ql(t)= 1

TmpKld

Tmp∑
t=1

N(t)∑
i=1

vi(t) , (26)

⇓

vsl =
ql

kl
=

Tmp∑
t=1

N(t)∑
i=1

vi(t)

/Tmp∑
t=1

N(t) , (27)

=
Tmp∑
t=1

N(t)
1

N(t)

N(t)∑
i=1

vi(t)

/Tmp∑
t=1

N(t) ,

=
Tmp∑
t=1

N(t)vsl (t)

/Tmp∑
t=1

N(t) . (28)

Our derivations forkl andql as outlined above, also correspond to the generalised definitions of density and flow,
defined as the total time spent, respectively, the total distance travelled, divided by the area of the measurement region
(which corresponds toTmp×Kld). Furthermore, note that the last Eq. (28) essentially is a weighted mean of the local
space-mean speedsvsl (t) at each time stept, with the number of vehiclesN(t) as weights.

2.3.2. Global measurements on the entire lattice
For the globalmeasurements, we considerNvehicles that are driving in a closed single-lane system, i.e., with a length

of KL cells (the extension to multi-lane traffic is straightforward). As a consequence, the global densitykg remains
constant during the entire measurement period. The derivations of the equations forkg, qg, andvsg , are completely
equivalent to those of the previous Section 2.3.1, but now withKld =KL:

kg = N

KL
, (29)

qg = 1

TmpKL

Tmp∑
t=1

N∑
i=1

vi(t) , (30)

⇓

vsg =
qg

kg
= 1

TmpN

Tmp∑
t=1

N∑
i=1

vi(t) , (31)

= 1

TmpN

Tmp∑
t=1

N
1

N

N∑
i=1

vi(t) ,

= 1

Tmp

Tmp∑
t=1

vsg (t) . (32)

Note that, for single-cell TCA models, the global density computed with Eq. (29) actually corresponds to the macro-
scopic characteristic called occupancy� [50]. For multi-cell models, the number of vehicles is in general less than the
number of occupied cells.

2.3.3. Local measurements with a detector of unit length
The third technique for measuring macroscopic traffic flow characteristics on a TCA’s lattice, bears perhaps the

closest resemblance to reality: it is based on an artificial loop detector with unit length, i.e.,Kld = 1 cell. The loop
detector now explicitly counts all the vehicles that pass it at each time step�T during the measurement periodTmp.
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This type of measurement corresponds to a point measurement in a temporal measurement region. Because of this,
the appropriate method for computation is different from the one used in the previous two sections: we now first
compute the local flow, and the local space-mean speed, both for single-lane traffic. The local density is then derived
according to the previously mentioned fundamental relation, resulting in the following set of equations:

ql = N

Tmp
, (33)

vsl =
(
1

N

N∑
i=1

1

vi

)−1
, (34)

⇓
kl = ql

vsl
, (35)

in whichN now denotes the number of vehicles that have passed the detector during the measurement periodTmp.
Because the detector physically occupies one cell and because a vehicle has to ‘drive by’ in order to get counted,
this means that stopped vehicles are ignored:only moving vehicles are counted. Note that, as opposed to the previous
two techniques, the above measurements no longer denote temporal averages. And because we are working with a
temporal measurement region, we have to take the harmonic average of the vehicles’ speedsvi in order to obtain the
local space-mean speedvsl [50].

2.4. Conversion to real-world units

Converting between TCA and real-world units seems straightforward, as we only need to suitably multiply with or
divide by the temporal and spatial discretisations�T and�X, respectively. However, problems arise due to the discrete
nature of a TCA model, involving some intricacies with respect to coordinate systems and their associated units. For
example, as defined in Section 2.2, a vehiclei’s space headwayhsi is always an integer, expressing the number of cells.
The same holds true for its space gapgsi and lengthli . The difficulty now lies in the fact that fractions of cells are not
representable in our definition of a TCA model. Keeping in mind thathsi = gsi + li [50], and noting thathsi ∈ N0, it
follows thatgsi + li >0, which means that eithergsi �= 0 and/orli �= 0.
As a solution, we therefore adopt throughout this report the convention that, without loss of generality, a vehicle’s

lengthli �1 cell (which agrees perfectly with our earlier definitions in Section 2.2). Consequently, when a vehiclei is
residing in a compact jam (i.e., ‘bumper-to-bumper’ traffic), its space headwayhsi = l cells and its space gapgsi = 0
cells. Our convention thus gives a rigorous justification to formulate the TCAs update rulesmore intuitively using space
gaps, because as already stated in Section 1.4, the rules in a TCA rule set are typically not expressed in terms of space
headways, but rather in terms of speeds and space gaps (i.e., the distance to the leading vehicle).
In a similar fashion, time headways, time gaps, and occupancy times represent multiples of the temporal dis-

cretisation�T . But note that, as explained before in Section 2.2, these are however no longer constrained to
integer values.
In the following two sections, we explain how to convert between coordinate systems of TCA models and the

real world. All common variables (e.g.,hsi ) are expressed inTCA units, except for their ‘primed’ counterparts
(e.g., h′si ), which are expressed inreal-world units. The conversions will be done with respect to the following
conventions:

• TCA model
◦ hsi , gsi , andli are dimensionless integers, denoting a number of cells,
◦ hti , gti , and�i are dimensionless real numbers, denoting a fractional multiple of a time step,
◦ kl andkg are real numbers, expressed in vehicles/cell,
◦ ql andqg are real numbers, expressed in vehicles/time step,
◦ andvi , vsl , andvsg are real numbers, expressed in cells/time step.
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• Real world
◦ �X, h′si , g

′
si
, andl′i are real numbers, expressed in metres,◦ �T , h′ti , g
′
ti
, and�′i are real numbers, expressed in seconds,◦ k′l andk′g are real numbers, expressed in vehicles/kilometre,◦ q ′l andq ′g are real numbers, expressed in vehicles/hour,

◦ andv′i , v′sl , andv
′
sg
are real numbers, expressed in kilometres/hour.

2.4.1. From a TCA model to the real world
Under the previously mentioned convention thatli ∈ N0, we can write the conversions of the microscopic character-

istics related to the space and time headways and gaps, and the vehicle lengths and occupancy times, in a straightforward
manner:

h′si = hsi · �X, g′si = gsi · �X, l′i = li · �X ,

h′ti = hti · �T , g′ti = gti · �T , �′i = �i · �T . (36)

Relative to Eqs. (36), there is a small but important detail that is easily overlooked: we cannot just convert between
gsi , g

′
si
, li , andl′i without making some assumptions. Because we adopted the convention thatli �1 cell, it follows

thatl′i ��X. So it is not possible to take the real length of a vehicle smaller than the spatial discretisation, because we
assumed that the spatial units of a TCA model are all integer values.
The conversions for the macroscopic traffic stream characteristics densities, flows, and space-mean speeds, as well

as the microscopic vehicle speed, are as follows:

k′ = k · 1000
�X

,

q ′ = q · 3600
�T

,

v′s = vs · 3.6 · �X

�T
. (37)

To keep the previous equations clear, we have dropped the subscripts denoting global and local measurements.
It is interesting to see what happens at the jam density, i.e., the maximum density when all cells in the lattice are

occupied. As all vehicles are standing still bumper-to-bumper, the associated space gap at this density, equals zero.
Computing the space headway, results inhsi = 0+ li . By virtue of the fact that density is inversely proportional to
the average space headway[50], we can cast this space headway into a density, e.g., for a single-cell TCA model:

kj = h
−1
sj
= l
−1 = l−1i = 1. Applying the conversion by means of Eqs. (37) and assuming a spatial discretisation

�X = 7.5m, results in a real-world jam densityk′j = 1000÷ 7.5m ≈ 133 vehicles/km. Conversely, if we knowk′j ,
then we can derivekj (see Section 2.4.2) and hence we have a method to pick a�X.
If we were to consider multi-cell traffic, e.g., vehicles with different lengths, then the jam density would be inversely

proportional to the average vehicle length. A solution here is to assume a common unit for all vehicle lengths, e.g.,
passenger car units (PCU)[50]. Even though the jam density can be defined for each vehicle class separately, it
would be more correct to speak of anaverage jam densityat this point due to the temporal and spatial variations
in traffic flows.

2.4.2. From the real world to a TCA model
Based on Eqs. (36), we can write the reverse conversion of the microscopic characteristics in the following manner:

hsi =
h′si
�X

, gsi =
g′si
�X

, li = l′i
�X

,

hti =
h′ti
�T

, gti =
g′ti
�T

, �i =
�′i
�T

. (38)
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In order to agree with our previously stated convention, i.e., all spatial microscopic characteristics in a TCA model
are integers, Eqs. (38) implicitly assume that the real-world spatial variables are multiples of the spatial discretisation
(e.g.,h′si =m · �X with m ∈ N0).
Another possible approach to the spatial conversion to TCA model units, is toapproximatethe real-world values as

best as possible, whilst keeping our adopted convention. Asli �1 cell, this leads to the following scheme where we use
upward rounding (i.e., ceiling):

hsi =
⌈
h′si
�X

⌉
, li =

⌈
l′i

�X

⌉
,

�⇒ gsi = hsi − li . (39)

For example, if�X = 7.5m, l′i = 4.5m, andg′si = 5m, thenh′si = 4.5+ 5= 9.5m, and from Eq. (39) it follows that
hsi = 2 cells,li = 1 cell, andgsi = 2− 1= 1 cell. Because Eq. (39) is only an approximation, it more than often occurs
that the computed space headway ‘exceeds’ the real-world space headway.
In similar spirit, the conversion for the macroscopic characteristics can be easily derived from Eqs. (37). However,

as opposed to Eqs. (38) and (39), there is no need for an approximation by means of rounding, because these quantities
are real numbers, as mentioned in the introduction of Section 2.4.

3. Single-cell models

Having discussed the mathematical and physical aspects of cellular automata and TCAmodels in particular, we now
focus on single-cell models.As explained before in Section 1.3, each cell can either be empty, or is occupied by exactly
one vehicle; all vehicles have the same lengthli = 1 cell. Traffic is also considered to be homogeneous, so all vehicles’
characteristics are assumed to be the same. In the subsequent sections, we take a look at the following TCA models
(accompanied by their suggested abbreviations):

• Deterministic models
◦ Wolfram’s rule 184 (CA-184)
◦ Deterministic Fukui–Ishibashi TCA (DFI-TCA)

• Stochastic models
◦ Nagel–Schreckenberg TCA (STCA)
◦ STCA with cruise control (STCA-CC)
◦ Stochastic Fukui–Ishibashi TCA (SFI-TCA)
◦ Totally asymmetric simple exclusion process (TASEP)
◦ Emmerich–Rank TCA (ER-TCA)

• Slow-to-start models
◦ Takayasu–Takayasu TCA (T2-TCA)
◦ Benjamin, Johnson, and Hui TCA (BJH-TCA)
◦ Velocity-dependent randomisation TCA (VDR-TCA)
◦ Time-oriented TCA (TOCA)
◦ TCA models incorporating anticipation
◦ Ultra discretisation, slow-to-accelerate, and driver’s perspective

For other excellent overviews of TCA models, we refer the reader to the works of Chowdhury et al.[3], Knospe
et al.[19], Nagel[36], Nagel et al.[51], Schadschneider[52,53], and Schreckenberg et al.[54].
All following TCA models will be empirically studied using simulations that are performed on aunidirectional,

single-lane latticewith periodic boundary conditions, i.e., a closed loop withLL = 1. The length of this lattice
equalsKL = 103 cells, which is taken large enough in order to reduce most unwantedfinite-size effects. Our own
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experiments indicate that larger lattice sizes do not render any significant advantage, aside from the burden of a larger
computation time.

The importance of studying closed-loop, single-lane traffic: There is often a criticism expressed as to why it is
important to study the behaviour of traffic flows in such a simplified system. After all, can such a basic system capture
all the dynamics of real-life traffic flows, or be even representative of them? The answer to this question is that, in
our opinion, the dynamics of these constrained systems play an important, non-negligible role. For example, when
considering traffic flows on most unidirectional two-lane European motorways, drivers are by law obliged to drive on
the right shoulder lane, unless when performing overtaking manoeuvres. A frequently observed phenomenon is then
that under light traffic conditions (e.g., 10 vehicles/km/lane), a slower moving vehicle (e.g., a truck) is located on the
right lane, and is acting as amoving bottleneck. As a result, all faster vehicles will line up on the left lane (overtaking
on the right lane is prohibited by law), thereby causing adensityor lane inversion[55,56,5,57]. It is under these
circumstances that the stability of the car-following behaviour plays an important role. Similarly, in densely congested
traffic, e.g., the synchronised-flow regime, the same stability may govern the fact whether or not a traffic breakdown
is likely to be induced (see our work in[1] for a discussion on the nature of this breakdown). Even for multi-lane
traffic, we believe its dynamics are essentially those of parallel single lanes when considering densely congested traffic
flows. Another argument for the necessity of studying these simplified systems, is the one given by Nagel and Nelson.
They state that this is the easiest way to determine whether or not internal effects of a traffic flow model play a role
in e.g., the spontaneous breakdown of traffic, as all external effects (i.e., the boundary conditions) are eliminated[58].
Nevertheless, when applying these models to real-life traffic networks, closed-loop traffic is not very representative, as
the behaviour near bottlenecks plays a far more important role[6].

All measurements on the TCA models’ lattices are based on two possible initial conditions: depending on the nature
of the study, we will either usehomogeneous initial conditions(the default), or acompact superjamto start with. In the
former case, all vehicles are uniformly distributed over the lattice, implying equal space headways. In the latter case,
all vehicles are ‘bunched up’ behind each other, with zero space gaps. When going from one global density to another,
an equivalent method would be toadiabaticallyadd (or remove) vehicles to an already homogeneous or jammed state.
In our experiments, however, we always reset the initial conditions, corresponding to the first method. The simulations
ran each time for 104 time steps, after an initial period of 103 time steps was discarded in order to let transients from
the initial conditions in the system die out. Global densities, flows, and space-mean speeds are computed by means
of Eqs. (29)–(32), whereas, we use a point detector, i.e., Eqs. (33)–(35), to, compute their local variants. In this latter
case, the data points were collected with a measurement periodTmp= 60 time steps. Based on these results, we can
construct (kg, vsg ), (kg, qg), (kl, vsl ), and (kl, ql) diagrams. To keep a clear formulation, we will however from now
on drop the subscripts denoting global and local measurements. All simulations were performed by means of our
Traffic Cellular Automata+ software (developed for the JavaTM Virtual Machine); more information can be found in
Appendix A.
For a deeper insight into the behaviour of the space-mean speedvs , the average space gapgs , and themedian time gap

gt , detailed histograms showing theirdistributionsare provided. Note that with respect to the time gaps and time head-
ways,wewill work in the remainder of this reportwith themedianinsteadof thearithmeticmean.Themediangivesmore
robust resultswhenhti , gti →+∞, which occurswhena vehiclei stops.These histogramsare interesting because in the
existing literature (e.g.,[59,52,6]) these distributions are only considered at several distinct global densities, whereaswe
show them forall densities. Each of our histograms is constructed by varying the global densitykbetween 0 and 1, com-
puting the space-mean speed, the average space gap and the median time gap for each simulation run. A simulation run
consists of 5×104 timesteps (with a transient periodof 500 timesteps) onsystemsof 300cells, varying thedensity in 150
steps. Note that a larger size of the system’s lattice, has no significant effects on the results, except for an increase of the
variance[60].
Before giving an elaborate discussion of some of the classic TCA models, it is worthwhile to mention the first

historical and practical implementations of traffic cellular automata. Cremer and Ludwig conceived an implementation
of traffic flows based onlattice gas automata(LGA), which are a special case of cellular automata typically employed
when simulating viscous fluids[61]. Their seminal work, using individual bits to represent vehicles, was extended
by Schütt, who provided a simulation package for heterogeneous traffic, multi-lane motorways, and network and city
traffic [62]. Unfortunately, the developed models were quite inefficient when they were used in setting that called for
large scale Monte Carlo simulations[63].
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Fig. 6. An illustrative method for representing the evolution of a cell’s state in time, based on its local neighbourhood. We can see the state�i (t)

of a central celli at time stept, together with the states�i−1(t) and�i+1(t) of its two direct neighboursi − 1 andi + 1, respectively. This local
neighbourhood is mapped onto a new state�i (t + 1). For binary states, we use a black square to represent a state of 1 (e.g., state�i+1(t)), and an
empty (white) square for a state of 0. The depicted transition maps the triplet(001)2 onto the state�i (t + 1)= 0.

1 1 1 1 1 0 1 0 1 1 0 0 0 1 1 0 1 0 0 0 1 0 0 0

1111 0000

Fig. 7. A graphical representation of Wolfram’s rule 184, which is written as(10111000)2 in base 2. All 8 possible configurations for the local
neighbourhood are sorted in descending order, expressing the local transition rule�(i, t) as explained byFig. 6. For example, the local neighbourhood
(100)2 gets mapped onto a state of 1. This has the physical meaning that a particle (black square) moves to the right if its neighbouring cell is empty.

3.1. Deterministic models

In this section, we discussWolfram’s original rule 184, and its generalisation to higher speeds as proposed by Fukui
and Ishibashi’s deterministic model. We abbreviate these two TCA models as CA-184 and DFI-TCA, respectively.

3.1.1. Wolfram’s rule 184 (CA-184)
The first deterministic model we consider, is a one-dimensional TCA model with binary states. AsLL = 1, this

model is called an elementary cellular automaton (ECA), according to the terminology introduced in Section 1.2. If we
furthermore assume a local neighbourhood of three cells wide (i.e., a radius of 1), then there are 223 = 256 different
rules possible, according to Eq. (3). Around 1983, StephenWolfram classified all these 256 binary ECAs[21]. One of
these is calledrule 184, who’s name is derived fromWolfram’s naming scheme.
Wolfram’s scheme is based on the representation of how a cell’s state evolves in time, depending on its local

neighbourhood. InFig. 6, we have provided a convenient visualisation for the evolution of the states in a binary ECA.
Here, we can see the state�i (t) of a central celli at time stept, together with the states�i−1(t) and�i+1(t) of its two
direct neighboursi − 1 andi + 1, respectively. All three of them constitute the local neighbourhoodNi (t) of radius 1
(see also our example of a CA in Section 2.1.2). Because states are binary, we can indicate them with a colour, i.e., a
black square represents a state of 1 (e.g., state�i+1(t) in Fig. 6), whereas an empty (white) square represents a state of
0. According to the local transition rule�(i, t), the local neighbourhoodNi (t) is then mapped fromt to t + 1 onto a
new state�i (t + 1). The graphical representation inFig. 6 thus provides us with an illustrative method to indicate the
evolution of{�i−1(t), �i (t), �i+1(t)} 	−→ �i (t + 1).
Considering the transition depicted inFig. 6, we can see that a complete neighbourhood contains three cells,

each of which can be in a 0 (white) or 1 (black) state. So in total, there are 23 = 8 possible configurations for
such a local neighbourhood. Wolfram’s naming scheme for the binary ECAs is now based on an integer coding of
this neighbourhood. Indeed, the local transition rule�(i, t) is given by a table lookup containing eight entries, one
for each of the possible local neighbourhoods. If we binary sort these eight configurations in the descending order
(111), (110), (101), (100), (011), . . ., then we obtain a graphic scheme such as the one inFig. 7. As can be seen,
for each of the local configurations, a resulting 0 or 1 state is returned for celli at time stept+1. Collecting all resulting
states, and writing them in base 2, results in the number(10111000)2. Converting this code to base 10, we obtain
the number 184. Wolfram now coded all 256 possible binary ECAs by a unique number in the range from 0 to 255,
resulting in 256 rules for these CAs.
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Fig. 8. Typical time–space diagrams of the CA-184 TCA model. The shown closed-loop lattices each contain 300 cells, with a visible period of 580
time steps (each vehicle is represented as a single coloured dot).Left: vehicles driving a free-flow regime with a global densityk= 0.2 vehicles/cell.
Right: vehicles driving in a congested regime withk= 0.75 vehicles/cell. The congestion waves can be seen as propagating in the opposite direction
of traffic; they have an eternal life time in the system. Both time–space diagrams show a fully deterministic system that continuously repeats itself.

Rule 184 (which we abbreviate as CA-184) is anasymmetricalrule because�((110)2, t)= 0 �= �((011)2, t)= 1.
It is also called aquiescentrule because�((000)2, t) = 0 (so all zero-initial conditions remain zero). As an example
of the rule’s evolution,Fig. 7shows that the local neighbourhood(100)2 gets mapped onto a state of 1. If we consider
these 1 states asparticles(i.e., vehicles), and the 0 states asholes, then rule 184 dictates that all particles move one cell
to the right, on the condition that this right neighbour cell is empty. Equivalently, all holes have the tendency to move
to the left for each particle that moves to the right, a phenomenon which is termed theparticle–hole symmetry.
For a TCA model, we can rewrite the previous actions as a set of rules that are consecutively applied to all vehicles

in the lattice, as explained in Section 1.4. For the CA-184, we have the following two rules:

(R1) acceleration and braking

vi(t)← min{gsi (t − 1),1} , (40)

(R2) vehicle movement

xi(t)← xi(t − 1)+ vi(t) . (41)

Rule R1, Eq. (40), sets the speed of theith vehicle, for the current updated configuration of the system; it states that
a vehicle always strives to drive at a speed of 1 cell/time step, unless its impeded by its direct leader, in which case
gsi (t − 1) = 0 and the vehicle consequently stops in order to avoid a collision. The second rule R2, Eq. (41), is not
actually a ‘real’ rule; it just allows the vehicles to advance in the system.
In Fig. 8, we have applied these rules to a lattice consisting of 300 cells (closed loop), showing the evolution over

a period of 580 time steps. The time and space axes are oriented from left to right, and bottom to top, respectively.
In the left part, we show a free-flow regime with a global densityk = 0.2 vehicles/cell, in the right part we have a
congested regime withk = 0.75 vehicles/cell. Each vehicle is represented as a single coloured dot; as time advances,
vehicles move to the upper right corner, whereas congestion waves move to the lower right corner, i.e., backwards in
space. From both parts ofFig. 8, we can see that the CA-184 TCA model constitutes a fully deterministic system that
continuously repeats itself. A characteristic of the encountered congestion waves is that they have an eternal life time
in the system.
In Fig. 9, we have plotted both the (k, vs) and(k, q) diagrams.As can be seen from the left part, the global space-mean

speed remains constant atvs = 1 cell/time step, until the critical densitykc = 0.5 is reached, at which pointvs will
start to diminish towards zero where the critical densitykj = 1 is reached. Similarly, the global flow first increases
and then decreases linearly with the density, below and respectively above, the critical density. Here, the capacity flow
qcap= 0.5 vehicles/time step is reached. The transition from the free-flowing to the congested regime is characterised
by a first-order phase transition. As is evidenced by theisosceles triangular shapeof the CA-184’s resulting(k, q)
fundamental diagram, there are only two possible kinematic wave speeds, i.e.,+1 and−1 cell/time step. Both speeds
are also clearly visible in the left, respectively right, time–space diagrams ofFig. 8. More analytical details on these
values will be provided in the following Section 3.1.2.
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Fig. 9.Left: the (k, vs ) diagram for the CA-184, based on global measurements on the lattice. The global space-mean speed remains constant at
vs = 1 cell/time step, until the critical densitykc = 0.5 is reached, at which pointvs will start to diminish towards zero.Right: the CA-184’s(k, q)
diagram, with its characteristic isosceles triangular shape. The transition between the free-flowing and the congested regime is of a first-order nature.

3.1.2. Deterministic Fukui–Ishibashi TCA (DFI-TCA)
In 1996, Fukui and Ishibashi constructed a generalisation of the prototypical CA-184 TCA model[64]. Although

their model is essentially a stochastic one (see Section 3.2.3), we will first discuss its deterministic version. Fukui
and Ishibashi’s idea was two-fold: on the one hand, the maximum speed was increased from 1 tovmax cells/time step,
and on the other hand, vehicles would accelerateinstantaneouslyto the highest possible speed. Corresponding to the
definitions of the rule set of a TCA model, the CA-184’s rule R1, Eq. (40), changes as follows:

(R1) acceleration and braking

vi(t)← min{gsi (t − 1), vmax} . (42)

Just as before, a vehicle will now avoid a collision by taking into account the size of its space gap. To this end, it will
apply an instantaneous deceleration: for example, a fast-moving vehicle might have to come to a complete stop when
nearing the end of a jam, therebyabruptlydropping its speed fromvmax to 0 in one time step.
Due to the strictly deterministic behaviour of the system, the time–space diagrams of theDFI-TCAdo not differmuch

from those of the CA-184. The only difference is the speed of the vehicles in the free-flow regime, leading to steeper
trajectories. It is however interesting to study the (k, vs) and(k, q) diagrams inFig. 10. Here we can see that increasing
the maximum speedvmax creates—as expected—a steeper free-flow branch in the(k, q) diagram. Interestingly, the
slope of the congested branch does not change, logically implying that the kinematic wave speed for jams remains
constant, i.e.,−1 cell/time step. This can be confirmed with an analytical kinematic wave analysis, as explained by
Nagel[51].
Based on the behaviour of the vehicles near the critical density, we can analytically compute the capacity flow as

follows: in the free-flow regime, all vehicles move with a constant speed ofvmax cells/time step. When the critical
density is reached, all vehicles drive collision-free at this maximum speed, which implies thatgsi = vmax cells. The
space headwayhsi = vmax+ 1 (becauseli = 1 for single-cell models). Consequently, the value for the critical density
as[50]:

kc = 1

hsc

= 1

vmax+ 1
. (43)
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Fig. 10.Left: several (k, vs ) diagrams for the deterministic DFI-TCA, each for a differentvmax ∈ {1, . . . ,5}. Similarly to the CA-184, the global
space-mean speed remains constant, until the critical density is reached, at which pointvs will start to diminish towards zero.Right: several of the
DFI-TCA’s (k, q) diagrams, each having a triangular shape (with the slope of the congestion branch invariant for the differentvmax).

The capacity flow is now computed by means of the fundamental relation, i.e.,qcap= kcvmax:

qcap= vmax

vmax+ 1
. (44)

Applying Eqs. (43) and (44), for e.g.,vmax= 5 cells/time step, results inkc ≈ 0.167 vehicles/cell andqcap ≈ 0.83
vehicles/time step. If we furthermore assume�X=7.5m and�T =1 s, then both values correspond to 22 vehicles/km
and 3000 vehicles/h, respectively.
As opposed to the instantaneous acceleration in rule R1, Eq. (42), we can also assume agradual accelerationof one

cell per time step (the braking remains instantaneous):

(R1) acceleration and braking

vi(t)← min{vi(t − 1)+ 1, gsi (t − 1), vmax} . (45)

However, our experimental observations have indicated that there is no difference in global system dynamics, with
respect to either adopting gradual or instantaneous vehicle accelerations.
There exists a strong relation between the previously discussed deterministic TCA models, and the macroscopic

first-order LWR model with a triangularqe(k) fundamental diagram[1]. Some of the finer results in this case, are the
work of Nagel who extensively discusses some analytical results of both deterministic and stochastic TCA models
[36], and the work of Daganzo who explicitly proves an equivalency between two TCAmodels and the kinematic wave
model with a triangularqe(k) fundamental diagram[65]. More details with respect to such analytical relations, are
given in Sections 3.2.4 and 5.3.
To conclude our discussion of deterministic models, we take a look at what happens in the limiting case where

vmax→ +∞. As can be seen inFig. 11, the congested branches in both (k, vs) and(k, q) diagrams grow, at the cost
of the free-flow branches which disappear. Interestingly, these diagrams correspond one-to-one with a triangularqe(k)

fundamental diagram that is now expressed in amoving coordinate system, as explained by Newell[66]. In such a
simplified system, the critical densitykc = 0, with a capacity flowqcap= 1.
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Fig. 11.Left: the (k, vs ) diagram for the deterministic CA-184, with nowvmax→+∞.Right: the(k, q) diagram for the same TCAmodel, resulting
in a critical densitykc = 0, with a capacity flowqcap= 1. This type of diagram corresponds to a simplified triangularqe(k) fundamental diagram
that is expressed in a moving coordinate system.

3.2. Stochastic models

The encountered models in the previous section were all deterministic in nature, implying that there can be no
spontaneous formation of jam structures.All congested conditions produced in thosemodels, essentially stemmed from
the assumed initial conditions. In contrast to this, we now discuss stochastic TCA models (i.e., these are probabilistic
CAs) that allow for the spontaneous emergence of phantom jams. As will be shown, all these models explicitly
incorporate a stochastic term in their equations, in order to accomplish this kind of real-life behaviour[67].

3.2.1. Nagel–Schreckenberg TCA (STCA)
In 1992, Nagel and Schreckenberg proposed a TCA model that was able to reproduce several characteristics of

real-life traffic flows, e.g., the spontaneous emergence of traffic jams[37,63]. Their model is called theNaSch TCA,
but is more commonly known as thestochastic traffic cellular automaton(STCA). It explicitly includes a stochastic
noise term in one of its rules, which we present in the same fashion as those of the previously discussed deterministic
TCA models. The STCA then comprises the following three rules (note that in Nagel and Schreckenberg’s original
formulation, they decoupled acceleration and braking, resulting in four rules):

(R1) acceleration and braking

vi(t)← min{vi(t − 1)+ 1, gsi (t − 1), vmax} , (46)

(R2) randomisation

�(t)<p �⇒ vi(t)← max{0, vi(t)− 1} , (47)

(R3) vehicle movement

xi(t)← xi(t − 1)+ vi(t) . (48)

Like in both CA-184 and DFI-TCA deterministic TCA models (see Sections 3.1.1 and 3.1.2), the STCA contains
a rule for increasing the speed of a vehicle and braking to avoid collisions, i.e., rule R1, Eq. (46), as well as rule
R3, Eq. (48), for the actual vehicle movement. However, the STCA also contains an additional rule R2, Eq. (47),
which introduces stochasticity in the system. At each time stept, a random number�(t) ∈ [0,1[ is drawn from a
uniform distribution. This number is then compared with a stochastic noise parameterp ∈ [0,1] (called theslowdown
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Fig. 12. Typical time–space diagrams of the STCA model (similar setup as for the CA-184 TCA model inFig. 8). Both diagrams have a global
density ofk= 0.2 vehicles/cell.Left: the evolution of the system forp= 0.1.Right: the evolution of the system, but now forp= 0.5. The effects of
the randomisation rule R2 are clearly visible in both diagrams, as there occur many unstable artificial phantom mini-jams. Furthermore, the speed
w of the backward propagating kinematic waves decreases with an increasingp.

probability); as a result, there is a probability ofp that a vehicle will slow down tovi(t)−1 cells/time step. The STCA
model is called aminimal model, in the sense that all these rules are a necessity for mimicking the basic features of
real-life traffic flows.
According to Nagel and Schreckenberg, the randomisation of rule R2 captures natural speed fluctuations due to

human behaviour or varying external conditions. The rule introduces overreactions of drivers when braking, providing
the key to the formation of spontaneously emerging jams.
Although the above rationale is widely agreed upon, much criticism was however expressed due to this second

rule. For example, Brilon and Wu believe that this rule has no theoretical background and is in fact introduced quite
heuristically[68].
To get an intuitive feeling for the STCA’s system dynamics, we have provided two time–space diagrams in

Fig. 12. Both diagrams show the evolution for a global density ofk = 0.2 vehicles/cell, but withp set to 0.1 for
the left diagram, andp = 0.5 for the right diagram. As can be seen in both diagrams, the randomisation in the model
gives rise to many unstable artificial phantom mini-jams. The downstream fronts of these jams smear out, forming
unstable interfaces[51]. This is a direct result of the fact that the intrinsic noise (as embodied byp) in the STCAmodel
is too strong: a jam can always form atanydensity, meaning that breakdown can (and will) occur, even in the free-flow
traffic regime. For low enough densities however, these jams can vanish as they are absorbed by vehicles with sufficient
space headways, or by new jams in the system[69]. It has been experimentally shown that below the critical density,
these jams have finite life times with a cut-off that is about 5×105 time steps and independent of the lattice size.When
the critical density is crossed, these long-lived jams evolve into jams with an infinite life time, i.e., they will survive
for an infinitely long time[70,63,71].
In free-flow traffic, a vehicle’s speed will fluctuate betweenvmaxandvmax−1, due to the randomisation rule R2.We

can compute the space-mean speed in the free-flow regime by means of a weighted average. This average corresponds
to the probability 1− p for driving with the speedvmax and the probabilityp for slowing down to the speedvmax− 1.
As such, we getvsff =

∑
wivi/

∑
wi =[(1−p)vmax+p(vmax−1)]/[(1−p)+p]= vmax−p. In agreement with the

space-mean speed observed in the left (k, vs) diagram ofFig. 13, we can state that a vehicle will drive with an average
free-flow speed ofvff = vmax− p.
As mentioned in Section 3.1.2, the slope of the free-flow branch in a(k, q) diagram can be changed by adjusting

vmax. Similarly, the slope of the congested branch can be changed by tuning the slowdown probabilityp (note that this
also affects the average free-flow speed). Looking at the(k, q) diagram in the right part ofFig. 13, we note that an
increase ofp will on the one hand result in a smallervff , and on the other hand the congested branch will lie lower,
with a smaller critical densitykc. In this latter case, the speedw of the backward propagating kinematic waves will
decrease, an effect that is also visible in the time–space diagrams ofFig. 12. Note that the presence of noise in the
STCA model causes both free-flow and congested branches of the(k, q) diagram to be slightly curved, as opposed to
the perfectly linear branches of the deterministic models.
If we setp = 0, then the STCA model becomes deterministic; additionally, settingvmax will recover the CA-184

TCA model. In the other deterministic case, whenp = 1, the system behaves differently: in the congested state, all
vehicles will come to a full stop, thereby reducing the global flow in the system to zero. As a result, the congested
branch in the(k, q) regime will coincide with the horizontal axis. This implies that the behaviour of a system withvmax
andp = 1 is totally different than that of a system withvmax− 1 andp = 0.
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Fig. 13.Left: several (k, vs ) diagrams for the STCA, each for a differentp ∈ {0.1,0.5,0.9}. It is clear from the diagram, that a vehicle will drive
with an average free-flow speed ofvff = vmax− p.Right: several(k, q) diagrams for the same STCA models as before. The slope of the congested
branch tends toward zero for an increasing slowdown probabilityp. Note that the seemingly small capacity drops at the critical density in the right
part, are actually finite-size effects[73,101].
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Fig. 14. Three(k, q) diagrams based on local measurements in the STCA model withvmax= 5 cells/time step.Left: p = 0.Middle: p = 1
3. Right:

p= 2
3. Points obtained in the free-flow regime (i.e., forvs ≈ vmaxcells/time step) are marked with a◦, points obtained in the congested regime with

a ·, and points that imply heavy congestion (i.e., forvs <1 cell/time step) with a$. Note that for these local diagrams, the slopes of the congested
branches (indicated by the points marked as$) are the negative of its corresponding slope in a global diagram.

Considering local measurements of the density, flow, and space-mean speed, the(k, q) diagrams inFig. 14reveal
that an increasing slowdown probabilityp, results in (i) a lower value for the critical density, (ii) a lower capacity flow,
and (iii) a more localised scatter of the data points.
In Fig. 15, we have plotted a histogram of the distributions of the STCA’s vehicles’space gaps, for all global densities

k ∈ [0,1]. For very low densities, the distributions have a distinct maximum, indicating that all vehicles travel with
very large space gaps. At higher densities, the maxima of the distributions shift toward smaller space gaps, as more
and more vehicles encounter jams, even leading to a reduction of their space gap to zero. Around the critical density
however, the distributions are smeared out across consecutive densities, but for each of those densities they exhibit a
bimodal structure. Because the STCA contains many jams, the system now contains both vehicles in free-flow traffic,
as well as vehicles that are in a congested state (i.e., driving closer to each other)[59,4,6,71].
In similar spirit, Fig. 16 shows the distribution of the vehicles’ speeds and time gaps. Corresponding with our

observations of the (k, vs) diagrams inFig. 13, the left part ofFig. 16shows a distinct cluster of probability mass at
the histogram classvmax− p for very low global densities. In this region, the standard deviation of the space-mean
speed is more or less constant and equal top. At higher global densities, the distributions become temporarily bimodal,
after which they again tend to a unique maximum of 0 cells/time step, corresponding to severely congested traffic;
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Fig. 15. A histogram of the distributions of the vehicles’ space gapsgs , as a function of the global densityk in the STCA (withvmax= 5 cells/time
step andp = 0.5). In the contour plot to the left, the thick solid line denotes the average space gap, whereas the thin solid line shows its standard
deviation. The grey regions denote the probability densities. The histograms (A) and (B) to the right, show two cross sections made in the left contour
plot atk = 0.1325 and 0.4000, respectively: for example, in (B), the distribution exhibits a distinct unique maximum at the histogram classgs = 0
cells, corresponding to the dark region in the lower right corner of the contour plot where high global densities occur.
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Fig. 16. Histograms of the distributions of the vehicles’ speedsv (left) and time gapsgt (right), as a function of the global densityk in the STCA
(with vmax= 5 cells/time step andp= 0.5). The thick solid lines denote the space-mean speed and median time gap, whereas the thin solid line
shows the former’s standard deviation. The grey regions denote the probability densities.

the standard deviation drastically encounters a maximum at the critical density, after which it declines steadily. With
respect to the distributions of the time gaps, the right part ofFig. 16shows an rapidly decreasing median time gap as
the critical density is approached. At this density, the time gaps settle around a local cluster at the minimum of 1 time
step. Going to higher global densities, the number of stopped vehicles increases rapidly, frequently resulting in infinite
time gaps. From the critical density on, all distributions exhibit a bimodal structure, corresponding to vehicles that are
caught inside a jam, and other vehicles that are able to move freely (possibly at a lower speed)[59,72,71].
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Fig. 17. A time–space diagram of the STCA-CC model forvmax= 1 cell/time step and a global density ofk = 0.4 vehicles/cell. The shown lattice
contains 300 cells, with a visible period of 1000 time steps. We can see over ten initial jams evolving, coalescing over time into one superjam. The
system exhibits two distinct phases, i.e., a free-flow and a congested regime withvs = 1 and 0 cells/time step, respectively.

3.2.2. STCA with cruise control (STCA-CC)
Asmentioned in the previous Section 3.2.1, a typical artifact of the STCAmodel is that it gives rise to many unstable

artificial jams. Due to the noise inherent in the model, a jam can always form at any density, even inducing a local
breakdown of traffic in the free-flow traffic regime. One way to remedy this, is by stabilising the free-flow branch of
the(k, q) diagram. This can be done by inhibiting the randomisation for high-speed vehicles. To this end, Nagel and
Paczuski considered again rules R1–R3 of the STCA, i.e., Eqs. (46)–(48), but now complemented with a rule R0[73]:

(R0) determine stochastic noise

vi(t − 1)= vmax�⇒ p′(t)← 0 ,

vi(t − 1)< vmax�⇒ p′(t)← p , (49)

with nowp replaced byp′(t) in the STCA’s randomisation rule R2, i.e., Eq. (47). This new rule effectively turns
off the randomisation for high-speed vehicles, as only ‘jammed’ vehicles will now have stochastic behaviour.
The resulting TCA model, is called the STCA in thecruise-control limit, or STCA-CC for short. If we set the
maximum speedvmax= 1 cell/time step, then all jams initially present in the system will coalesce with each
other, giving rise to one superjam as depicted inFig. 17. This superjam has been found to follow arandom walk
in the time–space diagram[73,36]. Note thatvmax>1 cell/time step does not alter the critical behaviour of the
model, even though jam clusters are now branching, having regions of free-flow traffic in between them[36].

In Fig. 18, we show the (k, vs) and(k, q) diagram of the STCA-CC withvmax= 5 cells/time step andp = 0.2. As
can be seen in the right part, the(k, q) diagram has a typical inverted� shape (see also our discussion in[1] about
the hysteresis and capacity drop phenomena). The STCA-CC is said to bebistable, in that both the free-flow as well
as the congested branches of the(k, q) diagram are stable (the former because it is noise-free). Vehicles going from
the free-flow to the congested regime encounter at the critical density a phenomenon much like a capacity drop. The
reverse transition to the free-flow branch proceeds via a lower density and, correspondingly, a lower flow (which is the
outflowqout of a jam). Comparing the right parts ofFigs. 13and18, it is evident that a destabilisation of the free-flow
branch forms the main reason for a lower capacity flow, reached at a lower critical density.
To conclude our discussion of the STCA-CC, we note that the use of cruise control as anADAS can have unintended

consequences. The traffic system can be perceived as having an underlying critical point, at which the life times of
jams switch from finite to infinite (see our discussion at the beginning of Section 3.2.1). The existence of this point is
closely tied to theself-organised criticality(SOC) of the STCA model: the outflow from an infinite jam automatically
self-organises to a state of maximum attainable flow[74,67,63,75]. Stabilising the free-flow branch with cruise-control
measures, results on the one hand in traffic higher achievable flows which is beneficial, but on the other hand the system
is driven closer to its critical point which is more dangerous. At this stage, travel times will experience a high degree
of variability, thereby reducing its predictability[76,73,63].
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Fig. 18. Two (k, vs ) (left) and(k, q) (right) diagrams for the STCA-CCmodel, withvmax=5 cells/time step andp=0.2. The thick solid line denotes
global measurements that were obtained when starting from homogeneous initial conditions; the thin solid line is based on a compact superjam as
the initial condition (see Section 3 for an explanation of these conditions). The right part clearly shows a typical reversed� shape, which indicates a
capacity drop. Note that the observed smaller drop in flow for the compact superjam, is actually a finite-size effect[73,101].

3.2.3. Stochastic Fukui–Ishibashi TCA (SFI-TCA)
In Section 3.1.2, we discussed the deterministic FI-TCA which is a generalisation of the CA-184 TCA model. In

their original formulation, Fukui and Ishibashi also introduced stochasticity, but now only for vehicles driving at the
highest possible speed ofvmax cells/time step[64]. We can express the rules of this model, by considering the rules R2
and R3 of the STCA, i.e., Eqs. (47) and (48), but now complemented with the DFI-TCA’s rule R1 for instantaneous
accelerations, i.e., Eq. (42) of Section 3.1.2, and, as in the STCA-CC model, an extra rule R0:

(R0) determine stochastic noise

vi(t − 1)= vmax�⇒ p′(t)← p ,

vi(t − 1)< vmax�⇒ p′(t)← 0 , (50)

with now p replaced byp′(t) in the randomisation rule R2. It can be seen that forvmax= 1, the SFI-TCA and
STCAmodels are the same. Furthermore, forp= 0 the SFI-TCA becomes fully deterministic, and in contrast to
the STCA’s zero-flow behaviour (see Section 3.2.1), the SFI-TCA’sp = 1 case corresponds to the STCA with
p = 0 andvmax− 1.

The rationale behind the specific randomisation in the SFI-TCA model, is that drivers who are moving at a high
speed, are not able to focus their attention indefinitely.As a consequence, there will be fluctuations at these high speeds.
As such, this corresponds to the opposite of a cruise-control limit, e.g., the STCA-CCmodel. There will be no capacity
drop, but the effect on the (k, vs) diagram is that its free-flow branch will become slightly downward curving, starting
atvs = vmax− p for k = 0.
To conclude, wemention the related work ofWang et al. who studied the SFI-TCA both analytically and numerically,

providing an exact result forp= 0, and a close approximation for the model withp �= 0 [77]. Based on the SFI-TCA,
Wang et al. developed a model that is subtly different. They assumed that drivers do not suffer from concentration
lapses at high speeds, but are instead only subjected to the random deceleration when they are driving close enough
to their direct frontal leaders[78]. And finally, we mention the work of Lee et al. who incorporate anticipation with
respect to a vehicle’s changing space gapgs as its leader is driving away. This results in a higher capacity flow, as well
as the appearance of a synchronised-traffic regime, in which vehicles have a lower speed, but areall moving[79].
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3.2.4. Totally asymmetric simple exclusion process (TASEP)
The simple exclusion process is a simplified well-known particle transport model from non-equilibrium statistical

mechanics, defined on a one-dimensional lattice. In the case of open boundary conditions (i.e., the bottleneck scenario),
particles enter the system from the left side at anentry rate�, move through the lattice, and leave it at anexit rate�.
The term ‘simple exclusion’ refers to the fact that a cell in the lattice can only be empty, or occupied by one particle.
When moving through the lattice, particles move one cell to the left with probability	, and one cell to the right with
probability�. When	 = �, the process is called thesymmetric simple exclusion process(SSEP); if	 �= �, then it is
called theasymmetric simple exclusion process(ASEP)[80]. Finally, if we set	= 0 and�= 1, the system is called the
totally asymmetric simple exclusion process(TASEP). If we consider the TASEP as a TCA model, then all vehicles
move withvmax= 1 cell/time step to their direct right-neighbouring cell, on the condition that this cell is empty.
Updating the configuration of CA essentially amounts to updating the states of all its cells. In general, there are two

methods for the update procedure:
Sequential update: This updating procedure considers each cell in the lattice one at a time. If all cells are considered

consecutively, two updating directions are possible:left-to-right and right-to-left. There is also a third possibility,
calledrandom sequential update. Under this scheme and withN particles in the lattice, each time step is divided in
N smaller substeps. At each of these substeps, a random cell (or vehicle) is chosen and the CA rules are applied to
it. As a consequence of the updating procedure, each particle is on average updated afterN smaller substeps, which
introduces a certain amount of noise in the system.We have depicted several typical time–space diagrams for theASEP
with 	 = 1− � in Fig. 19. Furthermore note that a hidden assumption here is that, after completing a substep, the
local information is immediately available to the whole system, which can violate causality (as information is now
transmitted through the lattice at an infinite speed).
Parallel update: This is the classic update procedure that is used for all TCA models discussed in this report. For a

parallel update, all cells in the system are updated in one and the same time step. Compared to a sequential updating
procedure, this one is computationallymore efficient (note that it is equivalent to a left-to-right sequential update). There
is however one peculiarity associated with this updating scheme: because all particles are considered simultaneously,
certain lattice configurations cannot exist, i.e., theGarden of Eden(GoE) states mentioned in Section 1.2. An example
of such aparadisiacal state, is two vehicles right behind each other, with the following having a non-zero speed. This
state would imply that in single-lane traffic, the FIFO property was violated and consequently a collision occurred.
Such GoE states do not exist when using a random sequential update.
In Fig. 20, we have depicted two time–space diagrams for the TASEP with a random sequential updating procedure,

operating on a closed loop. As can be seen, the diagrams qualitatively look the same, and have some of the same
characteristic features of the time–space diagrams inFig. 19. For the TASEP, there is no free-flow regime, there are no
large jams in the system, and, because of the random sequential update, all vehicles continuously have the tendency
to collide with each other. As a consequence, the system is littered with mini-jams in both the low and high density
regimes[63,36]. Note that the TASEP with open boundary conditions exhibits a very rich behaviour, depending on the
values for the entry and exit rates� and�, respectively[81,18,53].
With respect to the relations between the TASEP with a random sequential update and other models, we mention the

following two analogies: on the one hand, the LWR first-order macroscopic traffic flow model[1] corresponds to the
TASEP in the hydrodynamic limit to a noisy and diffusive conservation law, which can be reduced to the LWR model
[63,36]. On the other hand, the TASEP corresponds to the STCA (see Section 3.2.1), but now withvmax= 1 cell/time
step[3,6].
To gain more insight into the macroscopic behaviour of the TASEP with random sequential update, we provide

its (k, vs) and(k, q) diagrams inFig. 21. Looking at the (k, vs) diagram on the left part, we notice that the TASEP
with vmax= 1 cell/time step corresponds exactly to Greenshields’ original linear relation between the density and the
mean speed[82,50]. This in fact is a further testimony of the close link between the TASEP and the LWR model with
a triangularqe(k) fundamental diagram. Increasing the TASEP’s maximum speed, leads to a more curved relation,
intersection the vertical axis at the point (0, vmax). In any case, the (k, vs) diagram also reveals the absence of a distinct
free-flow branch, corresponding to the observations of the large amount of mini-jams for all global densities, as could
be seen in the time–space diagrams ofFig. 20.
Studying the(k, q) diagram in the right part ofFig. 21, we can see that the TASEP corresponds with the STCA

for vmax= 1 and an arbitrary slowdown probability (e.g.,p = 0.1). The diagram also shows how the CA-184 leads
to a sharp transition between the free-flow and the congested regime, as opposed to the rounded peak of capacity
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Fig. 19. Typical time–space diagrams of the asymmetric simple exclusion process (ASEPmodel) with a random sequential update and	=1−�. The
shown lattices each contain 400 cells, with a visible period of 400 time steps (note that for clarity, the space and time axes are located horizontally
and vertically, respectively). The global densities in the systems were set for each row tok ∈ {0.1,0.3,0.5,0.7,0.9} vehicles/cell. For each column,
the ASEP’s probability to move to the left was set to	 ∈ {0.1,0.3,0.5,0.7,0.9}.

Fig. 20. Typical time–space diagrams of the TASEPmodel with a random sequential update. The shown lattices each contains 300 cells, with a visible
period of 580 time steps. The global density in the system was set tok = 0.3 vehicles/cell (left), andk = 0.7 vehicles/cell (right). The evolution of
the system dynamics qualitatively looks the same in both diagrams: the system is littered with mini-jams in both the low and high density regimes.

flow at k = 0.5 vehicles/cell for the STCA. However, whereas the TASEP also has its capacity flow at the same
value, there does not occur such a phase transition as in the other models. Finally, we can see that increasing the
maximum speedvmax for the TASEP introduces no significant qualitative changes, except for a skewing towards lower
densities[63].
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Fig. 21. A comparison of the (k, vs ) (left) and(k, q) (right) diagrams for the CA-184 withvmax= 1 (�), the STCA withvmax= 1 andp = 0.1
($), the TASEP with random sequential update andvmax= 5 (◦), and the TASEP with random sequential update andvmax= 1 (thick solid line).
Some distinct characteristics of the TASEP are the absence of a free-flow regime, and forvmax= 1 cells/time step, the exact correspondence with
Greenshields linear relation between the density and the mean speed.

Note that with respect to the computational complexity of the implemented TCA models, most measurements in
this report took a few hours to obtain, using an Intel P4 2.8GHz with 512MB RAM, running the JavaTM JDK 1.3.1
underWindows 2000. In sharp contrast to this, are the computations for the TASEP model, which took nearly 2weeks
to complete.

3.2.5. Emmerich–Rank TCA (ER-TCA)
Whereas the classical STCA model provided a reasonable qualitative agreement with real-world observations,

Emmerich and Rank addressed the quantitative discrepancies between the model and real-world data. To this end,
they proposed a variation on the STCA, extending the influence of the space gap on a vehicles updated
speed[83].
In their work, Emmerich and Rank fundamentally modified the STCA in two steps: (i) they changed the parallel

update procedure to aright-to-left sequential update procedure(seeSection 3.2.4 formore details), and (ii) they changed
the behaviour of vehicles that are slowing down. In a nutshell, (i) leads to the important result that vehicles are now
able to drive directly behind each other (i.e., with a zero space gap) at high speeds, because the gaps in a traffic stream
are used more efficiently. The reason is that due to the specific sequential update, a downstream vehicle is moved first
(for a closed loop, the vehicle with the largest space gap is chosen first), after which the next vehicle upstream will see
a larger space gap.
Just as the STCA can be seen as a special case of the optimal velocity model (OVM), based on a linear optimal

velocity function (for a description of the OVM, we refer the reader to our overview in[1]), the ER-TCA model
generalises this function by making a vehicle’s speed dependent on a variable safe distance and its current speed[3].
This affects (ii), i.e., vehicles that are slowing down: when determining the new speed of a vehicle, the ER-TCAmodel
first checks if the vehicle is within 10 cells of its direct frontal leader. If this is the case, then the vehicle will slow down
according to a table lookup in agap-speed matrixMgsi ,vi

. This matrix is constructed in such a way that collisions are
avoided (i.e.,Mi,j � min{i, j}):

MT =




0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1 1 1 1
0 1 2 2 2 2 2 2 2 2 2
0 1 2 3 3 3 3 3 3 3 3
0 1 2 3 4 4 4 4 4 4 4
0 1 2 3 4 4 4 4 4 4 5


 . (51)
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Fig. 22. Histograms of the distributions of the vehicles’ space gapsgs (left) and time gapsgt (right), as a function of the global densityk in the
ER-STCA (withvmax= 5 cells/time step andp = 0.35). The thick solid lines denote the mean space gap and median time gap, whereas the thin
solid line shows the former’s standard deviation. The grey regions denote the probability densities.
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Fig. 23.Left: several (k, vs ) diagrams for the ER-TCA, each for a different slowdown probabilityp. It is clear from the diagram, that for low values
of p, the resulting diagrams are unrealistic, including plateaus of constant space-mean speed in the congested regime.Right: several(k, q) diagrams
for the same ER-TCAmodels as before. Due to the system dynamics in the ER-TCA, very high capacity flows are possible. To constrain these flows,
the slowdown probabilityphas to be quite large in order to obtain realistic results. In both parts of the figure, the thick solid line denotes the original
model of Emmerich and Rank, who used a valuep = 0.35 as their best fit to experimental data.

The matrix in Eq. (51), conveys the idea that lower speeds require lower space gaps, and that vehicles tend to keep
larger space gaps when travelling at higher speeds. This latter effect is also visible in the distribution of the vehicles’
space gaps, as visualised in the histograms in the left part ofFig. 22, where, in contrast to the STCA’s space gaps
distribution ofFig. 15, large space gaps are observed for densities near the critical density. Furthermore, because of
this mechanism, vehicles will have smoother decelerations, instead of the abrupt slowing down in the STCA model
and some of its variations.
To understand some of the system dynamics of the ER-TCA model, we have provided several (k, vs) and(k, q)

diagrams inFig. 23. Forp= 0.35, we can see in the(k, q) diagram in right part, that the free-flow branch getscurved,
implying that vehicles travel at a slightly lower speed when they approach the capacity-flow regime. Because vehicles



S. Maerivoet, B. De Moor / Physics Reports 419 (2005) 1–64 31

can travel at high speeds in dense platoons, the ER-TCA model can achieve very high capacity flows, even leading
to q >1 vehicle/time step. In order to constrain these flows to realistic values, the ER-TCA model needs a quite high
slowdown probability, e.g.,p = 0.35.
These two effects, i.e., a curving of the free-flow branch and an increased capacity flow, are basically what the

ER-TCA model is all about, as there is no qualitative change in the congested branch of the(k, q) diagram. There
are however some serious drawbacks to the ER-TCA model. First and foremost, the(k, q) diagram is no longer non-
monotonic for lowdensitieswhen the sequential update is replaced by a parallel one[3,19]. Secondly, themodel exhibits
too large time headways in the free-flow regime when compared with real-world data. This effect is also visible in the
distribution of the vehicles’ time gaps, as depicted in the histograms in the right part ofFig. 22, where, in contrast to
the STCA’s time gaps distribution ofFig. 16, a large amount of finite time gaps extends well into the region of medium
densities. Third, due to the sequential update, the ER-TCA model’s downstream jam dynamics are unstable, just as in
the STCA model[19]. Fourth, as can be seen from the (k, vs) diagram in the left part ofFig. 23, for small slowdown
probabilitiesp, the resulting space-mean speed in the system is very unrealistic, even including plateaus of constant
speed in the congested regime, e.g., the curve associated withp = 0.1 (we considerp = 0 as a degenerate case).

3.3. Slow-to-start models

In order to obtain a correct behavioural picture of traffic flow breakdown and stable jam, it is necessary that a
vehicle’s minimum time headway or reaction time should be smaller than its escape time from a jam, or equivalently,
the outflow from a jam (i.e., the queue discharge rate) must be lower than its inflow[84,69,85–87,51]. If this is not the
case, as in e.g., the STCAmodel where both times are exactly the same, then all jams will be unstable, as can be seen in
the time–space diagram ofFig. 12. Because of their unstable jamming behaviour, the previously discussed stochastic
models, experience neither a capacity drop nor a hysteresis loop, for which stable jams are a necessary prerequisite.
Although the STCA-CC seems to be an exception to this rule, the downstream fronts of its jams are still too unstable,
in the sense that new jams can emerge all too easily, which is unrealistic behaviour with respect to real-life traffic
flows [5].
As justmentioned, onemechanism that deals with this, is by leaving free-flow traffic undisturbed, and bysignificantly

reducing the outflow from a jamonce a breakdown occurs, thereby stabilising the downstream front of a jam. Instead
of just eliminating the noise in free-flow traffic in the STCA-CC, this reduced outflow can also be accomplished more
intuitively, by making the vehicles wait a short while longer before accelerating again from stand still. As such, they
are said to be “slow to start”.
Note that there exists yet another mechanism that allows for the reproduction of the capacity drop and hysteresis

phenomena (we will only briefly mention it here). The approach followed byWerth, is based on the premise that drivers
take into account thespeed differencewith their direct frontal leader, instead of just the space gap as was previously
assumed. This leads toGalilei invariant vehicle–vehicle interactions (i.e., the system dynamics remain the same if a
new linear moving coordinate system is substituted in the equations). Interestingly, the metastability in this model is
not due to cruise control or slow-to-start rules, but rather a result of the anticipation adopted. The model can exhibit
stable dense platoons of fast vehicles, resulting in a stabilisation of the free-flow branch, and consequently leading to
hysteretic behaviour[88,5,3].
With respect to real-world units, we give some typical values associated with the capacity drop and hysteresis phe-

nomena (based on[5]): an outflowqout ≈ 1800 vehicles/h/lane at an associated density ofkout ≈ 20 vehicles/km/lane,
with qcap, kcrit, andkjam equal to 2700 vehicles/h/lane, 20 vehicles/km/lane, and 140 vehicles/km/lane, respectively.

3.3.1. Takayasu–Takayasu TCA (T 2-TCA)
In 1993, Takayasu and Takayasu proposed a deterministic TCAmodel, based on the CA-184 (see Section 3.1.1), that

incorporated adelay in acceleration for stopped vehicles[89]. Their motivation stems from the fact that high-speed
vehicles are in general able to decelerate very quickly, but conversely, it takes them a lot longer to attain this high speed
when they start from a stopped condition. As such, Takayasu and Takayasu introduced a delay, based on the rationale
that a vehicle will only start to move when it recognises movement of its direct frontal leader. Translating this into
a rule set, we can write the T2-TCA’s rules based on those of the CA-184, but now with the following modifications
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Fig. 24. Two (k, vs ) (left) and(k, q) (right) diagrams for the T2-TCA model, withvmax= 1 cells/time step. The thick solid line denotes global
measurements that were obtained when starting from homogeneous initial conditions; the thin solid line is based on a compact superjam as the
initial condition (see Section 3 for an explanation of these conditions). The right part clearly shows a typical reversed� shape, which indicates a
capacity drop.

(note thatvmax= 1 cell/time step):

(R1) braking

vi(t − 1)> gsi (t − 1) �⇒ vi(t)← gsi (t − 1) , (52)

(R2) delayed acceleration

vi(t − 1)= 0∧ gsi (t − 1)�2

�⇒ vi(t)← 1 , (53)

(R3) vehicle movement

xi(t)← xi(t − 1)+ vi(t) . (54)

From this rule set it follows that a vehicle will always drive at a speed of one cell/time step, unless it has to brake
and stop according to rule R1, Eq. (52). Furthermore, the vehicle is only allowed to accelerate again to this speed of
one cell/time step, on the condition that it has a sufficiently large space gap in front, as dictated by rule R2, Eq. (53).
As a result, the introduced delay isspatial in nature, and it only affects stopped vehicles.
In Fig. 24, we have depicted the resulting (k, vs) and(k, q) diagrams for the T2-TCAmodel. The observed behaviour

is similar to that of the STCA-CC model in Section 3.2.2, in that the T2-TCA model also exhibitsbistability. Starting
from homogeneous initial conditions, the space-mean speed in the system undergoes a sharp drop once a vehicle has to
stop. The reverse process, i.e., going from the congested to free-flow regime, is accompanied by a smooth continuous
transition. Takayasu and Takayasu state that this corresponds to a second-order phase transition, because their order
parameter (the sum of the jamming times) follows a power-law distribution, with jam times tending to infinity once the
system goes beyond the critical density.With respect to the T2-TCA’s tempo-spatial behaviour, we note that the critical
density for the former transition is located atkc = 0.5 vehicles/cell, at which point all vehicles travel at a speed of one
cell/time step with all space gaps equal to one cell. The density at which the recovery associated with latter transition
occurs, is equal tok = 1

3 vehicles/cell, at which point all vehicles travel at a speed of one cell/time step, but now with
all space gaps equal to two cells. Fukui and Ishibashi later modified the delaying process, resulting in a system that
always relaxes to a state in which the space-mean speed oscillates between two values, both smaller than one cell/time
step[90].
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The original background for Takayasu and Takayasu’s work, was based on the presence of so-called 1/f noise (also
known aspink noiseorflicker noise) in the Fourier transformed density fluctuations of motorway traffic. The seemingly
random stop-and-go motions of jammed vehicles, could indicate a chaotic behaviour (as opposed to just statistical
noise), closely coupled with self-organised criticality (see also the end of Section 3.2.2)[67]. In the free-flow regime
of the T2-TCAmodel, jams have a finite life time leading to a flat spectrum, as opposed to the congested regime where
jams have an infinite life time, leading to a 1/f spectrum[89].
Schadschneider and Schreckenberg later provided a generalisation of the T2-TCAmodel: keepingvmax=1 cell/time

step, they now modified the braking and acceleration behaviour of a vehicle. On the one hand, they kept Takayasu and
Takayasu’s original acceleration rule R2, Eq. (53), and on the other hand, they allowed a vehicle with a space gap of just
one cell to accelerate with aslow-to-start probability1−pt [91]. They furthermore also introduced a randomisation for
moving vehicles, similar to the STCA (see Section 3.2.1), making vehicles stop with a slowdown probabilityp. Several
interesting phenomena occur for certain values of both probabilitiesp andpt . The modified spatial slow-to-start rule
can lead to the appearance of aninflection pointin the(k, q) diagram at very high densities. The effect gets strongly
exaggerated whenpt → 1, at which point a completely blocked state of zero flow appears for all global densities
k� 0.5 vehicles/cell[91,18,3].

3.3.2. The model of Benjamin, Johnson, and Hui (BJH-TCA)
Around the same time that Takayasu andTakayasu proposed their T2-TCAmodel, Benjamin, Johnson, andHui (BJH)

constructed another type of TCA model, using a slow-to-start rule that is of atemporal nature[92]. Their BJH-TCA
model is based on the STCA (see Section 3.2.1), but extended it with a rule that adds a small delays to a stopped car that
is pulling away from the downstream front of a queue. Benjamin et al. attribute this rule to the fact that it mimics the
behaviour of a driver who momentarily looses attention, or when a vehicle’s engine is slow to react. Their slow-to-start
rule allows a stopped vehicle to move again with thisslow-to-start probability1−ps . If the vehicle did not move, then
it tries to move again but this time with probabilityps . Due to this peculiar acceleration procedure, all vehicles require
a memory that, as mentioned before, makes the slow-start-rule temporal in nature[3].As a result of this new systematic
behaviour, jams will now become less ravelled (as opposed to the STCA), because the slow-to-start rule will have the
tendency to merge queues.
The BJH-TCAmodel was also applied to the description of a motorway with an on-ramp, leading to the conclusions

that (i) it actually is beneficial to have jams on the main motorway, due to the fact that these jams homogenise the
traffic streams as they compete for stopped vehicles, and (ii) it is desirable to set a maximum speed limit on this main
motorway which allows to maximise the performance of the on-ramp. Note that in their discussion, Benjamin et al.
used the queue length at the on-ramp as a performance measure. In our opinion, this is not a very good choice as it
ignores e.g., the total time spent in the system, which we believe is a more important measure (see also the work of
Bellemans[93] and Hegyi[94] in this respect).
To conclude, we note that the(k, q) diagrams of the BJH-TCA and T2-TCA models qualitatively look the same,

with the exception the former does not have the possibility of an inflection point, or a density region with zero flow, as
was the case for the latter model (see Section 3.3.1)[91,18].

3.3.3. Velocity-dependent randomisation TCA (VDR-TCA)
Asalready explained in the introduction of this section, reducing the outflow froma jam is responsible for the capacity

drop and hysteresis phenomenon. To this end, Barlovi´c et al. proposed a TCA model that generalises the STCA model
(see Section 3.2.1) by employing an intuitive slow-to-start rule for stopped vehicles[95,96]. Similar to the STCA-CC
(see Section 3.2.2), the complete rule set for the VDR-TCA is as follows:

(R0) determine stochastic noise

vi(t − 1)= 0�⇒ p′(t)← p0 ,

vi(t − 1)>0�⇒ p′(t)← p, (55)

(R1) acceleration and braking

vi(t)← min{vi(t − 1)+ 1, gsi (t − 1), vmax} , (56)
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Fig. 25. A time–space diagram of theVDR-TCAmodel forvmax=5 cells/time step,p0=0.5,p=0.01, and a global density ofk= 1
6 vehicles/cell.

The shown lattice contains 300 cells, with a visible period of 1000 time steps.We can see the breakdown of an initially homogeneous traffic pattern.
As the phase separation takes place, a persistent compact jam is formed, surrounded by free-flow traffic. The significant decrease of the density in
the regions outside the jam results from the jam’s reduced outflow.

(R2) randomisation

�(t)<p′(t) �⇒ vi(t)← max{0, vi(t)− 1} , (57)

(R3) vehicle movement

xi(t)← xi(t − 1)+ vi(t) . (58)

Asbefore, in ruleR2,Eq. (57),�(t) ∈ [0,1[denotes auniform randomnumber (specifically drawn for vehiclei at time
t) andp′(t) is the stochastic noise parameter,dependent on the vehicle’s speed(hence the name ‘velocity-dependent
randomisation’). The probabilitiesp0 andp are called theslow-to-start probabilityand theslowdown probability,
respectively, withp0, p ∈ [0,1]. Note that Barlovi´c et al. only considered the case with two different noise parameters
(i.e.,p0 andp), ignoring the more general case where we can have a noise parameter for each possible speed (i.e.,
p0, . . . , pvmax). Their model was also considered for systems with open boundary conditions[97].
Depending on their speed, vehicles are subject to different randomisations: typical metastable behaviour results when

p0?p, meaning that stopped vehicles have to wait longer before they can continue their journey. This has the effect of
a reduced outflow from a jam, so that, in a closed system, this leads to an equilibrium and the formation of acompact
jam. For such a typical situation, e.g.,p0 = 0.5 andp = 0.01, the tempo-spatial evolution is depicted inFig. 25. We
can see an initially homogeneous traffic pattern (onemetastablephase) breaking down and kicking the system into a
phase-separated state, consisting of a compact jam surrounded by free-flow traffic. In such a state, traffic jams in the
system will absorb as many vehicles as is necessary, in order to have a free-flow phase in the rest of the system[6].
Note that the VDR-TCA can also be equipped with a cruise control, by turning of fluctuations for vehicles driving at
the maximum speedvmax.
In the left part ofFig. 26, we have plotted a histogram of the distributions of the vehicles’ speeds, for all global

densitiesk ∈ [0,1]. Here we can clearly see the distinction between the free-flow and the congested regime: the space-
mean speed remains more or less constant at a high value, then encounters a sharp transition (i.e., the capacity drop),
resulting in a steady declination as the global density increases. Note that as the critical density is encountered, the
standard deviation jumps steeply; this means that vehicles’ speeds fluctuate wildly at the transition point (because they
are entering and exiting the congestionwaves). Once the compact jam is formed, the dominating speed quickly becomes
zero (because vehicles are standing still inside the jam). Although most of the weight is attributed to this zero-speed,
there is a non-negligible maximum speed present for intermediate densities. If the global density is increased further
towards the jam density, this maximum speed disappears and the system settles into a state in which all vehicles either
have speed zero or one (i.e., systemwide stop-and-go traffic).
Studying the(k, q) diagram in the right part ofFig. 26, gives us another view of this phase transition. We can see

a capacity drop taking place at the critical density, where traffic in its vicinity behaves in a metastable manner. This
metastability is characterised by the fact that sufficiently large disturbances of the fragile equilibrium can cause the
flow to undergo a sudden decrease, corresponding to a first-order phase transition. The state of very high flow is then
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Fig. 26.Left: a contour plot containing the histograms of the distributions of the vehicles’ speedsv as a function of the global densityk in the
VDR-TCA (with vmax= 5 cells/time step,p0 = 0.5 andp = 0.01). The thick solid line denotes the space-mean speed, whereas the thin solid line
shows its standard deviation. The grey regions denote the probability densities.Right: a (k, q) diagrams for the same TCA model. The dotted line
denotes global measurements that were obtained when starting from homogeneous initial conditions; the solid line is based on a compact superjam
as the initial condition. The right part clearly shows a typical reversed� shape, which indicates a capacity drop.

destroyed and the system settles into a phase separated state with a large megajam and a free-flow zone. The large jam
will persist as long as the density is not significantly lowered, thus implying that recovery of traffic from congestion
follows a hysteresis loop. In contrast to the STCA-CC’s bistability, the VDR-TCA model is trulymetastable, because
now the free-flow branch in the(k, q) diagram becomes unstable for large enough perturbations. Furthermore, the
spontaneous formation of jams in the downstream front that troubled the STCA, is suppressed in theVDR-TCAmodel.
Note that ifp0>p, then the behaviour of the systemwill be drastically different. Four distinct traffic regimes emerge

in the limiting case wherep0 = 0 andp = 1; in this case, the model is calledfast-to-start[98]. In these four regimes,
moving vehicles can never increase their speed once the system has settled into an equilibrium. Furthermore, there
exists a regime which experiences forward propagating density waves, corresponding to a non-concave region in the
system’s flow–density relation. For more information, we refer to our work in[99,100].

3.3.4. Time-oriented TCA (TOCA)
Considering the STCA model (see Section 3.2.1), Brilon and Wu acknowledged the fact that it is quite capable of

reproducing traffic dynamics in urban street networks. However, they also recognised the fact that the model performed
rather inadequatewhen it comes to correctly describing the characteristics of traffic flows onmotorways, e.g., compared
to field data of a Germanmotorway. Brilon andWu blamed the unrealistic car-following behaviour of the STCAmodel
for its inferior capabilities. At the core of their argument, they attributed this to the fact that the STCA model is
exclusively based on spatial variables (e.g., space headways). In order to alleviate these problems, they proposed to
use a model that was based on temporal variables (e.g., time headways), leading to more realistic vehicle–vehicle
interactions[68]. The rule set for this time-oriented TCA model (TOCA) is as follows:

(R1) acceleration

gsi (t − 1)> (vi(t − 1) · gts
)

∧ �1(t)<pacc

�⇒vi(t)← min{vi(t − 1)+ 1, vmax} , (59)

(R2) braking

vi(t)← min{vi(t), gsi (t − 1)} , (60)
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Fig. 27. Typical time–space diagrams of the TOCA model forvmax= 5 cells/time step,gts = 1.2 time steps, andpacc= pdec= 0.9. The global

density was set tok = 1
6 vehicles/cell (left) andk = 0.5 vehicles/cell (right). The shown lattices each contain 300 cells, with a visible period of

580 time steps. In the left part, we can see the breakdown of an initially homogeneous traffic pattern, resulting in dilute jam that is surrounded by
free-flow traffic. In the right part, we see a fully developed jam, dominating the entire system. As can be seen, for moderately light densities, the
jams in the TOCA model contain moving vehicles.

(R3) randomisation

gsi (t − 1)< (vi(t − 1) · gts
)

∧ �2(t)<pdec

�⇒vi(t)← max{vi(t)− 1,0} , (61)

(R4) vehicle movement

xi(t)← xi(t − 1)+ vi(t) . (62)

In the above rules,�1(t), �2(t) ∈ [0,1[ are random numbers drawn from a uniform distribution,gts ��T is thesafe
time gap,paccis theacceleration probability, andpdecis thedeceleration probability. Because all interactions between
vehicles in the STCA are bounded by the update time step, their speeds will never oscillate, leading to a rigid and stable
system. As a consequence of the TOCA’s temporal rules however, vehicles will now behave moreelastically, taking a
safe time gap into account that allows them to adapt their speeds with a relaxation. In this case, a vehicle will resort to
emergency braking (i.e., an instantaneous deceleration) only if it gets too close to its direct frontal leader[51]. Typical
parameter values for the TOCA aregts

=1.2 time steps andpacc=pdec=0.9. Brilon andWu also extended their model
with rudimentary rules that allowed for lane changes on unidirectional multi-lane roads.
In the left part ofFig. 27, we can see a similar tempo-spatial behaviour as with theVDR-TCA (see Section 3.3.3), in

that an initially homogeneous traffic pattern breaks down, resulting indilute jamthat is surrounded by free-flow traffic.
The major difference between jamming in the VDR-TCA and TOCA models however, is that in the former model,
vehicles come to a complete stop when entering a jam (seeFig. 25). They remain stationary until they can leave the
downstream front of the queue. In contrast to this, the jams in the TOCA model contain moving vehicles. Pushing the
global density even further tok = 0.5 vehicles/cell as was done in the right part ofFig. 27, results in a fully developed
jam that dominates the entire system and contains temporarily stopped vehicles.
Fig. 28depicts two groups of(k, q) diagrams for the TOCA model, withvmax= 5 cells/time step. The left part

shows four diagrams for different combinations ofpacc andpdec∈ {(0.9,0.1), (0.9,0.9), (0.1,0.1), (0.1,0.9)}, each
time with gts

= 1.2 time steps. As can be seen, the default case withpacc= pdec= 0.9 leads to an inflection point
at a moderately high density ofk = 0.5 vehicles/cell, resulting in two different slopes for the congested branch of
the TOCA’s(k, q) diagram. At this point, vehicles will have average space gaps less than one cell, and becausepdec
is rather high, vehicles will have the tendency to slow down (andpacc is smaller then one, so their acceleration is
somewhat inhibited). As a result, a large jam, comparable to the system’s size, will dominate tempo-spatial evolution.
Furthermore, the acceleration probabilitypaccshould take on rather high values, otherwise the global flow in the system
is too low because vehicles are not accelerating anymore. In the right part ofFig. 28, we have shown a large amount
of diagrams for differentgts with pacc= pdec= 0.9. Here we can see that, forgts

<�T , the resulting density–flow
curves are non-monotonic. Higher values forgts

in more vehicles that drive more cautiously, apparently leading to
higher values for the critical density and the capacity flow. Note that the seemingly small capacity drops at the end of
each free-flow branch are in fact finite-size effects[73,101].
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Fig. 28. Two groups of(k, q) diagrams for the TOCAmodel, withvmax=5 cells/time step.Left: four diagrams for different combinations ofpaccand
pdec, with gts =1.2 time steps.Right: a large amount of diagrams for differentgts with pacc=pdec=0.9. Forgts <�T , the resulting density–flow
curves are non-monotonic. Note that the seemingly small capacity drops at the end of each free-flow branch are in fact finite-size effects[73,101].

In their original paper, Brilon andWu claim that their TOCAmodel results in a better agreement with empirical data,
a fact which is based on a qualitative comparison of the (q, vs) diagrams[68]. Note that, after personal communication
with the authors, it seems they performed a minimisation of the square errors in the (k, vs) diagram. However, in
order to get the correct values for calibrating the TOCA’s parameters, they just manually guessed, without performing
a thorough numerical optimisation. Despite this optimistic view, Knospe et al. later investigated the TOCA model’s
capabilities more thoroughly. Their conclusions state that a quite large value for the deceleration probabilitypdec is
necessary in order to obtain realistic capacity flows. Although the time headway distribution of a jam’s downstream
front in the TOCA model is correct with respect to real-life observations, its downstream front moves too fast due
to the large deceleration probability. As a result, the jams in the TOCA model are more dilute, as could be seen in
Fig. 27 [19].

3.3.5. TCA models incorporating anticipation
One of themodels related to anticipative driving (i.e., only taking a leaders’ reactions into account, without predicting

them), can be found in the work of Krauß et al. who derived a collision-free model based on the STCA (see Section
3.2.1), but which usescontinuousvehicle speeds. Their model can be considered as a simplified version of the Gipps
model [1]. Although the model restricts vehicles’ deceleration capabilities, it is still able to correctly reproduce the
capacity drop and hysteresis phenomena[101].
Another model with anticipation was proposed by Eissfeldt and Wagner[40]. Their model is based on Krauß’s

work [1], and employs a next-nearest-neighbour interaction, which stabilises dense flows and results in a non-unique
flow–density relation.
Recently, Lárraga et al. introduced a TCA model that includes a driver’santicipationof the leading vehicle’s speed

[41]. In contrast to the STCA model (see Section 3.2.1), the acceleration and braking rules are decoupled. As a first
rule, the standard acceleration towards the maximum speed is applied, after which the randomisation is performed by
means of a second rule. Only then, the model considers braking in its third rule; however, the deceleration is not only
based on the space gap between both vehicles, but also on an anticipation of the leading vehicle’s speed:

(R3) anticipation and braking

vi(t)← min


vi(t), gsi (t − 1)+

[
(1− �i ) · vi+1(t − 1)+ 1

2

]
︸ ︷︷ ︸

safe distance


 , (63)
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Fig. 29.A(k, q) diagram of Nishinari et al.’s extended BCAmodel, withvmax=5 cells/time step,�T =1.3 s,�X=7.5m, and a driver’s perspective
of two vehicles ahead. The resulting diagram exhibits multiple metastable branches.Vehicles inside jams come to a complete stop only for the lowest
metastable branch; for the higher branches, vehicles inside jams are still able to move forward. Depending on the strength of a local perturbation,
traffic will shift from the highest branch to one of the lower branches (image reproduced after[109]).

with vi(t) on the right-hand side corresponding to the computed speed after applying rule R2,[x] denotingx
rounded to the nearest integer,vi+1(t−1) the speed of the leading vehicle at the current time step, and�i ∈ [0,1]
an anticipatory driving parameter for theith vehicle. In their work, Lárraga et al. considered all�i to be equal.

The interesting aspect of this anticipatory TCA model, is that for certain values of�, it can result indense pla-
toons of vehicles, travelling coherently and thereby leading to forward propagating density structures. In the free-flow
regime, the(k, q) diagram also exhibits a slight curvature near the capacity flow, similar to the ER-TCA model (see
Section 3.2.5). Del Rió and Lárraga later also extended the model to accommodate for multi-lane traffic flows[102].

3.3.6. Ultra discretisation, slow-to-accelerate, and driver’s perspective
It is also possible to derive a cellular automaton model, based on the discretisation of a partial differential equation.

Starting from a PDE (e.g., the Burgers equation[1]), we can obtain an finite difference equation by discretising the
spatial and temporal dimensions, resulting in a model that still has continuous state variables. As a further step, we
can now also discretise these state variables, using a process called theultra-discretisation method(UDM) [103]. The
result of the UDM can be interpreted as a cellular automaton in theEuler representation. The latter means that for a
TCA model, a road is considered to be a field, whereby the individual cars are not distinguished[104]. The interesting
part of this type of CA is that its cells are allowed to hold multiple vehicles, which makes it possible to implicitly
model multi-lane traffic in a simplified sense (because the effects of lane changes are neglected)[3]. As a next step, this
obtained CA can be cast in itsLagrangian representation, by means of anEuler–Lagrange transformation[104,105].
The resulting Lagrange representation treats the positions of all vehicles individually, thus leading to the well-known
position-based rule sets of the TCA models discussed in this report.
Nishinari proposed an interesting TCA model, based on the above UDM scheme. Their discretisation leads to the

so-calledBurgers cellular automaton(BCA), which is for single-lane traffic equivalent to the CA-184 TCAmodel (see
Section 3.1.1)[106,107]. Emmerich et al. also provided a TCAmodel, by applying the UDM scheme to a Korteweg–de
Vries equation. In contrast to the BCA model, their work resulted in a second-order TCA model because the CA’s
global map not only needs the configuration at the previous time stept − 1, but also the configuration at time step
t − 2 [108,3].
Nishinari et al. recently extended the BCA model, thereby allowing for slow-to-start effects withvmax>1 cell/time

step[109]. Their model contains a rule similar to the classic notion of slow-to-start rules, but now generalised for
moving vehicles, leading to the terminology of aslow-to-acceleraterule. Taking the idea of anticipation one step
further, they also incorporated adriver’s perspective, meaning that a vehicle will base its acceleration and braking
decisions not only on the basis of its space gap and the anticipated speed of the vehicle ahead, but also on the space
gap with thenextleading vehicle (or even a vehicle located more downstream). As a result, the model exhibitsmultiple
metastable branchesin the(k, q) diagram, as can be seen inFig. 29. For the lowest metastable branch, vehicles inside
jams will come to a complete stop. In contrast to this, vehicles will still be able to move forward inside jams for the
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Fig. 30.Left: several(k, q) diagrams of the MC-STCA, forl ∈ {2,4,8,16,32,64} cells andp = 0.5. As can be seen, an increase of the average
vehicle length apparently results in a higher critical density, with an associated higher capacity flow (followed by a capacity drop).Right: the same
setup for the MC-STCA, but now with a fixedl = 8 cells andvmax= 5× 8= 40 cells/time step. The(k, q) diagrams depict the results of changing
the slowdown probabilityp ∈ {0.1,0.3,0.5,0.7,0.9}: an increase ofp, leads to decrease of both the critical density and the capacity flow.

higher branches. Note that depending on the strength of a local perturbation, traffic will shift from the highest branch to
one of the lower branches. Finally, Nishinari et al. also combined the model with the classic STCA (see Section 3.2.1),
thereby allowing for stochasticity in both the acceleration and braking rules.

4. Multi-cell models

Whereas all the previously discussed TCA models were based on a single-cell setup, this section introduces some
of the existing multi-cell TCA models (still for single-lane traffic). In a multi-cell model, a vehicle is allowed to span
a number of consecutive cells in the longitudinal direction, i.e.,li �1 cell.
In the subsequent sections, we discuss several multi-cell TCAmodels encountered in literature.We first start with an

overview of the artifacts that can be introduced when switching to a multi-cell setup. Subsequently, we describe three
multi-cell TCA models, which have more intricate rule sets than the simple models of Section 3:

• Helbing–Schreckenberg TCA (HS-TCA)
• Brake-light TCA (BL-TCA)
• The model of Kerner, Klenov, andWolf (KKW-TCA)

Note that with respect to the measurements performed on the TCAmodels’ lattices, we assume homogeneous traffic
flows, i.e., all vehicles have the same length. This allows us, after suitable adjustment with the average vehicle length
l = li , to express the global density askg ∈ [0,1].

4.1. Artifacts of a multi-cell setup

It might seem that a translation of the classic STCA model (see Section 3.2.1) into a multi-cell version would be
straightforward. However, using a finer discretisation introduces a very specific artifact, i.e,hysteresis. In order to
investigate this phenomenon, we have performed several experiments based on a multi-cell translation of the STCA
model (now called the MC-STCA). In what follows, we assume a closed-loop lattice consisting of 105 cells. The
simulations ran each for 5× 105 time steps, with�T = 1 s.
Setting the slowdown probability top = 0.5, the left part ofFig. 30shows the resulting(k, q) diagrams for dif-

ferent spatial discretisations, each time for homogeneous initial conditions. The average vehicle length was set to
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l ∈ {2,4,8,16,32,64} cells. In these experiments, we also scaled the maximum speedvmax correspondingly (e.g., if
l=4 cells, thenvmaxwould become 5×4=20 cells/time step), as can be seen from the coinciding free-flow branches
in the left part inFig. 30. We also notice that an increase of the average vehicle length apparently results in a higher
critical density, with an associated higher capacity flow. Furthermore, the flow seems to encounter acapacity dropat
this critical dense.
What causes this capacity drop? To answer this question, we must first consider what happens in the deterministic

case wherep=0. Here, our experiments have shown that there is no difference between a single- and amulti-cell setup.
Settingp>0, the randomisation rule R2, Eq. (47), introduces fluctuations in the high speeds of vehicles in free-flow
traffic. However, these speed fluctuations are actually small compared to the vehicles’ speeds themselves. Because of
this limited influence, the free-flowbranch of the(k, q)diagrams remainsvery stable. The smaller the discretisation, i.e.,
the larger the average vehicle length, the more stable the free-flow branch becomes for larger densities (note however
that the capacity drop gets less pronounced for increasing average vehicle lengths). This capacity drop behaviour due
to a stabilisation effect, is akin to the observations in the STCA’s cruise-control limit (see Section 3.2.2), and thus
different from the VDR-TCA (see Section 3.3.3), where a reduced outflow from a jam causes the drop in flow[19]. In
contrast to this, random initial conditions or a superjam to start the simulations with, will always lead to the congested
branch, thereby indicating a hysteretic phase transition. As the left part ofFig. 30indicates, changing the discretisation
level of the STCA, by adjusting the average vehicle length and relatively keeping the same maximum speed, has only
an effect on the length of the free-flow branch; the traffic dynamics in the congested regime remain the same.
Holding l fixed at 8 cells andvmax= 5× 8= 40 cells/time step, the right part ofFig. 30shows the resulting(k, q)

diagrams for different values of the slowdown probabilityp ∈ {0.1,0.3,0.5,0.7,0.9}. It is clear that an increase ofp,
leads to a decrease of both the critical density and the capacity flow. Note that the size of the capacity drop remains
approximately the same for the differentp.
To conclude, we mention the work of Grabolus who performed extensive numerical studies on the STCA. He also

noted that it is possible to translate anymulti-cell STCA variant into anequivalentsingle-cell STCAmodel, by suitably
adjusting the values of the density and the maximum speed[98].
Interestingly, the use of a smaller discretisation was already considered by Barrett et al. in the early course of the

TRANSIMS project[110,1]. In their work, they introduce the terminology ofmulti-resolutionTCA models, corre-
sponding to our multi-cell setup. Although they discuss several methods for integral refinements of the TCA’s lattice,
they do not make any mention of the observed hysteresis phenomenon introduced by a finer discretisation.

4.2. Advanced multi-cell models

Having discussed the repercussions of switching to a multi-cell setup, we now illustrate three TCAmodels that have
more complex rule sets.We discuss their properties by means of time–space diagrams, fundamental diagrams of global
and local measurements, and histograms of the distributions of the space and time gaps.

4.2.1. The model of Helbing and Schreckenberg (HS-TCA)
Similar in spirit as the STCA (see Section 3.2.1) and the ER-TCA (see Section 3.2.5), Helbing and Schreckenberg

proposed their HS-TCA model in analogy with the optimal velocity model[111]. In fact, their model can be seen as a
direct discretisation of the OVM, with the following rule set:

(R1) acceleration and braking

vi(t)← vi(t − 1)+ ��(V (gsi (t − 1))− vi(t − 1))� , (64)

(R2) randomisation

�(t)<p �⇒ vi(t)← max{0, vi(t)− 1} , (65)

(R3) vehicle movement

xi(t)← xi(t − 1)+ vi(t) . (66)
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Table 1
A possible optimal velocity function (OVF) for the TCA model of Helbing and Schreckenberg (HS-TCA)

gsi V (gsi ) gsi V (gsi )

0,1 0 11 8
2,3 1 12 9
4,5 2 13 10
6 3 14, 15 11
7 4 16–18 12
8 5 19–23 13
9 6 24–36 14
10 7 �37 15

The OVF is represented as a table, giving the optimal speedV (gsi ) (expressed as cells/time step) associated with each possible space gapgsi
(expressed as a number of cells).

Fig. 31. Typical time–space diagrams of the HS-TCA model, withl = 2 cells,p = 0.001 � = 1÷ 1.3, andvmax= 15 cells/time step. The shown
closed-loop lattices each contain 300× 2= 600 cells, with a visible period of 580 time steps. The global densityk was set to 0.25 vehicles/cell
(left) and 0.40 vehicles/cell (right). The formation of congestion waves leads to dense, compact jams containing stopped vehicles. Vehicles strive to
decelerate smoothly, but are allowed to accelerate instantaneously when exiting jams fronts.

The functionV (gsi ) in rule R1, Eq. (64), is the discrete version of the optimal velocity function; it is specified in the
form of a lookup table, containing speed entries for each space gap (seeTable 1) and has the following meaning: higher
values for the parameter� indicate an almost instantaneous adaptation of the vehicle’s speed to the OVF, whereas lower
values denote an increasing inertia and longer adaptation times[111]. However, as stated by Chowdhury et al. and
Knospe et al., the role of� is a bit unclear as it does not exactly correspond to the timescale of the adaptation to the OVF
(which is the case for the original optimal velocity model)[3,19]. Furthermore, certain values for� can, in combination
with the OVF, lead to collisions between vehicles (because� reduces a vehicle’s braking capability). Knospe et al.
later provided the necessary conditions that guarantee collision-free driving, and avoid the possible backward moving
of vehicles[19]. Note that, similar to the Fukui–Ishibashi models (see Sections 3.1.2 and 3.2.3), vehicles are allowed
to accelerate instantaneously in the HS-TCA model. The model is stochastic, in that it introduces randomisation by
means of rule R2, Eq. (65), with�(t) ∈ [0,1[ a random number drawn from a uniform distribution.
In Fig. 31,wehave given two time–space diagramsof theHS-TCA for global densitiesk=0.25and0.40 vehicles/cell.

The length of a vehicle wasl = 2 cells,p = 0.001,�= 1–1.3,vmax= 15 cells/time step,�T = 1 s, and�X = 2.5m.
Due the small slowdown probability, the system dynamics are strongly deterministic, totally dependent on the initial
(homogeneous) conditions. In the left diagramwecanobserve howvehicles can accelerate instantaneouslywhenexiting
a jam. Note that for higher densities, all jams become dense and compact, always containing stopped vehicles, as is
depicted in the right diagram. Because of the non-linearity introduced by the discretised optimal velocity function, all
tempo-spatial patterns in the system are of a chaotic nature (i.e., nonlinear with stochastic noise)[19].
The (k, vs) and(k, q) diagrams inFig. 32are based on local and global measurements. A feature of these diagrams

is that the local measurements tend to form clusters around certain space-mean speeds (see the left part ofFig. 32):
these clusters correspond to the speeds dictated by the discretised optimal velocity function ofTable 1, each time
associated with an average space gap corresponding to the inverse of the locally measured density. As a result, the
(k, q) diagram in the right part ofFig. 32shows several branches, each one with a different OVF speed. The lowest
branch corresponds to the speed of the backward propagatingwaves, i.e., the jam speed. Evenmore striking, is that from
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Fig. 32. The (k, vs ) (left) and(k, q) (right) diagrams for the HS-TCA, obtained by local and global measurements. The local measurements tend to
form clusters around certain space-mean speeds, corresponding to the speeds dictated by the discretised optimal velocity function ofTable 1. These
clusters are visible in the right diagram as branches with different slopes. Remarkably, from a certain finite densityk>1 vehicle/cell on, all vehicles
always come to a full stop and the flow in the system becomes zero.
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Fig. 33. Histograms of the distributions of the vehicles’ space gapsgs (left) and time gapsgt (right), as a function of the global densityk in the
HS-TCA. The thick solid lines denote the mean space gap and median time gap, whereas the thin solid line shows the former’s standard deviation.
The grey regions denote the probability densities.

a certain finite densityk>1 vehicle/cell on, all vehicles always come to a full stop and the flow in the system becomes
zero[111].
To conclude our discussion of the HS-TCA, we give the histograms of the distributions of the space and time gaps in

the left and right parts, respectively, ofFig. 33. The most prominent features of these histograms, are that (i) there exist
small clusters of probability mass between certain space gaps (i.e., 15–20, 25–25, and 35–40 cells), corresponding to
groups of vehicles, (ii) for higher densities, we can observe a spread-out cluster of probability mass, corresponding to
the lowest local measurements in the left part ofFig. 32, and (iii) in contrast to the previous TCA models, the median
of the time gap for the HS-TCA is already very small for densitiesk <0.1.
The HS-TCA might seem an interesting improvement, as its being based on a discretisation of the optimal velocity

model. But although its authors state that it “reproduces many of empirically observed features” [111], Knospe et al.
showed several shortcomings in the model[19]: care must be taken to avoid collisions, and the model fails to reproduce
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the synchronised-flow regime entirely. This latter can be understood by looking at the dense, compact structure of
jams in the time–space diagrams ofFig. 31, and the occurrence of branches with distinct speeds as in the right part
of Fig. 32.

4.2.2. Brake-light TCA (BL-TCA)
Recently, an interesting ideawas pursued by Knospe et al.; their TCAmodel includesanticipationeffects, introduced

by equipping the vehicles withbrake lights[112]. The focus of this (and the following) TCA model lies in a correct
reproduction of the three phases of traffic as introduced by Kerner et al.[57,1]. In a sense, the BL-TCA incorporates
many of the features encountered in previously discussed single-cell TCA models. First of all, the BL-TCA has
randomisation for spontaneous braking. Secondly, it has slow-to-start behaviour for the capacity drop and hysteresis
phenomena. Moreover, it incorporates anticipation which can lead to a stabilisation of the free-flow branch. Finally,
it includes elements for reproducing synchronised traffic. These latter two aspects clearly go beyond the standard
incentive if drivers to avoid collisions. As such, it is the desire for smooth and comfortable driving (which resembles
human behaviour), is responsible for the occurrence of traffic states like e.g., synchronised traffic[39]. To achieve all
this, the rule set of the BL-TCA becomes quite complex, in comparison with some of the more standard single-cell
TCA models of Section 3:

(R0) determine stochastic noise

bi+1(t − 1)= 1∧ thi
(t − 1)< tsi (t − 1)

�⇒p(t)← pb ,

vi(t − 1)= 0

�⇒p(t)← p0 ,

else

�⇒p(t)← pd ,

bi(t)← 0, (67)

(R1) acceleration

(bi(t − 1)= 0∧ bi+1(t − 1)= 0)

∨ thi
(t)� tsi (t)

�⇒vi(t)← min{vi(t + 1), vmax} , (68)

(R2a) determine effective space gap

g∗si (t)← gsi (t − 1)+max


min{vi+1(t − 1), gsi+1(t − 1)}︸ ︷︷ ︸

anticipated speed of leading vehicle

−gssecurity,0


 , (69)

(R2b) braking

vi(t)← min{vi(t), g∗si (t)} ,
vi(t)< vi(t − 1)

�⇒bi(t)← 1 , (70)

(R3) randomisation

�(t)<p(t) �⇒ p(t)= pb ∧ vi(t)= vi(t − 1)+ 1

�⇒bi(t)← 1, vi(t)← max{0, vi(t)− 1} , (71)

(R4) vehicle movement

xi(t)← xi(t − 1)+ vi(t) , (72)
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Fig. 34. Typical time–space diagrams of the BL-TCA model (refer to the text for the used parameter values). The shown closed-loop lattices each
contain 300× 5= 1500 cells, with a visible period of 580 time steps. The global densitykwas set to 0.25 vehicles/cell (left) and 0.40 vehicles/cell
(right). The visible forward propagating density waves are a result of the anticipation and synchronisation phenomena. At higher densities, stable
jams occur, indicative of the wide-moving jam phase.

wherebi(t) denotes the state (0 or 1) of the brake light of theith vehicle at time stept, thi
= gsi /vi andtsi =min{vi, h}

with h the interaction range of the brake light. As such,thi
is the time to reach the leading vehicle, which gets compared

with aninteraction horizontsi that depends on the speedvi and is constrained byh. If the leading vehicle is far away, its
brake light should not influence the following vehicle. Furthermore, rule R0 also takes into account that drivers aremore
alert when they are travelling at high speeds. The slowdown probabilityp in rule R0, Eq. (67), corresponds to either
thebraking probabilitypb, the slow-to-start probabilityp0, or the classic slowdown probabilitypd for decelerations.
Finally, g∗si (t) in rules R2a and R2b, Eqs. (69) and (70), respectively, denotes theeffective space gap, based on the
anticipated speedof the leading vehicle and taking into account asecurity constraintgssecurity. Just as the previous TCA
models, the BL-TCA is stochastic, in that it introduces randomisation by means of rule R3, Eq. (71), with�(t) ∈ [0,1[
a random number drawn from a uniform distribution. If a vehicle was in the process of braking due to the previous rules,
then its brake lightbi is turned on. Note that Knospe also extended the BL-TCA with rules that allow asymmetric lane
changing on a two-lane road (unidirectional), incorporating a right-lane preference as well as an overtaking prohibition
on the right lane. As such, the model correctly reflects the density inversion phenomenon (see also Section 5.1)
[39,113].
In the remainder of this discussion, we setpb = 0.94, p0 = 0.5, pd = 0.1, h = 6 time steps,gssecurity= 7 cells,

vmax= 20 cells/time step, with a vehicle length ofl = 5 cells,�T = 1 s, and�X= 1.5m [112,19]. With respect to the
calibration of the BL-TCA model’s parameters, Knospe et al. provide a nice overview, giving intuitive analogies for
each of these parameters (e.g.,p0 is associated with the speed of the backward propagating waves)[19].
In Fig. 34,wehave given two time–space diagramsof theBL-TCA for global densitiesk=0.25and0.40 vehicles/cell.

As canbeseen in the time–spacediagram in the left part, theanticipationandsynchronisationphenomena lead to forward
propagating density waves, where vehicles carry the density downstream. Going to higher densities, we can see stable
jams, indicative of the wide-moving jam phase (see also Kerner’s three-phase traffic theory[57,1]).
Looking at the (k, vs) and(k, q) diagrams inFig. 35, we can use the local measurements to discriminate between

the free-flow (◦), synchronised-flow (·), and jammed regimes ($). The synchronised regime is visible as a wide scatter
in the data points, having various speeds but relatively high flows. The data points in the wide-moving jam correspond
to Kerner’s so-called lineJ [57,1]. The use of a finer discretisation can lead to metastable states (see Section 4.1), but
as Knospe et al. note, the slow-to-start behaviour in rule R0, Eq. (67), is necessary in order to produce the correct speed
of the backward propagating wave, as a result of a reduced outflow from a jam[19].
Finally, Fig. 36depicts the histograms of the distributions of the space and time gaps in the left and right parts,

respectively. In contrast to the HS-TCA, there are no more clusters for the space gap (see left part ofFig. 33), but
rather a smooth region of probability mass: as the global density of the system increases, the average space gap
diminishes continuously andmonotonically. The observations for the distributions of the time gaps correspond to those
encountered in literature[112,19]: from the right part ofFig. 36, we can see a wide range of probability mass at low
densities (free-flow traffic), corresponding to a wide distribution of time gaps. At intermediate densities (synchronised
flow), the distribution tends to peak, leading to a small dense cluster at approximatelyk = 0.15 vehicles/cell, with a
median time gap of 1 time step. Finally, at higher densities (jammed traffic), the distribution of the time gaps gets more
peaked, as is illustrated by the narrowing of the grey region of probability mass.
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Fig. 35. The (k, vs ) (left) and(k, q) (right) diagrams for the BL-TCA model, obtained by local and global measurements. The local measurements
discriminate between the free-flow (◦), synchronised-flow (·), and jammed regimes ($). The synchronised regime is visible as a wide scatter in the
data points, having various speeds but relatively high flows. The data points in the wide-moving jam correspond to Kerner’s lineJ.
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Fig. 36. Histograms of the distributions of the vehicles’ space gapsgs (left) and time gapsgt (right), as a function of the global densityk in the
BL-TCA model. The thick solid lines denote the mean space gap and median time gap, whereas the thin solid line shows the former’s standard
deviation. The grey regions denote the probability densities.

4.2.3. The model of Kerner, Klenov, andWolf (KKW-TCA)
Based upon the BL-TCA of Knospe et al., Kerner, Klenov, and Wolf (KKW) refined this approach by extending

it. Their work resulted in a family of models that incorporate the notion of asynchronisation distancefor individ-
ual vehicles[114]. Derived from this model class, Kerner et al. proposed discretised versions in the form of traffic
cellular automata models. In this report, we consider the KKW-1 TCA model, of which the complex rule set is as
follows [115]:

(R1a) determine synchronisation distance

Di(t)← D0 +D1vi(t − 1) , (73)
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(R1b) determine acceleration and deceleration

vi(t − 1)< vi+1(t − 1) �⇒ 
acci (t)← a ,

vi(t − 1)= vi+1(t − 1) �⇒ 
acci (t)← 0 ,

vi(t − 1)> vi+1(t − 1) �⇒ 
acci (t)←−b , (74)

(R1c) determine desired speed

gsi (t − 1)> (Di(t)− li )

�⇒vdesi (t)← vi(t − 1)+ a ,

gsi (t − 1)�(Di(t)− li )

�⇒vdesi (t)← vi(t − 1)+ 
acci (t) , (75)

(R1d) determine deterministic speed

vi(t)← max{0,min{vmax, gsi (t), vdesi (t)}} , (76)

(R2a) determine acceleration probability

vi(t)< vp �⇒ pa(t)← pa1 ,

vi(t)�vp �⇒ pa(t)← pa2 , (77)

(R2b) determine braking probability

vi(t)= 0�⇒ pb(t)← p0 ,

vi(t)>0�⇒ pb(t)← pd , (78)

(R2c) determine stochastic noise

�(t)<pa(t) �⇒ �i (t)← a ,

pa(t)��(t)<pa(t)+ pb(t) �⇒ �i (t)←−b ,

�(t)�pa(t)+ pb(t) �⇒ �i (t)← 0 , (79)

(R2d) determine stochastic speed

vi(t)← max{0,min{vmax, vi(t)+ �i (t), vi(t)+ a}} , (80)

(R3) vehicle movement

xi(t)← xi(t − 1)+ vi(t) . (81)

As can be seen from this overview, the KKW-TCAmodel’s rule set is mainly composed of adeterministicpart (rules
R1a–d) and astochasticpart (rules R2a–d). In the deterministic part, the synchronisation distanceDi is computed first
with rule R1a, which uses a linear function (other forms, e.g., quadratic functions, are also possible). The parameters
D0 andD1 need to be estimated. Rule R1c determines the desired speedvdesi : the first part of the rule allows the vehicle
to accelerate, whereas the second part of the rule uses an acceleration
acci defined by rule R1b (aandbare parameters
denoting the acceleration, and respectively braking, capabilities). As such, a vehicle will tend to adapt its speed to that
of its direct frontal leader, whenever the vehicle is within a zone of interaction (i.e., the synchronisation distance). The
deterministic speed is then computed by means of rule R1d, which takes into account the maximum speedvmax, the
space gapgsi to avoid a collision, and the previously computed desired speed of rule R1c.
In the stochastic part for computing the speed, a randomisation is introduced in rule R2d by means of a stochastic

acceleration�i . The values of�i are obtained in rule R2c with probabilitypa for accelerating, and probabilitypb for
braking. The former is dependent on the vehicles computed deterministic speed and the parametersvp, pa1, andpa2

with pa1 >pa2 andpa1 + pa2 �1. The latter,pb is dependent on the vehicles computed deterministic speed and the
slowdown probabilitypd and the slow-to-start probabilityp0 with p0>pd .
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Fig. 37. Typical time–space diagrams of the KKW-TCA model (refer to the text for the used parameter values). The shown closed-loop lattices each
contain 300× 15= 4500 cells, with a visible period of 580 time steps. The global densitykwas set to 0.25 vehicles/cell (left) and 0.40 vehicles/cell
(right). Note the stable flow of vehicles surrounding the dense and compact superjams.

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

Global density [vehicles/cell]

G
lo

ba
l s

pa
ce

-m
ea

n 
sp

ee
d 

[c
el

ls
/ti

m
e 

st
ep

]

free-flow
synchronised
jammed

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Global density [vehicles/cell]

G
lo

ba
l f

lo
w

 [v
eh

ic
le

s/
tim

e 
st

ep
]

free-flow
synchronised
jammed

Fig. 38. The (k, vs ) (left) and(k, q) (right) diagrams for the KKW-TCAmodel, obtained by local and global measurements. The local measurements
discriminate between the free-flow (◦), synchronised-flow (·), and jammed regimes ($). The synchronised regime is visible as a wide scatter in the
data points, having various speeds but flows comparable to the capacity flow.

In the remainder of this discussion, we setD0=60,D1=2.55,a=b=1,vp=28,pa1=0.2,pa2=0.052,p0=0.425,
pd = 0.04,vmax= 60 cells/time step, with a vehicle length ofl = 15 cells,�T = 1 s, and�X = 0.5m [19].
Considering the KKW-TCA models’ time–space diagrams inFig. 37, we can see that, in contrast to the BL-TCA

(see Section 4.2.2), there are less spontaneous formations of small traffic jams. The forward propagating density waves
in Fig. 34are absent in the KKW-TCA model. However, the two models show good correspondence with respect to
the speed of the backward propagating waves.
Similar as in the BL-TCA model’s effective space gapg∗si (t), the synchronisation distanceD is responsible for

producing the typical two-dimensional scatter in the (k, vs) and(k, q) diagrams inFig. 38.When a driver who is within
the synchronisation distance adapts the vehicle’s speed, the only factors taken into account are the current speed of the
direct frontal leader and a safety criterion (in the form of the current space gap); it is this effect that produces the scatter
in the data, because the exact specification of this speed is absent. In both diagrams ofFig. 38, the local measurements
discriminate between the free-flow (◦), synchronised-flow (·), and jammed regimes ($). One of the major differences
between these two models, is that the flow in the synchronised regime is almost a factor two larger for the KKW-TCA
than the BL-TCA. The KKW-TCA also experiences a capacity drop similar as in the BL-TCA, but also undergoes an
abrupt transition when going from the synchronised-flow to the wide-moving jam regime around a global density of
some 0.4 vehicles/cell (see the left part ofFig. 38). Because the model is built around the assumption that vehicles
tend to approximate the behaviour of their direct leader within a certain synchronisation distance, the resulting traffic
regimes correspond well to Kerner’s empirical observations[57,1].
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Fig. 39. Histograms of the distributions of the vehicles’ space gapsgs (left) and time gapsgt (right), as a function of the global densityk in the
KKW-TCA model. The thick solid lines denote the mean space gap and median time gap, whereas the thin solid line shows the former’s standard
deviation. The grey regions denote the probability densities.

In Fig. 39, we have depicted the histograms of the distributions of the space and time gaps in the left and right parts,
respectively. The distributions are similar to those of the BL-TCA, but there are some important differences. With
respect to the space gaps in the left part ofFig. 39, there is a high variance in the jammed regime, due to the fact that
there are vehicles in free-flow traffic, as well as inside the wide-moving jams (although most of the probability mass is
assigned to the zero space gap inside the dense jams). Considering the time gaps in the right part ofFig. 39, we can see
that they always form a tight cluster around the median of the distribution, indicating very narrow distributions with an
pronounced peak. This is completely different behaviour than in the BL-TCAmodel (see the right part ofFig. 39). The
main reason is probably due to the lack of an anticipation effect in the KKW-TCAmodel. Even more severe, is the fact
that the KKW-TCA model, despite its elaborate construction based on a synchronisation distance, completely fails to
describe the microscopic structure of motorway traffic. The BL-TCA model however succeeds in having a good fit on
both macroscopic and macroscopic scales, as stated according to Knospe et al.[113,19].

5. Multi-lane traffic, city traffic, and analytical results

In this final sectionon traffic cellular automatamodels,we takea lookat someother aspects related toTCAmodels.We
first discuss some properties and methodologies for modelling multi-lane traffic in the context of a cellular automaton,
after which we briefly consider several approaches for dealing with city traffic. The final part of the section concludes
with an overview of different analytical treatments of TCA models.

5.1. Multi-lane traffic

In this section, we briefly discuss some properties and methodologies for modelling multi-lane traffic in the context
of a cellular automaton. To this end, we illustrate the types of lane changes that are possible, then discuss the general
setup for a lane-changing model. We conclude with a short overview on the implementation of lane-change rules and
explain the phenomenon of ping-pong traffic, an artifact introduced by an inferior implementation.

5.1.1. Types of lane changes
In general, there are two types of lane changes identified:mandatory lane changes(MLC) anddiscretionary lane

changes(DLC) [1]. In the former case, a vehicle is obliged to execute a lane change, e.g., because it needs to exit the
motorway at an off-ramp, or because the vehicle is by law obliged to drive in the right shoulder lane. In the latter case,
a vehicle changes a lane at its own discretion, e.g., when approaching and overtaking a slow-moving leading vehicle.
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With respect to the rules for lane changing, there are also two approaches:symmetricandasymmetric. In the US, the
symmetric approach is more applicable: this is embodied by the fact that motorways have a large number of lanes (i.e.,
more than three), with vehicles driving at lower speeds (e.g., 60miles/h, corresponding to some 100 km/h), effectively
using all lanes more homogeneously. Such a system is typically called “keep-your-lane”, as frequent lane changes
are discouraged. In contrast to this, people in most European countries are obliged by law to drive on the outer right
shoulder lane whenever possible. Motorways have fewer lanes (typically either two or three, unidirectional), operating
at higher speeds of e.g., 120 km/h. In addition, most of these countries have instituted an overtaking prohibition on the
right lane, with large trucks restricted to the two most right lanes.
With respect to this latter system of asymmetric lane changes, the phenomenon ofdensityor lane inversionplays

an important role, especially on the numerous 2× 2 motorways in Europe (see also the beginning of Section 3 for
a discussion of this phenomenon). Another aspect that has a significant influence, is the change of driver behaviour,
e.g., near on-ramps. Here, drivers might avoid the shoulder lane to allow traffic to enter, or because of their increased
attention, they might induce a more subtle effect such as the capacity funnel (see also our discussion in[50] for more
details on this phenomenon).

5.1.2. General setup for lane changing
Deciding on whether or not to perform a lane change, is typically split in two separate steps: first, a vehicle checks if

it is desirableto change lanes, i.e., making the distinction between a mandatory or discretionary lane change. If a lane
change is indeed desirable, then the second step proceeds to check whether or not such a lane change can be performed
at all with respect to safety and collision avoidance. Thus, there is a check forgap acceptance.
One of the first approaches to model such lane-changing behaviour an a two-lane road in a TCA model, is due to

Nagatani. His work was based on the deterministic CA-184 model (see Section 3.1.1)[116]. One of the artifacts of
his lane-changing rules, was the existence of states in which blocks of vehicles alternated from one lane to another,
without moving at all. To circumvent this problem, Nagatani randomised the lane-changing behaviour[117]. Rickert
et al. later applied this lane-changing methodology, by extending the STCA model (see Section 3.2.1) to handle two-
lane unidirectional traffic[118]. Wagner et al. later assessed the previous work of Rickert et al. concluding that it did
not capture certain aspects (e.g., density inversion) of traffic flows very well[119]. To this end, they built upon the
previous work, adding a more specialised security constraint that takes into account the fact that vehicles should also
consider the following vehicles in the target lane, thereby avoiding severe disruptions. As a final comment, they state
that the lane-changing rules in a TCA model typically do not provide a realistic microscopic model, but they rather
lead to a good correspondence with respect to observed macroscopic features (e.g., the frequency of lane changes).
In order to address the correct reproduction of the density inversion phenomenon, Nagel et al. artificially introduced

aslack parameter, capturing the inclination of a driver to change back to the right lane. They furthermore also provided
an extensive classification of some 10 lane-changing rules and criteria encountered in literature[55]. Another excellent
overview of multi-lane traffic is given by Chowdhury et al.[3].
As all the previous work dealt with unidirectional roads, it seems logical to considerbidirectional traffic, i.e., traffic

with adjacent but opposing lanes. Simon and Gutowitz were among the first to consider a TCA model of such traffic,
with vehicles driving on two lanes[120]. Central to their approach, is the notion of alocal densitythat each driver must
assess before attempting to complete an overtaking manoeuvre. When a driver encounters a slower moving vehicle,
a check is made whether or not there is enough spacein front of this leading vehicle (this is the local density). If
the check is positive, then a lane change can be performed (under the condition of course that there is a safe gap
in the opposing lane). With this scheme in mind, high density traffic thus excludes such overtaking manoeuvres, due
to the fact that the local density is too low to complete them.
Note that some authors, e.g., Gundaliya et al.[121], Mallikarjuna and Ramachandra Rao[122], use a peculiar variant

of a multi-lane setup. Their models have essentially a multi-cell structure, but now the multi-cell concept is extended
in the lateral direction. So cells not only get smaller, but also ‘thinner’, allowingvariable-width vehicles, e.g., motor
cycles that can more easily pass other vehicles in the same lane. In our opinion, this leads to unnecessary complexity,
giving little benefits. In fact, we believe that such a scheme directly opposes the idea behind a CA model, as explained
at the introduction of this report. We strongly feel that heterogeneity in a TCA model shouldonlybe incorporated by
means of different lengths, maximum speeds, acceleration characteristics, anticipation levels, and stochastic noise for
distinct classes of vehicles and/or drivers.Any other approachwould be better off with a continuousmicroscopicmodel.
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5.1.3. Implementation of lane-changing rules and the phenomenon of ping-pong traffic
The basic implementation of a lane-changing model in a TCA setting, leads to two substeps that are consecutively

executed at each time step of the CA:

• first, the lane-changing model is executed, exchanging vehicles betweenlaterally adjacent lanes,
• then, all vehicles are moved forward (i.e.,longitudinal) by applying the car-following part of the TCA model’s
rules.

One immediate result from this approach, is that a lane change in a TCA model is completed within one time step
(i.e.,�T ). This is in contrast to real-life traffic, where lane changes have a duration of several seconds[55].
For more than two lanes, care must be taken to avoid so-calledscheduling conflictsduring the first substep. Consider

for example three lanes, with two vehicles driving in the outer left, respectively outer right, lane at the same longitudinal
position. If the cell in the middle lane is empty, then the vehicles may decide to move to this location, resulting in a
lateral collision. In order to compensate this, one possibility is to choose a vehicle at random (or by preference), thereby
allowing it to perform its requested lane change. Another possibility is to perform left-to-right lane changes in even
time steps, and right-to-left lane changes in odd time steps.
As hinted earlier, the ‘correctness’ of a lane-change model should be judged on the basis of certain macroscopic

observations. Examples of these are the frequency of lane changes with respect to different densities, the capacity flows
for all lanes separately and combined, the critical density at which a breakdown occurs in each of the lanes,. . . Good
indicators can be found in the many small fluctuations typically exhibited by multi-lane TCA models, instead of the
large jams in single-lane traffic. Traffic flows get more fluid if vehicles are allowed to passmoving bottlenecks[119,55].
However, under certain conditions, Helbing andHuberman have shown the existence of coherent states, where vehicles’
speeds are synchronised across adjacent lanes. For heterogeneous traffic flows, this can lead to a moving ‘solid block’
of vehicles[123].
When implementing lane-change rules in a TCA model, care must however be taken that the implementation does

not introduce any unrealistic artifacts. A prominent example of this, plaguing many TCA models, is a phenomenon
calledping-pong traffic. Nagatani was among the first to observe this peculiar behaviour of vehicles in traffic flows (see
Section 5.1.2). In ping-pong traffic, vehicles typically alternate between lanes during successive time steps.As explained
earlier, one way to resolve this behaviour is by randomising the lane-change decision, thereby quickly destroying any
such artificial patterns[117,118].

5.2. City traffic and intersection modelling

Whenmodelling city traffic, essentially two approaches can be followed: either the entire road network is considered
as a two-dimensional lattice (i.e., agrid), or each road in the network is a single longitudinal lattice (single- or multi-
lane) with explicitly modelled intersections. The former was historically used in the context of phase transitions in a
CA, whereas the latter is more applicable to describe real-life traffic flows in populated cities.
In this section,we illustratebothapproaches, startingwithaclassic grid layout asembodiedby theBiham–Middleton–

Levin (BML) and Chowdhury–Schadschneider (ChSch) TCA models, after which we briefly comment on explicit
descriptions of intersections in TCA models.

5.2.1. Grid traffic
The first model of ‘city traffic’was proposed by Biham, Middleton, and Levine (BML). It was developed around the

same time Nagel and Schreckenberg presented their STCA (see Section 3.2.1). The BML-TCA, is a two-dimensional
model that describes traffic on a square grid in a toroidal setup (i.e., opposing sides are identified), with vehicles
distributed randomly over the lattice[124]. The model is in fact a very simplistic model, in that it assumes that all
vehicles either move from the south to the north direction, or from the west to the east. Each cell of the lattice is
assumed to contain a traffic light, in the sense that all west–east vehicles try to move during even time steps, and all
south–north vehicles during odd time steps (thusvmax= 1 cell/time step for all vehicles). The BML-TCA constitutes
a fully deterministic model, where the only randomness is introduced through the initial conditions. Note that its
one-dimensional version corresponds to the CA-184 and the TASEP (see Sections 3.1.1 and 3.2.4).
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Fig. 40.Left: snapshot of the spatial structure in the BML-TCA fork = 0.25. In this free-flow regime, all vehicles move alternatingly, with the
right-oriented arrows denoting west–east travelling vehicles, and the upward-oriented arrows denoting south–north travelling vehicles.Right: same
setup as before, but now fork ≈ 0.4082. In this congested regime, a global cluster emerges, completely composed of blocked vehicles.Bottom: an
overview of the ChSch-TCA, showing the street segments of finite length between the BML-TCA’s original intersections. The first two images are
reproduced after[124], the third after[96].

Depending on the global density of vehicles in the lattice, the model results in two distinct traffic regimes, with
a sharp first-order phase transitionbetween them. The first regime, i.e., free-flow traffic, corresponds to a state
with alternate moving vehicles (i.e., west–east and south–north moving); an example is depicted in the left part of
Fig. 40. In the congested regime, a self-organised global cluster emerges, completely composed of blocked vehicles
(see e.g., the right part ofFig. 40). When the phase transition between both regimes occur, the space-mean speed
changes abruptly from one to zero cells/time step[124,125]. Fukui and Ishibashi studied the repercussions of a local
disruption in the lattice (e.g., a crashed vehicle that remains stopped for an eternal period), and found that it provides
the seed of a growing global cluster[126]. Biham et al. also considered a less restrictive version of the above model,
in which now all vehicles try to move at each time step. In case of conflicts between a west–east and a south–north
vehicle, one of them is chosen at random. Another variation considers also opposing traffic, which can lead togrid-
lockedsituations where no vehicles are able to move at all. A generalisation of the BML-TCA, was provided by
Freund and Poschel who consider a similar setup, but now with traffic moving in all four directions[127]. Finally, Shi
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is able to obtain analytical expressions for the critical densities at which the previously mentioned phase transitions
occur[128].
In the work of Chowdhury et al. a comprehensive overview is given, describing extensions to the BML-framework

[3]. This overview includes asymmetric distributions of the west–east and south–north vehicles, unequal maximum
speeds, two-level crossings (where two vehicles can share the same cell), faulty traffic lights (here, either a west–east
or south–north vehicle is chosen at random to occupy a cell, irrespective of the current time step), road blocks, line-
and point-defects (i.e., a crowded ‘street’ of the model, corresponding to a dense horizontal or vertical row of cells),
random turning of vehicles, cut-off streets (similar to a row of two-level crossings), and so forth and so on.
Chowdhury and Schadschneider later extended the BML-TCAmodel to incorporate randomisation effects like in the

STCA model, having the result that jamming can now occur spontaneously[129]. Their model furthermore contains
street segments of finite length between the cells, with vehicles driving according to the STCA’s rules on these streets.
The original cells in the BML-TCAmodel form the signallised intersections of the Chowdhury–Schadschneider model
(ChSch-TCA), as can be seen in the bottom part ofFig. 40. At sufficiently large densities, a transition can occur that
leads to a self-organising state of completely gridlocked traffic. Barlovi´c later provided a solution to this problem,
making the model well-suited for assessing the results of different traffic light control policies in a city[96].

5.2.2. Explicit intersection modelling
In contrast to the previous section were all traffic operations were essentially defined on a two-dimensional lattice,

it is also possible to consider a complete road network, consisting ofseparate linksthat are connected to each other by
means ofintersections. These intersections can either be signallised, or unsignallised, turning priorities can be defined,
as well as different geometrical layouts (e.g., roundabouts).
Road networks based on the above assumptions, typically combine a set of basic building blocks. As such, the

network is logically decomposed in a set ofnodesand links. The former denote the intersections, whereas the latter
can, depending on the implementation, refer to individual lanes, a group of adjacent lanes, or even a road with two-way
traffic. In general, traffic operations on motorways are primarily influenced by the behaviour of vehicles on links, i.e.,
their car-following and lane-changing behaviour. Conversely, traffic operations in cities and denser street networks, are
primarily defined by the behaviour of vehicles at intersections, i.e., queueing delays at traffic lights, priority turns, etc.
In many cases, the intersection logic is simplified, such that all decisions (conflict resolving, etc.) are takenbeforea
vehicle enters the intersection[14].
Several non-exhaustive examples include the work of Esser and Schreckenberg with applications to the city of

Duisburg[130], the work of Simon and Nagel who primarily focussed on single-lane traffic in combination with
several setups for controlling traffic lights, applying their work to the city of Dallas (different links have different
slowdown probabilities associated with them, thus enabling to model different street capacities)[131], the work of
Diedrich et al. who consider the effects of various implementations of on- and off-ramps in the classic STCA model
[132], and all the references on TRANSIMS, the travel behaviour in Switzerland, the region of Dallas, the city of
Portland, and the city of Geneva (where all intersections are replaced by generalised roundabouts), mentioned in our
discussion in[1].
All these examples have in common that they are based on simple building blocks. Despite this elegance, most of

them however, do not provide satisfactory information regarding the calibration and validation of their underlying
models (this for example with respect to the correct observed queueing delays at intersections). A popular technique
is to usesourcesandsinks, where vehicles are added and removed, allowing tuning of the simulator in order to agree
with incoming on-line measurements. Clearly, we feel that besides a need for elaborate descriptions of the employed
models, there is perhaps even a bigger need for correct information with respect to these models’ fidelity and accuracy.

5.3. Analytical results

Because most studies based on TCA models heavily rely on numerical simulations, this creates the danger of intro-
ducing artifacts (e.g., finite-size effects) that obscure the true dynamics of the systems under consideration. Although
most of these problems should resolve in the so-calledthermodynamic limitwhereKL, Tmp → +∞ (i.e., a lattice
with infinite length considered over an infinite time period), resorting to this approach is computationally not feasible.
As a result, researchers have focussed on analytical methods. Except for the most trivial cases with a deterministic (i.e.,
noiseless) TCA model, these analytical methods most of the time provide approximations at best.
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In this section, we illustrate several of these analytical methods encountered in literature. Our discussion focusses on
the concept of a mean-field theory, after which we elaborate on some of its improvements that lead to better agreement
with numerical results.
Note that other avenues for analytical treatments of CA models, and TCA models in particular, are also explored. In

this section, we will however not go into detail about them. For more information, we refer the reader to the interesting
work of Fukś and Boccara[133–137].

5.3.1. Mean-field theory
Asmentioned in the introduction of this section, for the case of arbitraryvmaxandp=0 or 1, or forvmax=1 cell/time

step, the analytical solution of the resulting TCAmodel is exactly known. This solution, expressed as its(k, q) diagram,
corresponds to the set of diagrams as depicted inFig. 10(see Section 3.1.2) for the DFI-TCA.
The problem is to find an analytical description of how the system evolves in time through the state space, i.e., what

are the occurring configurations? The evolution of a system, can be described by what is called amaster equation.
For cellular automata, this equation is a first-order differential equation, describing the change in probability of a
system’s lattice to be in a certain configuration. The downside is that, in general, this master equation cannot be solved
exactly.
For the TASEP model (see Section 3.2.4) with open boundary conditions and random sequential update, the master

equation canbesolvedexactly[138,18]. In a first step, themaster equation is elegantlywritten in vector form, comprising
a transfer matrixthat contains the time-evolution of the probabilities. By assuming thematrix-product ansatz(MPA)
formalism, the transfer matrix can be rewritten as a product of local transfer matrices, operating on sets of cells. This
provides a algebra that can be solved exactly, thereby solving the TASEP analytically. Note that for the TASEP with
a parallel update however, obtaining the exact solution is difficult, because no simple MPA decomposition into local
matrices is possible.
In contrast to this promising result, obtaining an analytical solution becomes harder to even intractable for the

STCA model (see Section 3.2.1) withvmax>1 cell/time step and 0<p<1. In the master equation, probabilities of
cluster of cells will occur, making its solution very hard[53]. One well-known method that is suitable for dealing
with many-particle systems in statistical mechanics, is the construction of amean-field theory(MFT) of the model.
Such a MFT can provide an approximation of the master equation; in some cases, the MFT turns out to be an exact
solution.
The idea behind a MFT, is that all correlations between neighbouring cells are neglected. For TCA models, such a

site-oriented mean-field theory(SOMF) assumes that all cluster probabilities are replaced by single cell probabilities.
The MFT now replaces the effects of these individual cells with an average effect (the ‘mean field’), which simplifies
computations considerably. When translating the STCA’s rules R1–R3, i.e., Eqs. (46)–(48), R1 is decoupled into
separate acceleration and braking rules R1a and R1b, after which their order is changed to R1b, R3, R4, R1a. The
upshot of this is that there are no stopped vehicles in the system, thereby reducing the number of possible states for a
cell by one. Ifvmax=1 cell/time step, then the system can be fully described by cell occupancies. Applying this SOMF
theory to the STCA model, results in considerably underestimation of the flow in the system (even for the restricted
case ofvmax= 1 cell/time step)[139,71,53].

5.3.2. Improving the SOMF theory
As mentioned in the previous section, settingvmax= 1 cell/time step leads to an underestimation of the flow. How-

ever, when switching from a parallel update procedure to a random sequential one, the resulting SOMF theory becomes
exact! It turns out that the reason for the underestimation, can be traced back to its neglecting of all correlations
between cells (which are a consequence of the parallel update procedure). As explained in the beginning of Section
3.2.4, using a parallel update excludes certain Garden of Eden states. However, the SOMF theory naively includes
these paradisiacal states. As a solution, these GoE states can be eliminated, resulting in aparadisiacal mean-field
theory(pMFT). In systems with higher maximum speeds, more GoE states occur, making it difficult to derive a pMFT.
Even then, the theory still remains an approximation (albeit a better one) when using a parallel update procedure
[140,71,53].
Taking into account short-range correlations, can be done by considering acar-oriented mean-field theory(COMF).

Instead of dealing with cells and their occupancies, the COMF theory computes the probabilitiesPn(v) of finding
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a space gap ofn cells for a vehicle driving with speedv [141]. In a sense, the COMF theory approximates the problem
by neglecting the correlations between space gaps of successive vehicles[3]. As such, it gives qualitatively good
approximations forp → 0; in all other cases, the COMF theory starts to fail, because there are also correlations
between the space gaps[18,3]. Note that the COMF theory has also been applied to the BJH-TCA and VDR-TCA
models (see Sections 3.3.2 and 3.3.3, respectively)[91].
Another approach to analytically solve themaster equation, is to explicitly take into account the correlations between

neighbouring cells, by consideringclusterscomposed ofn consecutive cells[71,53]. Such asite-oriented cluster-
theoretic approachproves to perform better than the COMF theory from the previous section[139]. The improvement
of the approximation is even better when considering larger clusters; it is exact forn→+∞ [142,18,3].

6. Summary and outlook

This report gave an elaborate and understandable review of traffic cellular automata (TCA) models, which are a
class of computationally efficient microscopic traffic flow models. TCA models arise from the physics discipline of
statistical mechanics, having the goal of reproducing the correct macroscopic behaviour based on aminimal description
of microscopic interactions.
We began with an overview of cellular automata (CA) models, their background and physical setup. Applying this

technique to the modelling of traffic flows, we discretise a road into a number of small cells (a procedure called coarse
graining), having a width of e.g.,�X = 7.5m. Time is also discretised into units of approximately�T = 1 s. After
introducing the mathematical notations, we showed how to perform measurements on a TCA model’s lattice of cells,
and how to convert these quantities into real-world units and vice versa.
Subsequently, we gave an extensive account of the behavioural aspects of several TCA models encountered in

literature. Already, several reviews of TCA models exist, but none of them consider all the models exclusively from
the behavioural point of view. In this respect, our overview fills this void, as it focusses on the behaviour of the TCA
models, by means of time–space diagrams,(k, q) diagrams and the like, and histograms showing the distributions of
vehicles’ speeds, space, and time gaps. In the report, we have distinguished between single- and multi-cell models,
whereby in the latter vehicles are allowed to span a number of consecutive cells.We concluded with a concise overview
of TCA models in a multi-lane setting, and some of the TCA models used to describe city traffic as a two-dimensional
grid of cells, or as a road network with explicitly modelled intersections. The final part of the report illustrated some
of the more common analytical approximations to single-cell TCA models.
Considering the state-of-the-art in using TCA models, our analysis indicates that the field has evolved rapidly over

the last decade. Starting from initial attempts based on rather crude models, the past few years have seen an increase in
the computational complexity as well as the available computational power. More complex models are developed, of
which we believe the brake-light TCA model of Section 4.2.2 is the most promising: it is able to faithfully reproduce
the correct real-life empirical observations, and quite some work has been done at calibrating the model, see e.g., the
recent work of Knospe et al.[19]. To conclude, we note an evolving trend of using these TCA models as the physical
models underlying multi-agent systems, in part describing the behaviour of individual people in large-scale road
networks[1].
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Appendix A. TCA + JavaTM software

Asalreadybrieflymentioned in thepaper, all simulationswereperformedbymeansofourTraffic Cellular Automata+
software[100]. It was developed for the JavaTM Virtual Machine (JVM), and can be downloaded1 from:

http://smtca.dyns.cx
The software is also referenced on theTraffic Forum2 (see sectionLinks, subsectionOnline Traffic Simulation or

Visualization(Java Applets), itemJava(Swing) application for several cellular automata models).
In this appendix, we summarise our rudimentary TCA+ software. We start with an overview of its features, explain

how to run the software, and conclude with some technical details with respect to the implementation of its code base.

A.1. Overview and features

The TCA+ software package’s goal is two-fold: on the one hand, it provides anintuitive didactical toolfor getting
acquainted with the concept of single-lane traffic cellular automatamodels. On the other hand, it provides a rich enough
code base to perform hand-tailoredsimulation experiments, as well as giving insight into the details of programming
TCA models.
In a nutshell, our software considers one-dimensional traffic cellular automatawith periodic boundary conditions, i.e.,

vehicles driving on a unidirectional circular road. Different sets of rules can be chosen, and for each set its parameters
(e.g., stochastic noise) can be changed at run time. Both local and global measurements can be performed on the lattice
bymeans of artificial loop detectors.A traffic light with cyclical red and green phases was also added, allowing to study
elementary queueing behaviour. In the software, we have implemented the TCA models listed inTable A.1.
In Fig. 41, we show a screenshot of the main graphical user interface (GUI). As can be judged from the image, the

TCA+’s GUI is rather huge, spanning approximately 1400× 1200 pixels (scrollbars are automatically placed if it does
not fit on the screen). It consists of several panels:

• a scrolling time–space diagram containing vehicle trajectories and an animation of the road situation,
• a panel containing some simulation statistics,
• several simulator controls,
• and scrolling loop detector plots and plots of the(k, q), (k, vs), and (q, vs) diagrams.

In the following paragraphs, we describe each of these features in more detail. Note that there currently are two
versions of the GUI: a standard version for all the single-cell TCAmodels, and a modified multi-cell TCA version with
limited functionality (mainly for creating coloured tempo-spatial diagrams).

A.1.1. Vehicle animation
Looking at the time–space diagram in the upper-left panel, we can discern the individual vehicle trajectories, as well

as the typical backwards-travelling shock waves of congestion. In this scrolling diagram, the time axis goes from the
left to the right, while the space axis goes from the bottom to the top (and is a one-to-one mapping of the consecutive
cells on the ring road). Each pixel here corresponds to a unique cell of the simulator and each vehicle is coloured
with a certain shade of yellow (in order to easily distinguish between different neighbouring vehicles). There is also
a setting available that allows stopped vehicles to be coloured red. In the upper-middle panel, the actual geometrical
configuration of the ring road is depicted. This allows us to view the current physical situation on the road, i.e., the
positions of all the vehicles. Each vehicle can be coloured with a certain shade of yellow (the same as in the time–space
diagram). The current phase of the traffic light is also shown, as well as the positions of all the loop detectors: their
positions are indicated by the small purple boxes alongside the road. The small green box indicates the position of the
traffic light, with vehicles travelling in clockwise fashion.

1 From May 2002 until June 2005, the software has been downloaded some 800 times, of which we suspect one third to be traffic coming from
search engines’ indexing robots.

2 http://www.trafficforum.org

http://smtca.dyns.cx
http://www.trafficforum.org
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Table A.1
All TCA models implemented in our TCA+ software, accompanied by references to the respective sections in the paper where they are extensively
discussed

TCA model Refer to section

CA-184 3.1.1
DFI-TCA 3.1.2
STCA 3.2.1
STCA-CC 3.2.2
SFI-TCA 3.2.3
TASEP 3.2.4
ER-TCA 3.2.5
Deterministic T2-TCA 3.3.1
Stochastic T2-TCA 3.3.1
VDR-TCA 3.3.3
VDR-CC-TCA 3.3.3
TOCA 3.3.4
MC-STCA 4.1
HS-TCA 4.2.1
BL-TCA 4.2.2
KKW-TCA 4.2.3

A.1.2. Simulation statistics
In the upper-right panel, we can find the length of the ring road (expressed in the number of cells), the number of

vehicles currently in the simulator, the global vehicle density, and the current time step. There is also a small panel that
allows to quickly set the status of the traffic light to either red or green.

A.1.3. Simulator controls and settings
The middle-left panel contains buttons for starting, stopping (i.e., pausing), resetting, and quitting the simulator.

Several preferences can also be specified, i.e., whether or not to activate several panels containing the simulator’s
output. There is also the possibility to log the measurements from the loop detectors to a default file (calleddetector-
values.data).And finally, the type of traffic cellular automaton (i.e., its rule set) can also be selected from a list, specified
by radio control buttons.
Note that there are several initial conditions possible for each density level: it is possible to start with a homogeneous

state (all vehicles are spaced evenly), with a compact superjam of vehicles that are all stopped, or with a random
initialisation (see also the introduction of Section 3).
If the simulation goes (visually) too fast, the cycle hold time can be increased, thereby freezing the simulation for

a while between two consecutive time steps. Besides this, the ring road’s global density and the vehicles’ maximum
speed can be specified. The sampling time for the artificial loop detectors can be adjusted (to increase or smooth out
fluctuations). And finally, all probabilities can be adjusted between 0% and 100% in incremental steps of 1%.
The red and green cycle times for the traffic light can be specified, such that the light can operate automatically,

thereby inducing artificial queues at regular intervals. One can also control the traffic light manually (enabling the red or
green phase) using the small upper-right panel; but if applied, the traffic-light controls override these manual settings.

A.1.4. Plots of macroscopic measurements
The software has the ability to extract both local and global macroscopic flowmeasurements from several uniformly

road-side placed loop detectors which record flows, densities, and space-mean speeds.
The three large coloured regions in the middle panel represent the measured (and averaged) values of the local flows,

local densities, and local space-mean speeds of the loop detectors. Pair-wise correlating these values, results in the
plots of the(k, q), (k, vs), and (q, vs) diagrams in the lower-right panel. The coloured dots indicate locally obtained
measurements, whereas the black dots represent globally obtained ones.
Note the small button that allows to construct these diagrams: when it is pressed, the global density is incrementally

increased from 0% to 100%, each time adding a single vehicle to the ring road. The simulation is then ran for a
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Fig. 41.A screenshot of theTCA+’smain graphical user interface (GUI) for single-cell TCAmodels. TheGUI is rather huge, spanning approximately
1400× 1200 pixels, consisting of several panels: a scrolling time–space diagram containing vehicle trajectories, an animation of the road situation,
a panel containing some simulation statistics, several simulator controls, scrolling loop detector plots and plots of the(k, q), (k, vs ), and (q, vs )
diagrams.

certain amount of time and themeasurements from all the loop detectors are recorded.When all densities are processed
(an indicator of the total time left is shown), the diagrams should be clearly visible in the loop detector plots in the
lower-right panel.

A.2. Running the software

When visiting the website mentioned in the introduction of this appendix, there are two options for downloading the
software. One is by downloading thecompiled classes, whereas the other is to download the programme’ssource code.
Once the compiled software has been downloaded, it is relatively easy to start the graphical user interface. Considering
the single-cell setup GUI, the software is ran by executing the following command:
Note that a JavaTM Development Kit (JDK) (preferably Sun’s3) should be installed. Furthermore, due to a change

in the threading of the JavaTM SwingTM API, it appears that only JDK/JRE 1.3.1 is suitable!

3 http://java.sun.com

http://java.sun.com
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A.3. Technical implementation details

It should be noted that the software is not implemented as an applet, but instead as a full JavaTM application because it
uses SwingTM components that are not standard supported by most browsers (at least not without installing a necessary
plugin). The source itself logically consists of three different parts:

• the TCA engine with different rule sets,
• the graphical user interface,
• and a whole range of predefined experiments.

The geometrical configuration used in the single-cell TCA engine is a unidirectional ring road with a single lane.
Vehicles are located in cells of�X= 7.5m and can have speeds of 0 to 5 cells/time step (corresponding to a maximum
speed of 135 km/h). One iteration in the simulation corresponds to a time step of�T = 1 s.
A number of artificial loop detectors are uniformly placed alongside the road, aggregating variousmacroscopic traffic

measurements (i.e., flows, densities and space-mean speeds). In the GUI, global measurements on the entire lattice
are performed according to the methodology explained in Section 2.3.2, whereas local measurements are performed
according to Section 2.3.1. Note that for the TCA software itself, it is also possible to perform local measurements
using a detector of unit length, according to the methodology explained in Section 2.3.3.
Besides the standard single-cell GUI and the limited multi-cell GUI, there also exist some predefined experiments.

These allow to create the(k, q), (k, vs), and (q, vs) diagrams, histograms of the vehicles’ speeds, space gaps, and time
gaps, as well as several order parameters (density correlations, nearest neighbours, and an inhomogeneity measure that
compares the locally recorded densities to the current global density).
Inside the TCA+ software, several packages are available:

• tca.base containing the definitions of cells, global states, loop detectors, and the traffic cellular automaton’s
lattice,
• tca.automata containing implementations of all the TCA models mentioned in Section A.1,
• tca.simulator containing the classes related to the single-cell and multi-cell GUIs,
• tca.experiments.fundamentaldiagrams ,

tca.experiments.histograms ,
andtca.experiments.orderparameters containing setups for the previously mentioned experiments.

Appendix B. Glossary of terms

B.1. Acronyms and abbreviations

ASEP asymmetric simple exclusion process
BCA Burgers cellular automaton
BJH Benjamin, Johnson, and Hui
BJH-TCA Benjamin–Johnson–Hui traffic cellular automaton
BL-TCA brake-light traffic cellular automaton
BML Biham, Middleton, and Levine
BML-TCA Biham–Middleton–Levine traffic cellular automaton
CA cellular automaton
CA-184 Wolfram’s cellular automaton rule 184
ChSch-TCA Chowdhury–Schadschneider traffic cellular automaton
CML coupled map lattice
COMF car-oriented mean-field theory
DFI-TCA deterministic Fukui–Ishibashi traffic cellular automaton
DLC discretionary lane change
ECA elementary cellular automaton
ER-TCA Emmerich–Rank traffic cellular automaton
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GoE Garden of Eden state
HS-TCA Helbing–Schreckenberg traffic cellular automaton
JDK JavaTM Development Kit
KKW-TCA Kerner–Klenov–Wolf traffic cellular automaton
LGA lattice gas automaton
LWR Lighthill, Whitham, and Richards
MC-STCA multi-cell stochastic traffic cellular automaton
MFT mean-field theory
MLC mandatory lane change
MPA matrix-product ansatz
NaSch Nagel and Schreckenberg
NCCA number conserving cellular automaton
OVF optimal velocity function
OVM optimal velocity model
PCE passenger car equivalent
PCU passenger car unit
pMFT paradisiacal mean-field theory
SFI-TCA stochastic Fukui–Ishibashi traffic cellular automaton
SMS space-mean speed
SOC self-organised criticality
SOMF site-oriented mean-field theory
SSEP symmetric simple exclusion process
STCA stochastic traffic cellular automaton
STCA-CC stochastic traffic cellular automaton with cruise control
T2-TCA Takayasu–Takayasu traffic cellular automaton
TASEP totally asymmetric simple exclusion process
TCA traffic cellular automaton
TMS time-mean speed
TOCA time-oriented traffic cellular automaton
TRANSIMS TRansportation ANalysis and SIMulation System
UDM ultra-discretisation method
VDR-TCA velocity-dependent randomisation traffic cellular automaton

B.2. List of symbols

C(0) a CA’s initial configuration
C(t) a CA’s global configuration at time stept
� a CA’s local transition rule
G a CA’s global map
G−1 a reversible CA’s inverse global map
KL the number of cells in one lane of a TCA’s lattice
L a CA’s lattice (e.g.,Z2)
Ni the (partially) ordered set of cells in the neighbourhood of

the ith cell
|N| the number of cells in the neighbourhood of each cell
O−
C(t)|G−1 the backward orbit of the configurationC(t) underG−1

O+C(0)|G the forward orbit of the initial configurationC(0) underG
�i (t) the state of theith cell at time stept
� the set of all possible states a CA’s cells can be in (e.g.,Z2)
�L the set of all possible global configurations of a CA
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�N the set of all possible configurations of a cell’s neighbourhood

|��N | the number of all possible rules of a CA
TC(0)|G the trajectory/orbit of the initial configurationC(0) underG
� the entry rate of particles in the TASEP model
�i the anticipatory driving parameter of vehiclei
a the acceleration capability of a vehicle in the KKW-TCA model
� the exit rate of particles in the TASEP model
b the deceleration capability of a vehicle in the KKW-TCA model
bi(t) the state of the brake light of vehiclei at timet in the BL-TCA model
� the probability for a particle to move to the right inthe TASEP model

acci the deterministic acceleration of vehiclei in

the KKW-TCA model
�T a TCA’s temporal discretisation
�V a TCA’s speed discretisation
�X a TCA’s spatial discretisation
D0 a parameter for the synchronisation distance in the KKW-TCA model
D1 a parameter for the synchronisation distance in the KKW-TCA model
Di the synchronisation distance of vehiclei in the KKW-TCA model
�i the stochastic acceleration of vehiclei in the KKW-TCA model
	 the probability for a particle to move to the left in the TASEP model
gs the average space gap
g∗si (t) the effective space gap of vehiclei at timet in the BL-TCA model
gssecurity a security constraint for the space gap in the BL-TCA model
gt the median time gap
gts

the safe time gap in the TOCA model
h the upper limit to the interaction horizon in the BL-TCA model
�(t) a random number in[0,1[ drawn at timet from a uniform distribution
kg the global density of a TCA’s lattice
kl the local density of a TCA’s lattice
KL the number of cells in one lane of a TCA’s lattice
L a TCA’s lattice
li the length of vehiclei
l the average length of allvehicles on a TCA’s lattice
LL the number of lanes in a TCA’s lattice
Mgsi ,vi

the gap-speed matrix of the ER-TCA model
p the slowdown probability in[0,1]
p0 the slow-to-start probability in[0,1]
pa the acceleration probability in[0,1] in the KKW-TCA model
pa1 a parameter for the acceleration probability in the KKW-TCA model
pa2 a parameter for the acceleration probability in the KKW-TCA model
pacc the acceleration probability in[0,1] in the TOCA model
pb the braking probability in[0,1] in the BL-TCA model

the deceleration probability in[0,1] in the KKW-TCA model
pd the slowdown probability in[0,1] in the BL-TCA model
pdec the deceleration probability in[0,1] in the TOCA model
ps the slow-to-start probability in[0,1] in the BJH-TCA model
pt the slow-to-start probability in[0,1] in the T2-TCA model
Pn(v) the probabilities of finding a space gap ofn cells for a vehicle driving with

speedv
qg the global flow of a TCA’s lattice
ql the local flow of a TCA’s lattice
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tsi the interaction horizon in the BL-TCA model
vdesi the desired speed of vehiclei in the KKW-TCA model
vp a parameter for the acceleration probability in the KKW-TCA model
vsff the space-mean speed in the free-flow regime
vsg the global space-mean speed of a TCA’s lattice
vsl the local space-mean speed of a TCA’s lattice
x
l,b
i the longitudinal position of vehiclei’s left-back neighbour

x
l,f
i the longitudinal position of vehiclei’s left-front neighbour

x
r,b
i the longitudinal position of vehiclei’s right-back neighbour

x
r,f
i the longitudinal position of vehiclei’s right-front neighbour

References

[1] S.Maerivoet, B. DeMoor, TransportationPlanning andTraffic FlowModels, 05-155, KatholiekeUniversiteit Leuven, Department of Electrical
Engineering ESAT-SCD (SISTA), July 2005.
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