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Abstract

In this paper, we give an elaborate and understandable review of traffic cellular automata (TCA) models, which are a class of
computationally efficient microscopic traffic flow models. TCA models arise from the physics discipline of statistical mechanics,
having the goal of reproducing the correct macroscopic behaviour based on a minimal description of microscopic interactions. After
giving an overview of cellular automata (CA) models, their background and physical setup, we introduce the mathematical notations
show how to perform measurements on a TCA model’s lattice of cells, as well as how to convert these quantities into real-world
units and vice versa. The majority of this paper then relays an extensive account of the behavioural aspects of several TCA mode
encountered in literature. Already, several reviews of TCA models exist, but none of them consider all the models exclusively from
the behavioural point of view. In this respect, our overview fills this void, as it focusses on the behaviour of the TCA models,
by means of time—space and phase-space diagrams, and histograms showing the distributions of vehicles’ speeds, space, and t
gaps. In the report, we subsequently give a concise overview of TCA models that are employed in a multi-lane setting, and some
of the TCA models used to describe city traffic as a two-dimensional grid of cells, or as a road network with explicitly modelled
intersections. The final part of the paper illustrates some of the more common analytical approximations to single-cell TCA models.
© 2005 Published by Elsevier B.V.
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0. Introduction

In the field of traffic flow modelling, microscopic traffic simulation has always been regarded as a time consuming,
complex process involving detailed models that describe the behaviour of individual vehicles. Approximately a decade
ago, however, new microscopic models were being developed, basedamtltiter automatgprogramming paradigm
from statistical physicsThe main advantage was efficient and fast performaneghen used in computer simulations,
due to their rather low accuracy on a microscopic scale. These so-taffécicellular automatgTCA) are dynamical
systems that are discrete in nature, in the sense that time advances with discrete steps and space is coarse-grained (
the road is discretised into cells of 7.5 m wide, each cell being empty or containing a vehicle). This coarse-grainines:
is fundamentally different from the usual microscopic models, which adopt a semi-continuous space, formed by the
usage of IEEE floating-point numbe. True to the spirit of statistical mechanics, all the TCA models discussed in
this report do not have a realistic microscopic description of traffic flows as their primary intent, but are rather aimed
at obtaining a correct macroscopic behaviour through their crude microscopic description. Such an approach woul
involve more human-oriented aspects such as those found in socio-economic, behavioural, and psychological science
Due to large lack of knowledge about the manner in which human beings operate in a traffic system, traffic engineer:
currently stick with this higher-level scientific approach. As such, they are able to positively capture the first- and
second-order macroscopic effects of traffic streams. TCA models are very flexible and powerful, in that they are alsc
able to capture all previously mentioned basic phenomena that occur in trafficlB@jsIn a larger setting, these
models describself-driven many-particle systemeperating far from equilibriumAnd in contrast to strictly gaseous
analogies, the particles in these systems are intelligent and able to learn from past experience, thereby opening the dc
to the incorporation of behavioural and psychological asgde®s).

The cellular automata approach proved to be quite useful, not only in the field of vehicular traffic flow modelling, but
also in other fields such as pedestrian behaviour, escape and panic dynamics, the spreading of forest fires, populati
growth and migrations, cloud formation, material properties (corrosion, cracks, creases, peeling, etc.), ant colonies an
pheromone trails, et§7—11]. It is now feasible to simulate large systems containing many ‘intelligent particles’, such
that is it possible to observe their interactions, collective behaviour, self-organisatidi2ei8,7,6,14—-17]

In this report, we provide a detailed description of the methodology of cellular automata applied to traffic flows. We
first discuss their background and physical setup, followed by an account of the mathematical notations we adopt. Th
remaining majority of this report extensively discusses the behavioural aspects of several state-of-the-art TCA model
encountered in literature (our overview distinguishes between single-cell and multi-cell models). The report concludes
with a concise overview of TCA models in a multi-lane setting, and TCA models used to describe two-dimensional
traffic (e.g., a grid for city traffic). We end with a description of several common analytical approximations to single-cell
TCA models.

Note that aside from our phenomenological discussion of different TCA models, we refer the reader to the work of
Chowdhury et al[3], Santer{18], and Knospe et aJ19] for more theoretically and quantitatively oriented overviews.

1. Background and physical setup for road traffic

In this section, we give a brief overview of the historic origins of cellular automata, as they were conceived around
1950. We subsequently describe which main ingredients constitute a cellular automaton: the physical environment, th
cells’ states, their neighbourhoods, and finally a local transition rule. We then move on to a general description on how
cellular automata are applied to vehicular road traffic, discussing their physical environment and the accompanying
rule set that describes the vehicles’ physical propagation.

1.1. Historic origins of cellular automata

The mathematical concepts of cellular automata (CA) models can be traced back as far as 1948, when Johann Lou
von Neumann introduced them to study (living) biological systgk Central to von Neumann’s work, was the notion
of self-reproductiorand theoretical machines (calleshematonythat could accomplish this. As his work progressed,
von Neumann started to cooperate with Stanislaw Marcin Ulam, who introduced him to the cormsptiaf spaces
These described the physical structure of a cellular automaton, i.e., a grid of cells which can be either ‘on’ or ‘off’
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Fig. 1. An example of the Game of Life, with a rectangular grid of cells. Live cells are coloured black, whereas dead cells remain white. The image
shows a snapshot during the game’s course, illustrating many different shapes to either die out, or live indefinitely by remaining stationagy or movin
around (image adapted frofh43]).

[21,22] Interestingly, Alan Mathison Turing proposed in 1952 a model that illustrated reaction—diffusion in the context
of morphogenesie.g., to explain the patterns of spots on giraffes, of stripes on zebradlis model can be seen as
a type of continuous CA, in which the cells have a direct analogy with a simplified biological orgE?8%m

Inthe 1970s, CA models found their way to one of the most popular applications called ‘simulation games’, of which
John Horton Conway'sGame of Lifé [24] is probably the most famous. The game found its widespread fame due
to Martin Gardner who, at that time, devoted a Scientific American column, cadathematical Gamésto it. Life,
as it is called for short, is traditionally ‘played’ on an infinitely large grid of cells. Each cell can either be ‘alive’ or
‘dead’. The game evolves by considering a cell’s all surrounding neighbours, deciding whether or not the cell shoulc
live or die, leading to phenomenon called ‘birth’, ‘survival’, and ‘overcrowding’ (or ‘loneliness’). An example of a Life
game board can be seenkig. 1 Typical of Life, is the spawning of a whole plethora of patterns or shapes, having
illustrious names such as gliders, guns, space ships, puffers, beehives, oscillatdrs,Game of Life is now all about
how these shapes evolve, and whether or not they die out or live indefinitely (either by remaining stationary or moving
around).

The widespread popularisation of CA models was achieved in the 1980s through the work of Stephen Wolfram. Base
on empirical experiments using computers, he gave an extensive classification of CA models as mathematical models 1
self-organising statistical systeij&i,25] Wolfram’s work culminated in his mammoth monograph, cafddew Kind
of Sciencd25]. In this book, Wolfram related cellular automata to all disciplines of science (e.g., sociology, biology,
physics, mathematics, .). Despite the broad range of science areas touched upon, Wolfram’s book has received its
share of criticism. As an example of this, we mention the comments of Gray, who points out that Wolfram’s results
suffer from a rigorous mathematical test. As a consequence, the physical examples in his book are deemed eith
uncheckable or unconvincing. Gray’s final critique is that.“he [Wolfran] has helped to popularise a relatively
little-known mathematical areCA theory, and he has unwittingly provided several highly instructive examples of
the pitfalls of trying to dispense with mathematical rigb{26]. However, with respect to their computational power,

CA models can emulate universal Turing machines within the theories of computation and complexity. Recently, Chu
took Wolfram’s empirical observations one step further, proving that some of the CA models are capable of Turing
universal computations. He furthermore introduced the paradigraliflar neural network¢CNN), which provide a

very efficient method for performing massive parallel computations, and are a generalisation of cellular d2fgmata

Finally, an important step in this direction, is Bill Gosper's proof that the Game of Life is computationally uni-
versal, i.e., it can mimic arbitrary algorithnj28]. Notably, one of the most profound testimonies related to this
concept, is the work of Konrad Zuse and Edward Fredkin at the end of the 1960s. Their Zuse—Fredkin thesis states th
“The Universe is a cellular automatgrand is based on the assumption that the Universe’s physical laws are discrete
in nature[29-31] This latter statement was also conveyed by Wolfram in his famous CA compefjm

1.2. Ingredients of a cellular automaton

From a theoretical point of view, four main ingredients play an important role in cellular automata f3&j22533]
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Fig. 2. Some examples of different Euclidean lattice topologies for a cellular automaton in two dimehsitn®ctangularMiddle: triangu-
lar/isometric.Right hexagonal.

Fig. 3. Two commonly used two-dimensional CA neighbourhoods with a radius of 1: the von Neumann neighbourhood (left) consisting of the central
cellitself plus 4 adjacent cells, and the Moore neighbourhood (right) where there are 8 adjacent cells. Note that for one-dimensional CA's, both type
of neighbourhoods are the same.

1.2.1. The physical environment

This defines theiniverseon which the CA is computed. This underlying structure consistsdi$erete lattice of
cellswith a rectangular, hexagonal, or other topology Sige 2for some examples). Typically, these cells are all equal
in size; the lattice itself can be finite or infinite in size, and its dimensionality can be 1 (a linear string of cells called an
elementary cellular automatasr ECA), 2 (a grid), or even higher dimensional. In most cases, a common—nbut often
neglected—assumption, is that the CAs lattice is embeddedirchdean space

1.2.2. The cells’states

Each cell can be in a certain state, where typically an integer represents the number of distinct states a cell can be i
e.g., a binary state. Note that a cell’s state is not restricted to such an integer domaifpjeas,a continuous range
of values is also possible (e.@®;"), in which case we are dealing wittoupled map lattice6CML) [34,35] We calll
the states of all cells collectively a CAyobal configuration This convention asserts that states are local and refer to
cells, while a configuration is global and refers to the whole lattice.

1.2.3. The cells’ neighbourhoods

For each cell, we define a neighbourhood that locally determines the evolution of the cell. The size of neighbourhooc
is the same for each cell in the lattice. In the simplest case, i.e., a one-dimensional lattice, the neighbourhood consis
of the cell itself plus its adjacent cells. In a two-dimensional rectangular lattice, there are several possibilities, e.g.,
with a radius of 1 there are, besides the cell itself, the four north, east, south, and west adjacerdrcélsufnann
neighbourhooyl or the previous five cells as well as the four north—east, south—east, south—west, and north—west
diagonal cells Moore neighbourhooy] seeFig. 3 for an example of both types of neighbourhoods. Note that as the
dimensionality of the lattice increases, the number of direct neighbours of a cell increases exponentially.
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t+1

Fig. 4. Schematic diagram of the operation of a single-lane traffic cellular automaton (TCA); here, the time axis is oriented downwards, the spac
axis extends to the right. The TCA's configuration is shown for two consecutive timetstads + 1, during which two vehiclesandj propagate
through the lattice.

1.2.4. Alocal transition rule

This rule (also called function) acts upon a cell and its direct neighbourhood, such that the cell's state change
from onediscrete time stepo another (i.e., the system’s iterations). The CA evolves in time and space as the rule is
subsequently applied to all the ceiltsparallel. Typically, the same rule is used for all the cells (if the converse is true,
then the termhybrid CA is used). When there are no stochastic components present in this rule, we call the model &
deterministicCA, as opposed to stochastiqalso calledprobabilistic) CA.

As the local transition rule is applied to all the cells in the CAs lattice, the global configuration of the CA changes.
This is also called the CAglobal map which transforms one global configuration into another. This corresponds to the
notion ofcomputing a functiom automata theory, see also Section 2.1. Sometimes, the CAs evolution can be reversec
by computing past states out of future states. By evolving the CA backwards in time in this manner, tineeCges
global mapis computed. If this is possible, the CA is callexyersible but if there are states for which no precursive
state exists, these states are calteatden of Ede{GoE) states and the CA is said toibeversible

Finally, when the local transition rule is applied to all cells, its global map is computed. In the context of the theory
of dynamical systems, this phenomenoraafal simple interactionshat lead to aylobal complex behavioui.e., the
spontaneous development of order in a system dugeanal interactions), is termeself-organisatioror emergence

Whereas the previous paragraphs discussed the classic approach to CA models, the following sections will exclusive
focus on vehicular traffic flows, leading to traffic cellular automata (TCA) models: Section 1.3 discusses the physica
environment on which these TCA models are based, and Section 1.4 deals with their accompanying rule set th
determines the vehicular motion.

1.3. Road layout and the physical environment

When applying the cellular automaton analogy to vehicular road traffic flows, the physical environment of the systern
represents the road on which the vehicles are driving. In a classic single-lane setup for traffic cellular automata, thi
layout consists of a one-dimensional lattice that is composed of individual cells (our description here thus focuses o
unidirectional, single-lane traffic). Each cell can either be empty, or is occupieddmntlyone vehicle; we use the
termsingle-cell modelso describe these systems. Another possibility is to allow a vehicle to span several consecutive
cells, resulting in what we cathulti-cell modelsBecause vehicles move from one cell to another, TCA models are
also calledparticle—hopping model86].

An example of the tempo-spatial dynamics of such a system is depictad.id, where two consecutive vehicles
i andj are driving on a one-dimensional lattice. A typical discretisation scheme asauinesl s andAX = 7.5m,
corresponding to speed increment\éf = AX /AT =27 km/h. The spatial discretisation corresponds to the average
length a conventional vehicle occupies in a closely jam packed (and as such, its width is neglected), whereas tt
temporal discretisation is based on a typical driver’s reaction time and we implicitly assume that a driver does not reac
to events between two consecutive time s{&3$.

With respect to the layout of the system, we can distinguish two main cases: closed versus open systems. They c
respond to periodic (or cyclic) versus open boundary conditions. The former is usually implemented as a closed ring ¢
cells, sometimes called thedianapolis scenaripnvhile the latter considers an open road. This last type of system, is also
called thebottleneck scenaridlrhe name is derived from the fact that this situation can be seen as the outflow from a
jam, where vehicles are placed at the left boundary whenever there is a vacant spot. Note that, in closed systen
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the number of vehicles is always conserved, leading to the descriptiowrober conserving cellular automata
(NCCA) [38].

1.4. Vehicle movements and the rule set

The propagation of the individual vehicles in a traffic stream, is described by means of a rule set that reflects the
car-following and lane-changing behaviour of a traffic cellular automaton evolving in time and space. The TCAs local
transition rule actually comprises this set of rules. They are consecutively applied to all vehicles in parallel (called a
parallel updatg. So in a classic setup, the system’s state is changed thungihronous position update$ all the
vehicles: for each vehicle, the new speed is computed, after which its position is updated according to this speed an
a possible lane-change manoeuvre. Note that there are other ways to perform this update procedure, e.g., a randc
sequential update (see Section 3.2.4). Because time is discretised in ufifssetonds, ammplicit reaction time
is assumed in TCA models. It is furthermore assumed that a driver does not react to events between consecutiv
time steps.

For single-lane traffic, we assume that vehicles aetésotropic particlesi.e., they only respond to frontal stimuli.

So typically, the car-following part of a rule set only considers the direct frontal neighbourhood of the vehicle to which
the rules are applied. The radius of this neighbourhood should be taken large enough such that vehicles are able
drive collision-free. Typically, this radius is equal to the maximum speed a vehicle can achieve, expressed in cells
per time step.

From a microscopic point of view, the process of a vehicle following its predecessor is typically expressed using a
stimulus—response relatigt]. Typically, this response is the speed or the acceleration of a vehicle; in TCA models, a
vehicle’s stimulus is mainly composed of its speed and the distance to its leader, with the response directly being a ne\
(adjusted) speed of the vehicle. In a strict sense, this only leads to the avoidance of accidents. Some models howeve
incorporate more detailed stimuli, such as anticipation terms. These forms of ‘anticipation’ only take leaders’ reactions
into accountwithout predictinghem. When these effects are taken into account together with a safety distance, strong
accelerations and abrupt braking can be avoided. Hence, as the speed variance is decreased, this results in a more st
traffic strean[39-41]

To conclude this section, we note that a TCA model can also be derived from a so-called Gipps car-following model.
All speeds in this Gipps model are directly computed from one discrete time step to aiigtHénow the spatial
dimension is also discretised (a procedure catlearse graining, then this will result in a TCA model.

2. Mathematical notation

In this section, we give an overview of the mathematical notation adopted throughout this report. The focus will be
on the variables in TCA models, the measurements that can be done on a TCA model’s lattice, and their conversio
to real-world units. We first take a look at the notation that is commonly used in automata theory, from which cellular
automata sprung.

2.1. Classic notation based on automata theory

Let us first briefly present the notation for cellular automata models, adopted in spaittafata theoryAs
mentioned in Section 1, a CA model represents a discrete dynamic system, consisting of four ingredients:

CA=(Z, 2, N0, 1)

where the physical environment is represented by the discrete |attiaad the set of possible states denotedby
Eachith cell of the lattice, has at time sté@ states; (t) € X. Furthermore, the associated neighbourhood with this
cell is represented hy; (1), i.e., a (partially) ordered set of cells. Finally, the local transition rule is represented as

o3 5 5 U oj(t) — oi(t+1) . (2)
JeNi ()
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Eqg. (2) shows that the state of tita cell at the next time step+ 1 is computed by based on the states of all the
cells in its neighbourhood at the current time stepm the previous equation,/’| represents the number of cells

in this neighbourhood, which is taken to be invariant with respect to time and space. Note that the local transitior
rule is commonly given by aule table where the output state is listed for each possible input configuration of the
neighbourhood. Given the sizesXfand. /", the total number of possible rules equals:

==, 3)

where each of thez*'"| possible configurations of a cell’s neighbourhood is mapped to the number of possible states
a cell can be in.

Considering the ordered set of all the states of all cells collectively at timetsée@As global configuration is
obtained as

cn=|J o, @)

je&L

with € (1) € X< where the latter refers to the set of all possible global configurations a CA can be in (also called its
phase spade Sometimes, such a global configuratiG(y) is also represented by its characteristic polynomial (i.e.,
generating function[42]:
2] .
Ct)=>Y oj)x! . (5)

Jj=0

If we now apply the local transition rule to all the cells in the CAs lattice, the next configuration of the CA can be
computed by its induced global map:

G:37 37 4t — €1t +1) . (6)

Note that if the CA is reversible, the inverse global n@@p! can be computed. As the CA evolves in time and space,
the global map is iterated from a certain initial configurati&¢®) at r = 0, leading to the following sequence of
configurations:

%(0) — G(4(0)) — G%(%(0)) - G3(%(0)) — - -- @)

The above sequence is called tregectory of the initial configuratior'(0) under the global ma, and we denote
it by

T 06 ={G"(€(0)|n € N} . 8)
When this trajectory is periodic or chaotic, we use the terminofogyard orbitand denote it byﬁ;;(o)‘G. Similarly,

thebackward orbif(i.e., the reverse trajectory) is denoted(bg/(t)lG,l, where we specify a certain global configuration
%(r) at time step under the inverse global map 1.

2.1.1. Classification of CA rules

Computing the global ma@ is rather difficult, as it may require many or even an infinite amount of iterations in
order to obtain the trajectories. In practice, the system’s lattice size should be taken infinitely large, but even only
considering 1000 cells of a binary elementary cellular automaton (ECA) would increase the size of the search space
global configurations to¥%0 ~ 10300,

A more intuitive methodology, is to observe a CAs tempo-spatial behaviour, i.e., its evolution on the lattice in the
course of time. To this end, Stephen Wolfram empirically studied many configurations of binary ECA rules, with a
neighbourhood of three cells. According to Eq. (3), this amount£te=2256 different rules. In 1984, based on this
research, Wolfram conjectured four distinctiversality classept3]:

Classl: These CA evolve after a finite number of iterations to a unique homogeneous statdimg.paint.

Classll: These CA generate regular, periodic patterns, i.e., enteriimgitcycle
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Classlll: CAs in this class evolve to a periodic patterns, independent of the initial configuration; their trajectories in
the configuration space lie orchaotic attractor

ClasslV: This class encompasses all the CAs that seem to behawimplexway, with features such as propagating
structures, long transients; they are thought to have the capability of universal computation.

Although Wolfram’s classification scheme is widely adopted, it still remains a tentative result as he himself states
[25]. Note that the type of classification he providepli®notypicin the sense that it is based on observed behaviour,
whereas @enotypicclassification would be based on the intrinsic structure of the rules in each class.

Despite these observations, classification still remains a difficult task as is evidenced by the ongoing research il
dynamical systems. Other attempts at classification of ECA rules include the following. Finslily,and Yu gave a
formalisation of Wolfram'’s class¢44]. Secondly, Li and Packard studied the structure of the ECA rule space according
to a certain distance metric, resulting in five clagd&$. Then, Braga et al. identified three classes based on the growth
of patterns observed in CA modé46]. Next, Wuensche used a whole arsenal of local measures to automatically create
complex rules, thereby classifying the rule space for the CAs’ dynapifis Furthermore, Dubacq et al. classified
CA models based on their algorithmic complexity by measuring the information content of the local transition rule
[48]. And finally, Fatés who used a macroscopic parameter, i.e., the density of 1's, to separate chaotic ECA rules fromn
non-chaotic onep!9].

2.1.2. An example of a CA
To end this section, let us give some definitions of a one-dimensional, infinitely large, binary state CA with a
neighbourhood of radius 1:

=77 (withd=1), (9)
>=7,=1{01}, (10)
Ni={i—14,i+1}, (11)
8, 1): 73 — 7>
Hoica(®), 0i(t), 6i 1D} — 0; (¢ + 1), (12)
G(&)): 75 — 7%
CE() — Ct+ 1) . (13)

Note that in Eg. (11), we assume that itrecell’s neighbourhood is represented by integer indices (i.e., the cells form a
totally ordered set). This alleviates the need for an explicit representation of the cells themselves, as it is now sufficien
to work with the cells’ indices and states. The transition kule Eq. (12) takes as its arguments a cell’'s indexd

current time step, but operates on the states of this cell’s neighbourhood. The global map in Eq. (13) operates on the
global configuration of the CA at time stép

2.2. Basic variables and conventions

Conforming to the setup and notation discussed in the previous sections, we denote a TCAs discrete l4ttice by
(for the remainder of this section, we assummeaangular latticg. This lattice physically represents the road on which
vehicles will drive in a TCA model. It consists éfy lanes, each of which hds« cells, so in total there ate ¢ x K o
cells in the lattice L », K » € Np). Each cell can either be empty, or occupied with a single vehicle that spans one or
more consecutive cells. An example of a lattice containing several vehicles, can be Bagrbin

Based on the microscopic vehicle characteristics of a vehicle’'s space headway, space gap, length, time headws
time gap, and occupancy time, we propose to use the following set of definitiomsiftianevehicular road traffic
flows that aréneterogeneou@n the sense of having different vehicle lengtf&0)]:

1, I,
gs,.f =x; I xi —1;, (14)
gf}f =x,-r"f —xi =1, (15)
=l o

b b
gt =x; —x[" 1] (17)
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Fig. 5. A portion of the lattice?” at a certain time step; it hdsy = 3 lanes, containing six vehicles. The central vehiitias a space headway, =6
cells, consisting of a space gap =4 ceIIs and its lengthy = 2 cells. There are four other space gaps to be considered when the neighbouring lanes

are taken into accoung1 ! (left-front), g (|eft-baCk),g:’f'f (right-front), andg§;h (right-back), equalling 6, 4, 2 and 2 cells, respectively.

for which we assume that a vehicle’s position is denoted by the cell that contains its rear bumper. For the example i
Fig. 5, the left and right frontal and backward space gaps of the central vetacde6, 4, 2 and 2 cells, respectively
(all these space gaps thus represent effective distances, corresponding to the number of empty cells between vehicls

Similar definitions hold for the space headwaﬁlsf hﬁ[f, h’ b , andhy, b ie. the vehicle lengths in the right hand sides

of Egs. (14)—(17) are dropped. Derivations for the time @p(s g,l ,gfi’b, andg , and time headwayhst f h’ f
hﬁib, andhf,_b are analogous.

Discriminating between frontal an backward neighbours in the adjacent lanesitb trehicle, is done based on
their positions, i.e.:

1,b
{xl‘

Py << x0Ty (18)

According to Eq. (18), a vehicle that is driving alongside in an adjacent lane tthtkiehicle, will be considered as a
backward neighbour as long as its rear bumper is located strictly behind the rear bumpettoddindcle (even if this
neighbour has a large length that ‘sticks out’ in front of itthevehicle).

Under the above set of assumptions, we can now write the conditions for a successful lane change (i.e., a possit
gap acceptance) as the following constraints:

g/ =0n gh?>0 (left lane change, (19)
g/ >0Ag?>0 (right lane change. (20)

With respect to the domains of all variables, we note that all vehicle lengths, space gaps, and space headways «
expressed as integers, or more specifically:

lishs hLP 5P e No
g hsl i e N,
gh g b gl ez
In contrast to this, the occupancy times, time headways, and time gaps are not restricted to the domain of integers, i.
pivhi P P € RY
g,, hﬁ;f n' e R,
A S A

For example, the occupancy tinpe as defined by, = I; /v; [50], corresponds to the time a vehicle ‘spends’ in its
own cells.

To conclude, each vehicién the lattice has an associated speed N (expressed in cells per time stAf'), which
is bounded by a maximum speegax € No. For example, if we seAT =1.2s,AX = 7.5m, andvmax =5 cellg/time
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step, theny; € {0, ..., 5} which corresponds to a maximum ofSAX /AT =5 x 7.5m/s+— 1.2s=31.25m/s=
1125km/h. As can be seen in this derivation, we only consider positive speeds in our models, i.e., vehicles always move
forward.

2.3. Performing macroscopic measurements

The previously discussed quantities are all microscopic traffic stream characteristics. In this section, we reconside
the macroscopic quantities densities, flows, and mean sg@jd#\s we now have to measure these quantities on a
TCAs lattice.#, we present three possibilities for obtaining the data points:

e by performing local measurements with an artificial loop detector of finite length (open and closed systems),

o by performing global measurements on the entire lattice (closed system),

e and by performing local measurements with an artificial loop detector of unit length (open and closed
systems).

In the following three sections, we give detailed derivations of each of these measurement techniques. Locally
measured quantities are indicated byl’asubscript, whereas globally measured ones are indicated by aolb-
script. A temporal and spatial discretisation of, respectivalj, (in seconds) and\X (in metres) is implicitly
assumed.

For all following techniques, we assume an integer measurement perigg ¢ime steps. Thus, aggregating data
into intervals of 60 s withAT = 1.2 s, requires a measurement period of:

60
Tmp = [1—2} =50 time steps . (22)

Furthermore, densities are expressed in vehicles per cell, flows in vehicles per time step, and space-mean speeds
cells per time step.

2.3.1. Local measurements with a detector of finite length

In this section, we deal with an artificial loop detector of finite lengtlh € No, located in a single lane. Note that
typically, Kig > vmax SO as to ensure that no vehicles can ‘skip’ the detector between consecutive time steps. The first
step in our approach for performing these measurements, is based on obtaining local measurements of the density a
flow for such a spatial measurement region at a certain timet $§5€). Once these are known, the space-mean speed
can be derived using the fundamental relation of traffic flow theogykv, [50]:

N

k(o) = % , (22)
N

ar = 2 > i), (23)
i=1

(3
— o _q@ 1 o _ 24
Us,(f)—kl—(t)—m;vz(f), (24)

where we assumed¥ (r) vehicles are present at tintén the loop detector's segment. The density and flow mea-
surements of consecutive time steps are now temporally averaged over subsequent spatial measurement regio
In similar fashion as before, the space-mean speed is derived using the previously mentioned fundamente
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relation:
Tmp Tmp
k N(@) , 25
Z 0= 7 Z (1) (25)
Tmp Tmp N(t)
= — = v; (¢ 26
Zéﬂ() i Kld;; OF (26)
U
i Tmp N(t) Tmp
Uy == =YY wu / Y ONG®) 27)
t=1i=1 =1
Tmp N(t) Tmp

=Y N <)%Zvi(r> Y N®)
=1 =1
Tmp Tmp
=Y NV, () / Y ONG) . (28)
t=1

t=1

Our derivations fork; andg; as outlined above, also correspond to the generalised definitions of density and flow,
defined as the total time spent, respectively, the total distance travelled, divided by the area of the measurement regi
(which corresponds t@mp x Kig). Furthermore, note that the last Eq. (28) essentially is a weighted mean of the local
space-mean speeds(¢) at each time step with the number of vehicle& (r) as weights.

2.3.2. Global measurements on the entire lattice

For the global measurements, we consieehicles that are driving in a closed single-lane system, i.e., with a length
of K ¢ cells (the extension to multi-lane traffic is straightforward). As a consequence, the global densityains
constant during the entire measurement period. The derivations of the equatiépsdprandv;,, are completely
equivalent to those of the previous Section 2.3.1, but now With= K «:

N
Tmp N
qg = szl(t) (30)
Tmng =1 i=1
(2
Tmp N
_ dg 1
Uy, =& = > i), (31)
© kg TmpN t=1i=1
Tmp N
1 1
= N— > v,
TmpN ; N ;f !
1
= — v, (1) . 32
Tmvasgo (32)

Note that, for single-cell TCA models, the global density computed with Eq. (29) actually corresponds to the macro-
scopic characteristic called occupancp0]. For multi-cell models, the number of vehicles is in general less than the
number of occupied cells.

2.3.3. Local measurements with a detector of unit length

The third technique for measuring macroscopic traffic flow characteristics on a TCAs lattice, bears perhaps the
closest resemblance to reality: it is based on an artificial loop detector with unit lengtlk.e=, 1 cell. The loop
detector now explicitly counts all the vehicles that pass it at each timeAsteguring the measurement peri@ghp.
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This type of measurement corresponds to a point measurement in a temporal measurement region. Because of th
the appropriate method for computation is different from the one used in the previous two sections: we now first
compute the local flow, and the local space-mean speed, both for single-lane traffic. The local density is then derive
according to the previously mentioned fundamental relation, resulting in the following set of equations:

N
= —, 33
q T (33)
v -1
_ 1 1
Vs = (ﬁ ; U_1> ) (34)
U
= (35)
Uy,

in which N now denotes the number of vehicles that have passed the detector during the measuremefitperiod
Because the detector physically occupies one cell and because a vehicle has to ‘drive by’ in order to get countec
this means that stopped vehicles are ignoogdy moving vehicles are countddote that, as opposed to the previous

two techniques, the above measurements no longer denote temporal averages. And because we are working with
temporal measurement region, we have to take the harmonic average of the vehiclestspeedser to obtain the

local space-mean speeg [50].

2.4. Conversion to real-world units

Converting between TCA and real-world units seems straightforward, as we only need to suitably multiply with or
divide by the temporal and spatial discretisatidfisandA X, respectively. However, problems arise due to the discrete
nature of a TCA model, involving some intricacies with respect to coordinate systems and their associated units. Fo
example, as defined in Section 2.2, a vehislspace headwaly;, is always an integer, expressing the number of cells.
The same holds true for its space gapand length;. The difficulty now lies in the fact that fractions of cells are not
representable in our definition of a TCA model. Keeping in mind iQat g, + /; [50], and noting thak,, € N, it
follows thatg,, + /; > 0, which means that eithgg, # 0 and/orl; # 0.

As a solution, we therefore adopt throughout this report the convention that, without loss of generality, a vehicle’s
lengthl; > 1 cell (which agrees perfectly with our earlier definitions in Section 2.2). Consequently, when a v&hicle
residing in a compact jam (i.e., ‘bumper-to-bumper’ traffic), its space headyvay! cells and its space gap, =0
cells. Our convention thus gives a rigorous justification to formulate the TCAs update rules more intuitively using space
gaps, because as already stated in Section 1.4, the rules in a TCA rule set are typically not expressed in terms of spa
headways, but rather in terms of speeds and space gaps (i.e., the distance to the leading vehicle).

In a similar fashion, time headways, time gaps, and occupancy times represent multiples of the temporal dis-
cretisationAT. But note that, as explained before in Section 2.2, these are however no longer constrained to
integer values.

In the following two sections, we explain how to convert between coordinate systems of TCA models and the
real world. All common variables (e.ghy;) are expressed iTCA units except for their ‘primed’ counterparts
(e.g., hy,), which are expressed ireal-world units The conversions will be done with respect to the following
conventions:

e TCA model

hy;, gs;,» andl; are dimensionless integers, denoting a number of cells,

hy;, g, andp; are dimensionless real numbers, denoting a fractional multiple of a time step,
k; andk, are real numbers, expressed in vehicles/cell,

q1 andg, are real numbers, expressed in vehicles/time step,

andv;, vy, andisg are real numbers, expressed in cells/time step.

[¢]

O O O O
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e Real world
o AX, hy,, g;,, andl; are real numbers, expressed in metres,
AT, h;, g;., andp; are real numbers, expressed in seconds,
ky andk;, are real numbers, expressed in vehicles/kilometre,
q, andq;, are real numbers, expressed in vehicles/hour,
andv;, v, andvy are real numbers, expressed in kilometres/hour.

o O O o

2.4.1. From a TCA model to the real world

Under the previously mentioned convention that Ng, we can write the conversions of the microscopic character-
istics related to the space and time headways and gaps, and the vehicle lengths and occupancy times, in a straightforw
manner:

hy, =hg - AX, g =g5-AX, =1 -AX,

h;i = hy; - AT, gt/i =g, - AT, [); =p; AT . (36)

Relative to Egs. (36), there is a small but important detail that is easily overlooked: we cannot just convert betweel
s &, li» andl} without making some assumptions. Because we adopted the conventidrthatell, it follows
that//>AX. So itis not possible to take the real length of a vehicle smaller than the spatial discretisation, because wi
assumed that the spatial units of a TCA model are all integer values.

The conversions for the macroscopic traffic stream characteristics densities, flows, and space-mean speeds, as v
as the microscopic vehicle speed, are as follows:

Y —k 1000
T AXx
) 3600
—9AT
P AX

To keep the previous equations clear, we have dropped the subscripts denoting global and local measurements.

It is interesting to see what happens at the jam density, i.e., the maximum density when all cells in the lattice ar
occupied. As all vehicles are standing still bumper-to-bumper, the associated space gap at this density, equals ze
Computing the space headway, result&jn= 0 + /;. By virtue of the fact that density is inversely proportional to
the average space headw&Q], we can cast this space headway into a density, e.g., for a single-cell TCA model:
kj = Es_jl =1 = llfl = 1. Applying the conversion by means of Egs. (37) and assuming a spatial discretisation
AX =7.5m, results in a real-world jam density = 1000+ 7.5 m ~ 133 vehiclegkm. Conversely, if we knovk},
then we can derivé; (see Section 2.4.2) and hence we have a method to pick.a

If we were to consider multi-cell traffic, e.g., vehicles with different lengths, then the jam density would be inversely
proportional to the average vehicle length. A solution here is to assume a common unit for all vehicle lengths, e.g.
passenger car units (PCUB0]. Even though the jam density can be defined for each vehicle class separately, it
would be more correct to speak of amerage jam densitgt this point due to the temporal and spatial variations
in traffic flows.

2.4.2. From the real world to a TCA model
Based on Egs. (36), we can write the reverse conversion of the microscopic characteristics in the following manne

h, g !
hy, = —L =25 =
STAX ST Ax T Ax
hy, g, p;
hy =t g =S, P 38
P T AT SiT AT PiT AT (38)
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In order to agree with our previously stated convention, i.e., all spatial microscopic characteristics in a TCA model
are integers, Eqgs. (38) implicitly assume that the real-world spatial variables are multiples of the spatial discretisatior
(e.9.,hy, =m - AX withm € No).

Another possible approach to the spatial conversion to TCA model unitsapproximatethe real-world values as
best as possible, whilst keeping our adopted conventiof).;A% cell, this leads to the following scheme where we use
upward rounding (i.e., ceiling):

=lax | =lax ]

= 8si = hS,' - li . (39)

For example, ifAX = 7.5m,l; = 4.5m, andg; = 5m, theni;, = 4.5+ 5=9.5m, and from Eq. (39) it follows that
hy; =2 cells,l; =1 cell, andgs —2—1=1cell. Because Eq. (39) is only an approximation, it more than often occurs
that the computed space headway ‘exceeds’ the real-world space headway.

In similar spirit, the conversion for the macroscopic characteristics can be easily derived from Egs. (37). However,
as opposed to Egs. (38) and (39), there is no need for an approximation by means of rounding, because these quantit
are real numbers, as mentioned in the introduction of Section 2.4.

3. Single-cell models

Having discussed the mathematical and physical aspects of cellular automata and TCA models in particular, we nov
focus on single-cell models. As explained before in Section 1.3, each cell can either be empty, or is occupied by exacth
one vehicle; all vehicles have the same lerigth 1 cell. Traffic is also considered to be homogeneous, so all vehicles’
characteristics are assumed to be the same. In the subsequent sections, we take a look at the following TCA mode
(accompanied by their suggested abbreviations):

e Deterministic models
o Wolfram’s rule 184 (CA-184)
o Deterministic Fukui—Ishibashi TCA (DFI-TCA)

e Stochastic models
o Nagel-Schreckenberg TCA (STCA)
o STCA with cruise control (STCA-CC)
o Stochastic Fukui—Ishibashi TCA (SFI-TCA)
o Totally asymmetric simple exclusion process (TASEP)
o Emmerich—-Rank TCA (ER-TCA)

e Slow-to-start models
o Takayasu—Takayasu TCA{ITCA)
o Benjamin, Johnson, and Hui TCA (BJH-TCA)
o Velocity-dependent randomisation TCA (VDR-TCA)
o Time-oriented TCA (TOCA)
o TCA models incorporating anticipation
o Ultra discretisation, slow-to-accelerate, and driver’s perspective

For other excellent overviews of TCA models, we refer the reader to the works of Chowdhury3jt Kinospe
et al.[19], Nagel[36], Nagel et al[51], Schadschneid¢52,53] and Schreckenberg et §4].

All following TCA models will be empirically studied using simulations that are performed anidirectional
single-lane latticewith periodic boundary conditions, i.e., a closed loop withr = 1. The length of this lattice
equalsk ¢ = 10° cells, which is taken large enough in order to reduce most unwdimiéelsize effectsOur own
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experiments indicate that larger lattice sizes do not render any significant advantage, aside from the burden of a larg
computation time.

The importance of studying closed-loop, single-lane traffteere is often a criticism expressed as to why it is
important to study the behaviour of traffic flows in such a simplified system. After all, can such a basic system captur
all the dynamics of real-life traffic flows, or be even representative of them? The answer to this question is that, ir
our opinion, the dynamics of these constrained systems play an important, non-negligible role. For example, whe
considering traffic flows on most unidirectional two-lane European motorways, drivers are by law obliged to drive on
the right shoulder lane, unless when performing overtaking manoeuvres. A frequently observed phenomenon is the
that under light traffic conditions (e.g., 10 vehicles/km/lane), a slower moving vehicle (e.g., a truck) is located on the
right lane, and is acting asmoving bottleneckAs a result, all faster vehicles will line up on the left lane (overtaking
on the right lane is prohibited by law), thereby causindeasityor lane inversion[55,56,5,57] It is under these
circumstances that the stability of the car-following behaviour plays an important role. Similarly, in densely congestec
traffic, e.g., the synchronised-flow regime, the same stability may govern the fact whether or not a traffic breakdowt
is likely to be induced (see our work [i] for a discussion on the nature of this breakdown). Even for multi-lane
traffic, we believe its dynamics are essentially those of parallel single lanes when considering densely congested traf
flows. Another argument for the necessity of studying these simplified systems, is the one given by Nagel and Nelsol
They state that this is the easiest way to determine whether or not internal effects of a traffic flow model play a role
in e.g., the spontaneous breakdown of traffic, as all external effects (i.e., the boundary conditions) are els@hated
Nevertheless, when applying these models to real-life traffic networks, closed-loop traffic is not very representative, a
the behaviour near bottlenecks plays a far more importan{@ple

All measurements on the TCA models’ lattices are based on two possible initial conditions: depending on the natur
of the study, we will either usekomogeneous initial conditiorfthe default), or @zompact superjarto start with. In the
former case, all vehicles are uniformly distributed over the lattice, implying equal space headways. In the latter case
all vehicles are ‘bunched up’ behind each other, with zero space gaps. When going from one global density to anothe
an equivalent method would beadiabaticallyadd (or remove) vehicles to an already homogeneous or jammed state.
In our experiments, however, we always reset the initial conditions, corresponding to the first method. The simulation
ran each time for 1btime steps, after an initial period of 4@ime steps was discarded in order to let transients from
the initial conditions in the system die out. Global densities, flows, and space-mean speeds are computed by mes
of Egs. (29)-(32), whereas, we use a point detector, i.e., Egs. (33)—(35), to, compute their local variants. In this latte
case, the data points were collected with a measurement [#&jpg 60 time steps. Based on these results, we can
construct kg, vy, ), (kg, q¢), (ki, vy,), and &, g;) diagrams. To keep a clear formulation, we will however from now
on drop the subscripts denoting global and local measurements. All simulations were performed by means of oL
Traffic Cellular Automatat software (developed for the JaV4 Virtual Machine); more information can be found in
Appendix A.

For a deeper insightinto the behaviour of the space-mean spgbe average space ggp and the median time gap
g,, detailed histograms showing théistributionsare provided. Note that with respect to the time gaps and time head-
ways, we willwork in the remainder of this report with timediarinstead of the arithmetic mean. The median gives more
robustresults whehy,, g;, — +oo, which occurs when a vehicistops. These histograms are interesting because in the
existing literature (e.g[59,52,6) these distributions are only considered at several distinct global densities, whereas we
show them foall densities. Each of our histograms is constructed by varying the global debsityeen 0 and 1, com-
puting the space-mean speed, the average space gap and the median time gap for each simulation run. A simulation
consists of % 10* time steps (with a transient period of 500 time steps) on systems of 300 cells, varying the density in 150
steps. Note that a larger size of the system'’s lattice, has no significant effects on the results, except for an increase of1
variance60].

Before giving an elaborate discussion of some of the classic TCA models, it is worthwhile to mention the first
historical and practical implementations of traffic cellular automata. Cremer and Ludwig conceived an implementatior
of traffic flows based oftattice gas automatéL GA), which are a special case of cellular automata typically employed
when simulating viscous fluid@1]. Their seminal work, using individual bits to represent vehicles, was extended
by Schitt, who provided a simulation package for heterogeneous traffic, multi-lane motorways, and network and cit)
traffic [62]. Unfortunately, the developed models were quite inefficient when they were used in setting that called for
large scale Monte Carlo simulatiof&3].
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Fig. 6. An illustrative method for representing the evolution of a cell’s state in time, based on its local neighbourhood. We can see ttre state
of a central celi at time steft, together with the states;_1(r) anda;1(r) of its two direct neighbours — 1 andi + 1, respectively. This local
neighbourhood is mapped onto a new stgte + 1). For binary states, we use a black square to represent a state of 1 (e.gr;stétg), and an
empty (white) square for a state of 0. The depicted transition maps the tOfld), onto the state; (+ + 1) = 0.
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Fig. 7. A graphical representation of Wolfram’s rule 184, which is writteila31 1100 (» in base 2. All 8 possible configurations for the local
neighbourhood are sorted in descending order, expressing the local transitiéi,rules explained bffig. 6. For example, the local neighbourhood
(100, gets mapped onto a state of 1. This has the physical meaning that a particle (black square) moves to the right if its neighbouring cell is empty

3.1. Deterministic models

In this section, we discuss Wolfram’s original rule 184, and its generalisation to higher speeds as proposed by Fuku
and Ishibashi’s deterministic model. We abbreviate these two TCA models as CA-184 and DFI-TCA, respectively.

3.1.1. Wolfram’s rule 184 (CA-184)
The first deterministic model we consider, is a one-dimensional TCA model with binary statésy As1, this
model is called an elementary cellular automaton (ECA), according to the terminology introduced in Section 1.2. If we

furthermore assume a local neighbourhood of three cells wide (i.e., a radius of 1), then thée-a@5a different
rules possible, according to Eqg. (3). Around 1983, Stephen Wolfram classified all these 256 binafR2EIC@se of
these is calledule 184, who'’s name is derived from Wolfram’s naming scheme.

Wolfram’s scheme is based on the representation of how a cell's state evolves in time, depending on its local
neighbourhood. Ifrig. 6, we have provided a convenient visualisation for the evolution of the states in a binary ECA.
Here, we can see the staigr) of a central cell at time step, together with the stateg_1(¢) anda;1(¢) of its two
direct neighbours — 1 andi + 1, respectively. All three of them constitute the local neighbourhdqdr) of radius 1
(see also our example of a CA in Section 2.1.2). Because states are binary, we can indicate them with a colour, i.e.,
black square represents a state of 1 (e.g., statg?) in Fig. 6), whereas an empty (white) square represents a state of
0. According to the local transition ruli, ¢), the local neighbourhood”; (¢) is then mapped fromto z + 1 onto a
new states; (+ + 1). The graphical representationkiig. 6 thus provides us with an illustrative method to indicate the
evolution of{a;_1(¢), 6;(t), 6;41(t)} —> 0;(t + 1).

Considering the transition depicted Kg. 6, we can see that a complete neighbourhood contains three cells,
each of which can benia 0 (white) or 1 (black) state. So in total, there afe=28 possible configurations for
such a local neighbourhood. Wolfram’s naming scheme for the binary ECAs is now based on an integer coding of
this neighbourhood. Indeed, the local transition ré(g ) is given by a table lookup containing eight entries, one
for each of the possible local neighbourhoods. If we binary sort these eight configurations in the descending orde
(111,(110,(101,(100, (011, ..., then we obtain a graphic scheme such as the oR&in7. As can be seen,
for each of the local configurations, a resulting O or 1 state is returned foatéiine step + 1. Collecting all resulting
states, and writing them in base 2, results in the nunib8rl 1 1 00 (,. Converting this code to base 10, we obtain
the number 184. Wolfram now coded all 256 possible binary ECAs by a unique number in the range from 0 to 255,
resulting in 256 rules for these CAs.
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Fig. 8. Typical time—space diagrams of the CA-184 TCA model. The shown closed-loop lattices each contain 300 cells, with a visible period of 58C
time steps (each vehicle is represented as a single coloured efityehicles driving a free-flow regime with a global dendity: 0.2 vehicles/cell.

Right vehicles driving in a congested regime with= 0.75 vehicles/cell. The congestion waves can be seen as propagating in the opposite direction
of traffic; they have an eternal life time in the system. Both time—space diagrams show a fully deterministic system that continuously repeats itsel

Rule 184 (which we abbreviate as CA-184) issmymmetricalule becausé((110)5,1) =0 # 6((01 15, 1) = 1.
It is also called ajuiescentule becausé((000),, 1) = 0 (so all zero-initial conditions remain zero). As an example
of the rule’s evolutionFig. 7 shows that the local neighbourho@®0), gets mapped onto a state of 1. If we consider
these 1 states garticles(i.e., vehicles), and the 0 statedredes then rule 184 dictates that all particles move one cell
to the right, on the condition that this right neighbour cell is empty. Equivalently, all holes have the tendency to move
to the left for each particle that moves to the right, a phenomenon which is termpdrtteée—hole symmetry

For a TCA model, we can rewrite the previous actions as a set of rules that are consecutively applied to all vehicle
in the lattice, as explained in Section 1.4. For the CA-184, we have the following two rules:

(R1) acceleration and braking
vi (1) <= min{gy,(r — 1), 1}, (40)
(R2) vehicle movement

x; (1) <—x,-(t—1)+v,-(t) . (41)

Rule R1, Eqg. (40), sets the speed of ithevehicle, for the current updated configuration of the system; it states that
a vehicle always strives to drive at a speed of 1 cell/time step, unless its impeded by its direct leader, in which cas
gs;(t — 1) = 0 and the vehicle consequently stops in order to avoid a collision. The second rule R2, Eq. (41), is not
actually a ‘real’ rule; it just allows the vehicles to advance in the system.

In Fig. 8, we have applied these rules to a lattice consisting of 300 cells (closed loop), showing the evolution over
a period of 580 time steps. The time and space axes are oriented from left to right, and bottom to top, respectivel
In the left part, we show a free-flow regime with a global dengity 0.2 vehicles/cell, in the right part we have a
congested regime with = 0.75 vehicles/cell. Each vehicle is represented as a single coloured dot; as time advances
vehicles move to the upper right corner, whereas congestion waves move to the lower right corner, i.e., backwards |
space. From both parts Bfg. 8 we can see that the CA-184 TCA model constitutes a fully deterministic system that
continuously repeats itself. A characteristic of the encountered congestion waves is that they have an eternal life tinr
in the system.

InFig. 9, we have plotted both thé (v,) and(k, ¢) diagrams. As can be seen from the left part, the global space-mean
speed remains constantiat= 1 cell/time step, until the critical density. = 0.5 is reached, at which point, will
start to diminish towards zero where the critical density= 1 is reached. Similarly, the global flow first increases
and then decreases linearly with the density, below and respectively above, the critical density. Here, the capacity flo
gcap= 0.5 vehicles/time step is reached. The transition from the free-flowing to the congested regime is characterise
by a first-order phase transition. As is evidenced byisilesceles triangular shapef the CA-184’s resultingk, q)
fundamental diagram, there are only two possible kinematic wave speeds liand—1 cell/time step. Both speeds
are also clearly visible in the left, respectively right, time—space diagrarfRggoB. More analytical details on these
values will be provided in the following Section 3.1.2.
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diagram, with its characteristic isosceles triangular shape. The transition between the free-flowing and the congested regime is of a fiuse-order nat

3.1.2. Deterministic Fukui—Ishibashi TCA (DFI-TCA)

In 1996, Fukui and Ishibashi constructed a generalisation of the prototypical CA-184 TCA [Gdéfiélthough
their model is essentially a stochastic one (see Section 3.2.3), we will first discuss its deterministic version. Fukui
and Ishibashi’s idea was two-fold: on the one hand, the maximum speed was increased frgra dlis/time step,
and on the other hand, vehicles would acceleirstantaneouslyo the highest possible speed. Corresponding to the
definitions of the rule set of a TCA model, the CA-184's rule R1, Eqg. (40), changes as follows:

(R1) acceleration and braking

v; () < min{g, (t — 1), vmax} - (42)

Just as before, a vehicle will now avoid a collision by taking into account the size of its space gap. To this end, it will
apply an instantaneous deceleration: for example, a fast-moving vehicle might have to come to a complete stop whe
nearing the end of a jam, therebiruptlydropping its speed frommyax to 0 in one time step.

Due to the strictly deterministic behaviour of the system, the time—space diagrams of the DFI-TCA do not differ much
from those of the CA-184. The only difference is the speed of the vehicles in the free-flow regime, leading to steeper
trajectories. It is however interesting to study thew;) and(k, ¢) diagrams irFig. 10 Here we can see that increasing
the maximum speednax creates—as expected—a steeper free-flow branch ikthg diagram. Interestingly, the
slope of the congested branch does not change, logically implying that the kinematic wave speed for jams remain
constant, i.e..-1 cell/time step. This can be confirmed with an analytical kinematic wave analysis, as explained by
Nagel[51].

Based on the behaviour of the vehicles near the critical density, we can analytically compute the capacity flow as
follows: in the free-flow regime, all vehicles move with a constant speeghgf cells/time step. When the critical
density is reached, all vehicles drive collision-free at this maximum speed, which implieg,tkabmax cells. The
space headwaly;, = vmax+ 1 (becausé = 1 for single-cell models). Consequently, the value for the critical density
as[50]:

__ 1 (43)

1
ke ==— .
hy,  vmax+1
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space-mean speed remains constant, until the critical density is reached, at whiahy palhstart to diminish towards zerdright several of the
DFI-TCAs (k, q) diagrams, each having a triangular shape (with the slope of the congestion branch invariant for the diffgdent

The capacity flow is now computed by means of the fundamental relationchg= kcvmax:

Umax
qcap= R (44)
Applying Egs. (43) and (44), for e.gumax = 5 cellg/time step, results ik, ~ 0.167 vehicles/cell angcap ~ 0.83
vehicles/time step. If we furthermore assufé =7.5m andAT =1s, then both values correspond to 22 vehicles/km
and 3000 vehicles/h, respectively.

As opposed to the instantaneous acceleration in rule R1, Eq. (42), we can also agsadumabacceleratiorof one
cell per time step (the braking remains instantaneous):

(R1) acceleration and braking
vi (1) < minfv; (r — 1) + 1, g5, (t — 1), vmax} - (45)

However, our experimental observations have indicated that there is no difference in global system dynamics, wit
respect to either adopting gradual or instantaneous vehicle accelerations.

There exists a strong relation between the previously discussed deterministic TCA models, and the macroscop
first-order LWR model with a triangular, (k) fundamental diagrarfl]. Some of the finer results in this case, are the
work of Nagel who extensively discusses some analytical results of both deterministic and stochastic TCA model:
[36], and the work of Daganzo who explicitly proves an equivalency between two TCA models and the kinematic wave
model with a triangulag, (k) fundamental diagrarf65]. More details with respect to such analytical relations, are
given in Sections 3.2.4 and 5.3.

To conclude our discussion of deterministic models, we take a look at what happens in the limiting case where
vmax — +00. As can be seen iRig. 11, the congested branches in both®;) and(k, ¢g) diagrams grow, at the cost
of the free-flow branches which disappear. Interestingly, these diagrams correspond one-to-one with a tgighgular
fundamental diagram that is now expressed ma@ving coordinate systeras explained by Newe|66]. In such a
simplified system, the critical densiky = 0, with a capacity flowjcap= 1.
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in a critical densityk, = 0, with a capacity flow;cap= 1. This type of diagram corresponds to a simplified trianggak) fundamental diagram
that is expressed in a moving coordinate system.

3.2. Stochastic models

The encountered models in the previous section were all deterministic in nature, implying that there can be nc
spontaneous formation of jam structures. All congested conditions produced in those models, essentially stemmed frol
the assumed initial conditions. In contrast to this, we now discuss stochastic TCA models (i.e., these are probabilisti
CAs) that allow for the spontaneous emergence of phantom jams. As will be shown, all these models explicitly
incorporate a stochastic term in their equations, in order to accomplish this kind of real-life betj@viour

3.2.1. Nagel-Schreckenberg TCA (STCA)

In 1992, Nagel and Schreckenberg proposed a TCA model that was able to reproduce several characteristics
real-life traffic flows, e.g., the spontaneous emergence of traffic [aM863] Their model is called th&laSch TCA
but is more commonly known as tls¢ochastic traffic cellular automatof8TCA). It explicitly includes a stochastic
noise term in one of its rules, which we present in the same fashion as those of the previously discussed deterministi
TCA models. The STCA then comprises the following three rules (note that in Nagel and Schreckenberg'’s original
formulation, they decoupled acceleration and braking, resulting in four rules):

(R1) acceleration and braking
vi(t) < minfv;(t — 1) +1, g;;(t — 1), vmax} » (46)
(R2) randomisation
¢(1) < p = vi(t) < maxo, vi(1) — 1}, (47)
(R3) vehicle movement
xi(t) < xi(t — 1) +v; (1) . (48)
Like in both CA-184 and DFI-TCA deterministic TCA models (see Sections 3.1.1 and 3.1.2), the STCA contains
a rule for increasing the speed of a vehicle and braking to avoid collisions, i.e., rule R1, Eq. (46), as well as rule
R3, Eq. (48), for the actual vehicle movement. However, the STCA also contains an additional rule R2, Eq. (47),

which introduces stochasticity in the system. At each time steprandom numbef(z) € [0, 1[ is drawn from a
uniform distribution. This number is then compared with a stochastic noise pargmetg), 1] (called theslowdown
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Fig. 12. Typical time—space diagrams of the STCA model (similar setup as for the CA-184 TCA mddg! 8). Both diagrams have a global
density ofk = 0.2 vehicles/cellLeft the evolution of the system for = 0.1. Right the evolution of the system, but now fpr= 0.5. The effects of

the randomisation rule R2 are clearly visible in both diagrams, as there occur many unstable artificial phantom mini-jams. Furthermore, the spee
w of the backward propagating kinematic waves decreases with an incrgasing

probability); as a result, there is a probabilityjpthat a vehicle will slow down te; (1) — 1 cells/time step. The STCA
model is called aminimal modelin the sense that all these rules are a necessity for mimicking the basic features of
real-life traffic flows.

According to Nagel and Schreckenberg, the randomisation of rule R2 captures natural speed fluctuations due
human behaviour or varying external conditions. The rule introduces overreactions of drivers when braking, providing
the key to the formation of spontaneously emerging jams.

Although the above rationale is widely agreed upon, much criticism was however expressed due to this secon
rule. For example, Brilon and Wu believe that this rule has no theoretical background and is in fact introduced quite
heuristically[68].

To get an intuitive feeling for the STCAs system dynamics, we have provided two time—space diagrams in
Fig. 12 Both diagrams show the evolution for a global densitykef 0.2 vehicles/cell, but witlp set to 0.1 for
the left diagram, angp = 0.5 for the right diagram. As can be seen in both diagrams, the randomisation in the model
gives rise to many unstable artificial phantom mini-jams. The downstream fronts of these jams smear out, formin
unstable interfacefb1]. This is a direct result of the fact that the intrinsic noise (as embodig)lioythe STCA model
is too strong: a jam can always formatydensity, meaning that breakdown can (and will) occur, even in the free-flow
traffic regime. For low enough densities however, these jams can vanish as they are absorbed by vehicles with sufficie
space headways, or by new jams in the syq@&®h It has been experimentally shown that below the critical density,
these jams have finite life times with a cut-off that is aboutBXP time steps and independent of the lattice size. When
the critical density is crossed, these long-lived jams evolve into jams with an infinite life time, i.e., they will survive
for an infinitely long time[70,63,71]

In free-flow traffic, a vehicle’s speed will fluctuate betwegpy andvmax— 1, due to the randomisation rule R2. We
can compute the space-mean speed in the free-flow regime by means of a weighted average. This average correspc
to the probability 1— p for driving with the speedmax and the probability for slowing down to the speeghax — 1.

As such, we getiy, =Y wivi/ Y w; =[(1— p)vmax+ p(max— D1/[(1— p) + p] = vmax— p- In agreement with the
space-mean speed observed in the left() diagram ofFig. 13 we can state that a vehicle will drive with an average
free-flow speed ofit = vmax — p.

As mentioned in Section 3.1.2, the slope of the free-flow branch(in @) diagram can be changed by adjusting
vmax- Similarly, the slope of the congested branch can be changed by tuning the slowdown prop#&hditythat this
also affects the average free-flow speed). Looking aithe) diagram in the right part ofig. 13 we note that an
increase op will on the one hand result in a smalleg, and on the other hand the congested branch will lie lower,
with a smaller critical densit¥,. In this latter case, the speadof the backward propagating kinematic waves will
decrease, an effect that is also visible in the time—space diagraRig.df2 Note that the presence of noise in the
STCA model causes both free-flow and congested branches @f,thiediagram to be slightly curved, as opposed to
the perfectly linear branches of the deterministic models.

If we setp = 0, then the STCA model becomes deterministic; additionally, setting will recover the CA-184
TCA model. In the other deterministic case, wher= 1, the system behaves differently: in the congested state, all
vehicles will come to a full stop, thereby reducing the global flow in the system to zero. As a result, the congestec
branch in thek, ¢) regime will coincide with the horizontal axis. This implies that the behaviour of a systenvith
andp = 1 is totally different than that of a system withax — 1 andp = 0.
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Fig. 14. Thregk, ¢) diagrams based on local measurements in the STCA modebwith= 5 celly/time stepLeft p = 0. Middle: p = % Right
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branches (indicated by the points marked)pare the negative of its corresponding slope in a global diagram.

Considering local measurements of the density, flow, and space-mean spdaédgihdiagrams inFig. 14reveal
that an increasing slowdown probabiljtyresults in (i) a lower value for the critical density, (ii) a lower capacity flow,
and (iii) a more localised scatter of the data points.

In Fig. 15 we have plotted a histogram of the distributions of the STCA's vehicles’ space gaps, for all global densities
k € [0, 1]. For very low densities, the distributions have a distinct maximum, indicating that all vehicles travel with
very large space gaps. At higher densities, the maxima of the distributions shift toward smaller space gaps, as mor
and more vehicles encounter jams, even leading to a reduction of their space gap to zero. Around the critical densit
however, the distributions are smeared out across consecutive densities, but for each of those densities they exhibit
bimodal structure. Because the STCA contains many jams, the system now contains both vehicles in free-flow traffic
as well as vehicles that are in a congested state (i.e., driving closer to eac®2he6,71]

In similar spirit, Fig. 16 shows the distribution of the vehicles’ speeds and time gaps. Corresponding with our
observations of thek( v;) diagrams inFig. 13 the left part ofFig. 16 shows a distinct cluster of probability mass at
the histogram classmax — p for very low global densities. In this region, the standard deviation of the space-mean
speed is more or less constant and equpl & higher global densities, the distributions become temporarily bimodal,
after which they again tend to a unique maximum of O cells/time step, corresponding to severely congested traffic;
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shows the former’s standard deviation. The grey regions denote the probability densities.

the standard deviation drastically encounters a maximum at the critical density, after which it declines steadily. Witt
respect to the distributions of the time gaps, the right paRigf 16 shows an rapidly decreasing median time gap as
the critical density is approached. At this density, the time gaps settle around a local cluster at the minimum of 1 tim¢
step. Going to higher global densities, the number of stopped vehicles increases rapidly, frequently resulting in infinit
time gaps. From the critical density on, all distributions exhibit a bimodal structure, corresponding to vehicles that are
caught inside a jam, and other vehicles that are able to move freely (possibly at a lowel{Spe&jy 1]
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Fig. 17. A time—space diagram of the STCA-CC modelifgrx = 1 cell/time step and a global density/of= 0.4 vehicles/cell. The shown lattice
contains 300 cells, with a visible period of 1000 time steps. We can see over ten initial jams evolving, coalescing over time into one superjam. The
system exhibits two distinct phases, i.e., a free-flow and a congested regimg with and 0 cells/time step, respectively.

3.2.2. STCA with cruise control (STCA-CC)

As mentioned in the previous Section 3.2.1, a typical artifact of the STCA model is that it gives rise to many unstable
artificial jams. Due to the noise inherent in the model, a jam can always form at any density, even inducing a local
breakdown of traffic in the free-flow traffic regime. One way to remedy this, is by stabilising the free-flow branch of
the (k, ¢) diagram. This can be done by inhibiting the randomisation for high-speed vehicles. To this end, Nagel and
Paczuski considered again rules R1-R3 of the STCA, i.e., Egs. (46)—(48), but now complemented with §A3]e RO

(RO) determine stochastic noise

vi(t —1) = vmax=> p'(1) < 0,
vi(t — 1) <vmax= p'(t) < p, (49)

with now p replaced byp’(¢) in the STCA's randomisation rule R2, i.e., Eq. (47). This new rule effectively turns
off the randomisation for high-speed vehicles, as only ‘jammed’ vehicles will now have stochastic behaviour.
The resulting TCA model, is called the STCA in theiise-control limit or STCA-CC for short. If we set the
maximum speedmax = 1 cell/time step, then all jams initially present in the system will coalesce with each
other, giving rise to one superjam as depicteHim 17. This superjam has been found to followeaadom walk

in the time—space diagrafv3,36] Note thatvmax > 1 cell/time step does not alter the critical behaviour of the
model, even though jam clusters are now branching, having regions of free-flow traffic in betwedB8&hem

In Fig. 18 we show thek, vy) and(k, ¢) diagram of the STCA-CC withnax = 5 celly/time step ang = 0.2. As
can be seen in the right part, ti¥e ¢) diagram has a typical invertedshape (see also our discussiorih about
the hysteresis and capacity drop phenomena). The STCA-CC is saidtsthile in that both the free-flow as well
as the congested branches of theq) diagram are stable (the former because it is noise-free). Vehicles going from
the free-flow to the congested regime encounter at the critical density a phenomenon much like a capacity drop. Thi
reverse transition to the free-flow branch proceeds via a lower density and, correspondingly, a lower flow (which is the
outflow goyt Of @ jam). Comparing the right parts Bfgs. 13and18, it is evident that a destabilisation of the free-flow
branch forms the main reason for a lower capacity flow, reached at a lower critical density.

To conclude our discussion of the STCA-CC, we note that the use of cruise control as an ADAS can have unintende
consequences. The traffic system can be perceived as having an underlying critical point, at which the life times o
jams switch from finite to infinite (see our discussion at the beginning of Section 3.2.1). The existence of this point is
closely tied to theself-organised criticalitfSOC) of the STCA model: the outflow from an infinite jam automatically
self-organises to a state of maximum attainable fioty67,63,75] Stabilising the free-flow branch with cruise-control
measures, results on the one hand in traffic higher achievable flows which is beneficial, but on the other hand the syste
is driven closer to its critical point which is more dangerous. At this stage, travel times will experience a high degree
of variability, thereby reducing its predictabilify6,73,63]
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3.2.3. Stochastic Fukui—Ishibashi TCA (SFI-TCA)

In Section 3.1.2, we discussed the deterministic FI-TCA which is a generalisation of the CA-184 TCA model. In
their original formulation, Fukui and Ishibashi also introduced stochasticity, but now only for vehicles driving at the
highest possible speed afax cells/time stej64]. We can express the rules of this model, by considering the rules R2
and R3 of the STCA, i.e., Egs. (47) and (48), but now complemented with the DFI-TCA's rule R1 for instantaneous
accelerations, i.e., Eq. (42) of Section 3.1.2, and, as in the STCA-CC model, an extra rule RO:

(RO) determine stochastic noise

vi(t — 1) = vmax = P/(t) <D,
vi(t —1) <vmax=> p'(1) < 0, (50)

with now p replaced byp’(z) in the randomisation rule R2. It can be seen thatfgsx = 1, the SFI-TCA and
STCA models are the same. Furthermore jfet 0 the SFI-TCA becomes fully deterministic, and in contrast to
the STCA's zero-flow behaviour (see Section 3.2.1), the SFI-T@As 1 case corresponds to the STCA with
p =0 andvmax — 1.

The rationale behind the specific randomisation in the SFI-TCA model, is that drivers who are moving at a high
speed, are not able to focus their attention indefinitely. As a consequence, there will be fluctuations at these high spee
As such, this corresponds to the opposite of a cruise-control limit, e.g., the STCA-CC model. There will be no capacity
drop, but the effect on thé (v;) diagram is that its free-flow branch will become slightly downward curving, starting
atv; = vmax — p fork =0.

To conclude, we mention the related work of Wang et al. who studied the SFI-TCA both analytically and numerically,
providing an exact result fgy = 0, and a close approximation for the model witk% 0 [77]. Based on the SFI-TCA,

Wang et al. developed a model that is subtly different. They assumed that drivers do not suffer from concentratiol
lapses at high speeds, but are instead only subjected to the random deceleration when they are driving close enot
to their direct frontal leaderg8]. And finally, we mention the work of Lee et al. who incorporate anticipation with
respect to a vehicle’s changing space gaps its leader is driving away. This results in a higher capacity flow, as well

as the appearance of a synchronised-traffic regime, in which vehicles have a lower speedalbut@rimg[79].
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3.2.4. Totally asymmetric simple exclusion process (TASEP)

The simple exclusion process is a simplified well-known particle transport model from non-equilibrium statistical
mechanics, defined on a one-dimensional lattice. In the case of open boundary conditions (i.e., the bottleneck scenaric
particles enter the system from the left side atatry ratex, move through the lattice, and leave it atexit rate f5.

The term ‘simple exclusion’ refers to the fact that a cell in the lattice can only be empty, or occupied by one particle.
When moving through the lattice, particles move one cell to the left with probabijlaynd one cell to the right with
probability 6. Wheny = ¢, the process is called ttgymmetric simple exclusion procS&SEP); ify # ¢, then it is

called theasymmetric simple exclusion proc€SEP)[80]. Finally, if we sety =0 ando = 1, the system is called the
totally asymmetric simple exclusion proc€$8SEP). If we consider the TASEP as a TCA model, then all vehicles
move withvmax = 1 cell/time step to their direct right-neighbouring cell, on the condition that this cell is empty.

Updating the configuration of CA essentially amounts to updating the states of all its cells. In general, there are two
methods for the update procedure:

Sequential updatd his updating procedure considers each cell in the lattice one at a time. If all cells are considered
consecutively, two updating directions are possilaét-to-right and right-to-left There is also a third possibility,
calledrandom sequential updat&nder this scheme and with particles in the lattice, each time step is divided in
N smaller substeps. At each of these substeps, a random cell (or vehicle) is chosen and the CA rules are applied
it. As a consequence of the updating procedure, each particle is on average updatddadfédier substeps, which
introduces a certain amount of noise in the system. We have depicted several typical time—space diagrams for the ASE
with y = 1 — ¢ in Fig. 19 Furthermore note that a hidden assumption here is that, after completing a substep, the
local information is immediately available to the whole system, which can violate causality (as information is now
transmitted through the lattice at an infinite speed).

Parallel update This is the classic update procedure that is used for all TCA models discussed in this report. For a
parallel update, all cells in the system are updated in one and the same time step. Compared to a sequential updati
procedure, this one is computationally more efficient (note that it is equivalent to a left-to-right sequential update). There
is however one peculiarity associated with this updating scheme: because all particles are considered simultaneous
certain lattice configurations cannot exist, i.e., Baden of Ede{GoOE) states mentioned in Section 1.2. An example
of such aparadisiacal stateis two vehicles right behind each other, with the following having a non-zero speed. This
state would imply that in single-lane traffic, the FIFO property was violated and consequently a collision occurred.
Such GoE states do not exist when using a random sequential update.

In Fig. 20 we have depicted two time—space diagrams for the TASEP with a random sequential updating procedure
operating on a closed loop. As can be seen, the diagrams qualitatively look the same, and have some of the san
characteristic features of the time—space diagrarf&gnl9 For the TASEP, there is no free-flow regime, there are no
large jams in the system, and, because of the random sequential update, all vehicles continuously have the tenden
to collide with each other. As a consequence, the system is littered with mini-jams in both the low and high density
regimeg63,36] Note that the TASEP with open boundary conditions exhibits a very rich behaviour, depending on the
values for the entry and exit ratesandf3, respectivel\j81,18,53]

With respect to the relations between the TASEP with a random sequential update and other models, we mention th
following two analogies: on the one hand, the LWR first-order macroscopic traffic flow rfiljdedrresponds to the
TASEP in the hydrodynamic limit to a noisy and diffusive conservation law, which can be reduced to the LWR model
[63,36] On the other hand, the TASEP corresponds to the STCA (see Section 3.2.1), but nawayithl cell/time
step[3,6].

To gain more insight into the macroscopic behaviour of the TASEP with random sequential update, we provide
its (k, vy) and (k, ¢) diagrams inFig. 21 Looking at the £, v,) diagram on the left part, we notice that the TASEP
with vmax = 1 cell/time step corresponds exactly to Greenshields’ original linear relation between the density and the
mean speefB2,50] This in fact is a further testimony of the close link between the TASEP and the LWR model with
a triangularg, (k) fundamental diagram. Increasing the TASEP’s maximum speed, leads to a more curved relation,
intersection the vertical axis at the point ((hax). In any case, thek( v;) diagram also reveals the absence of a distinct
free-flow branch, corresponding to the observations of the large amount of mini-jams for all global densities, as could
be seen in the time—space diagram&iof 20

Studying the(k, ¢) diagram in the right part ofig. 21, we can see that the TASEP corresponds with the STCA
for vmax = 1 and an arbitrary slowdown probability (e.g.= 0.1). The diagram also shows how the CA-184 leads
to a sharp transition between the free-flow and the congested regime, as opposed to the rounded peak of capac|
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Fig. 19. Typical time—space diagrams of the asymmetric simple exclusion process (ASEP model) with a random sequential ypeihte arnche

shown lattices each contain 400 cells, with a visible period of 400 time steps (note that for clarity, the space and time axes are located horizontal
and vertically, respectively). The global densities in the systems were set for eachir@aM @1, 0.3, 0.5, 0.7, 0.9} vehicles/cell. For each column,

the ASEP’s probability to move to the left was setyta {0.1, 0.3, 0.5, 0.7, 0.9}.

Fig. 20. Typical time—space diagrams of the TASEP model with a random sequential update. The shown lattices each contains 300 cells, with a visib
period of 580 time steps. The global density in the system was &ett0.3 vehicles/cell left), andk = 0.7 vehicles/cell (ight). The evolution of
the system dynamics qualitatively looks the same in both diagrams: the system is littered with mini-jams in both the low and high density regimes

flow at k = 0.5 vehicles/cell for the STCA. However, whereas the TASEP also has its capacity flow at the same
value, there does not occur such a phase transition as in the other models. Finally, we can see that increasing |
maximum speedmnax for the TASEP introduces no significant qualitative changes, except for a skewing towards lower
densitied63].
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Fig. 21. A comparison of thek(vy) (left) and (k, ¢) (right) diagrams for the CA-184 withmax =1 (4A), the STCA withvmax= 1 andp = 0.1

(%), the TASEP with random sequential update ap@x =5 (o), and the TASEP with random sequential update angk = 1 (thick solid line).
Some distinct characteristics of the TASEP are the absence of a free-flow regime, aggxer 1 cellytime step, the exact correspondence with
Greenshields linear relation between the density and the mean speed.

Note that with respect to the computational complexity of the implemented TCA models, most measurements in
this report took a few hours to obtain, using an Intel P4 2.8 GHz with 512 MB RAM, running thé\la@K 1.3.1
under Windows 2000. In sharp contrast to this, are the computations for the TASEP model, which took nesitg 2
to complete.

3.2.5. Emmerich—-Rank TCA (ER-TCA)

Whereas the classical STCA model provided a reasonable qualitative agreement with real-world observations
Emmerich and Rank addressed the quantitative discrepancies between the model and real-world data. To this en
they proposed a variation on the STCA, extending the influence of the space gap on a vehicles updatec
speed83].

In their work, Emmerich and Rank fundamentally modified the STCA in two steps: (i) they changed the parallel
update procedure taght-to-left sequential update procedysee Section 3.2.4 for more details), and (ii) they changed
the behaviour of vehicles that are slowing down. In a nutshell, (i) leads to the important result that vehicles are now
able to drive directly behind each other (i.e., with a zero space gap) at high speeds, because the gaps in a traffic stree
are used more efficiently. The reason is that due to the specific sequential update, a downstream vehicle is moved fir
(for a closed loop, the vehicle with the largest space gap is chosen first), after which the next vehicle upstream will see
a larger space gap.

Just as the STCA can be seen as a special case of the optimal velocity model (OVM), based on a linear optima
velocity function (for a description of the OVM, we refer the reader to our overviefl])) the ER-TCA model
generalises this function by making a vehicle’s speed dependent on a variable safe distance and its curf8iit speed
This affects (ii), i.e., vehicles that are slowing down: when determining the new speed of a vehicle, the ER-TCA model
first checks if the vehicle is within 10 cells of its direct frontal leader. If this is the case, then the vehicle will slow down
according to a table lookup ingap-speed matrngSigvi. This matrix is constructed in such a way that collisions are
avoided (i.e.M; ; < min{i, j}):

0
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Fig. 22. Histograms of the distributions of the vehicles’ space gafeft) and time gapg; (right), as a function of the global densikyin the
ER-STCA (withumax = 5 cellg/time step ang = 0.35). The thick solid lines denote the mean space gap and median time gap, whereas the thin
solid line shows the former’s standard deviation. The grey regions denote the probability densities.
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Fig. 23.Left several , vs) diagrams for the ER-TCA, each for a different slowdown probahitlf is clear from the diagram, that for low values

of p, the resulting diagrams are unrealistic, including plateaus of constant space-mean speed in the congestRibiagseeeralk, ¢) diagrams

for the same ER-TCA models as before. Due to the system dynamics in the ER-TCA, very high capacity flows are possible. To constrain these flow
the slowdown probability has to be quite large in order to obtain realistic results. In both parts of the figure, the thick solid line denotes the original
model of Emmerich and Rank, who used a vapue 0.35 as their best fit to experimental data.

The matrix in Eq. (51), conveys the idea that lower speeds require lower space gaps, and that vehicles tend to ke
larger space gaps when travelling at higher speeds. This latter effect is also visible in the distribution of the vehicles
space gaps, as visualised in the histograms in the left pdfigof22, where, in contrast to the STCA's space gaps
distribution ofFig. 15 large space gaps are observed for densities near the critical density. Furthermore, because ¢
this mechanism, vehicles will have smoother decelerations, instead of the abrupt slowing down in the STCA mode
and some of its variations.

To understand some of the system dynamics of the ER-TCA model, we have provided Sevedahid (k, q)
diagrams irFig. 23 For p = 0.35, we can see in thg, ¢) diagram in right part, that the free-flow branch gatsved
implying that vehicles travel at a slightly lower speed when they approach the capacity-flow regime. Because vehicle
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can travel at high speeds in dense platoons, the ER-TCA model can achieve very high capacity flows, even leadin
to ¢ > 1 vehicle/time step. In order to constrain these flows to realistic values, the ER-TCA model needs a quite high
slowdown probability, e.g» = 0.35.

These two effects, i.e., a curving of the free-flow branch and an increased capacity flow, are basically what the
ER-TCA model is all about, as there is no qualitative change in the congested branch(f¢heliagram. There
are however some serious drawbacks to the ER-TCA model. First and foremdét,gheliagram is no longer non-
monotonic for low densities when the sequential update is replaced by a para[lg/13jeSecondly, the model exhibits
too large time headways in the free-flow regime when compared with real-world data. This effect is also visible in the
distribution of the vehicles’ time gaps, as depicted in the histograms in the right gag.&2 where, in contrast to
the STCA's time gaps distribution &ig. 16 a large amount of finite time gaps extends well into the region of medium
densities. Third, due to the sequential update, the ER-TCA model’'s downstream jam dynamics are unstable, just as |
the STCA mode[19]. Fourth, as can be seen from thkeT) diagram in the left part ofig. 23 for small slowdown
probabilitiesp, the resulting space-mean speed in the system is very unrealistic, even including plateaus of constan
speed in the congested regime, e.g., the curve associateg withl (we considep = 0 as a degenerate case).

3.3. Slow-to-start models

In order to obtain a correct behavioural picture of traffic flow breakdown and stable jam, it is necessary that a
vehicle’s minimum time headway or reaction time should be smaller than its escape time from a jam, or equivalently,
the outflow from a jam (i.e., the queue discharge rate) must be lower than its [8A¢89,85-87,51]If this is not the
case, asin e.g., the STCA model where both times are exactly the same, then all jams will be unstable, as can be seer
the time—space diagram Bfg. 12 Because of their unstable jamming behaviour, the previously discussed stochastic
models, experience neither a capacity drop nor a hysteresis loop, for which stable jams are a necessary prerequisi
Although the STCA-CC seems to be an exception to this rule, the downstream fronts of its jams are still too unstable.
in the sense that new jams can emerge all too easily, which is unrealistic behaviour with respect to real-life traffic
flows [5].

As just mentioned, one mechanism that deals with this, is by leaving free-flow traffic undisturbed signuifigantly
reducing the outflow from a jaiwnce a breakdown occurs, thereby stabilising the downstream front of a jam. Instead
of just eliminating the noise in free-flow traffic in the STCA-CC, this reduced outflow can also be accomplished more
intuitively, by making the vehicles wait a short while longer before accelerating again from stand still. As such, they
are said to beslow to start.

Note that there exists yet another mechanism that allows for the reproduction of the capacity drop and hysteresi
phenomena (we will only briefly mention it here). The approach followed by Werth, is based on the premise that drivers
take into account thepeed differencwith their direct frontal leader, instead of just the space gap as was previously
assumed. This leads @alilei invariant vehicle—vehicle interactions (i.e., the system dynamics remain the same if a
new linear moving coordinate system is substituted in the equations). Interestingly, the metastability in this model is
not due to cruise control or slow-to-start rules, but rather a result of the anticipation adopted. The model can exhibit
stable dense platoons of fast vehicles, resulting in a stabilisation of the free-flow branch, and consequently leading t
hysteretic behavioB8,5,3]

With respect to real-world units, we give some typical values associated with the capacity drop and hysteresis phe
nomena (based d4B]): an outflowgoy: ~ 1800 vehiclegh/lane at an associated densitykgf; ~ 20 vehiclegkm/lane,

With gcap kcrit, andkjam €qual to 2700 vehiclgd/lane, 20 vehicle&m/lane, and 140 vehiclgkm/lane, respectively.

3.3.1. Takayasu-Takayasu TCP2(TCA)

In 1993, Takayasu and Takayasu proposed a deterministic TCA model, based on the CA-184 (see Section 3.1.1), th
incorporated alelay in acceleration for stopped vehicl@9]. Their motivation stems from the fact that high-speed
vehicles are in general able to decelerate very quickly, but conversely, it takes them a lot longer to attain this high spee
when they start from a stopped condition. As such, Takayasu and Takayasu introduced a delay, based on the ratione
that a vehicle will only start to move when it recognises movement of its direct frontal leader. Translating this into
a rule set, we can write the?ITCA's rules based on those of the CA-184, but now with the following modifications
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Fig. 24. Two &, vs) (left) and (k, ¢) (right) diagrams for the 3-TCA model, withumax = 1 celly/time step. The thick solid line denotes global
measurements that were obtained when starting from homogeneous initial conditions; the thin solid line is based on a compact superjam as t
initial condition (see Section 3 for an explanation of these conditions). The right part clearly shows a typical réssrapd, which indicates a
capacity drop.

(note thatumax = 1 cell/time step):

(R1) braking
Vit =1 >g,t -1 = i) < g;(t—-1), (52)
(R2) delayed acceleration

vi(t =) =0ng,(t—1)>2
= @) <1, (53)

(R3) vehicle movement

xi (1) < xi(t — 1D+ v (1) . (54)

From this rule set it follows that a vehicle will always drive at a speed of one cell/time step, unless it has to brake
and stop according to rule R1, Eq. (52). Furthermore, the vehicle is only allowed to accelerate again to this speed ¢
one cell/time step, on the condition that it has a sufficiently large space gap in front, as dictated by rule R2, Eq. (53)
As a result, the introduced delayspatial in nature and it only affects stopped vehicles.

In Fig. 24 we have depicted the resulting ¢;) and(k, ¢) diagrams for the 3-TCA model. The observed behaviour
is similar to that of the STCA-CC model in Section 3.2.2, in that tReTCA model also exhibitbistability. Starting
from homogeneous initial conditions, the space-mean speed in the system undergoes a sharp drop once a vehicle ha
stop. The reverse process, i.e., going from the congested to free-flow regime, is accompanied by a smooth continuc
transition. Takayasu and Takayasu state that this corresponds to a second-order phase transition, because their o
parameter (the sum of the jamming times) follows a power-law distribution, with jam times tending to infinity once the
system goes beyond the critical density. With respect to #i€TA's tempo-spatial behaviour, we note that the critical
density for the former transition is locatedkat= 0.5 vehicles/cell, at which point all vehicles travel at a speed of one
cell/time step with all space gaps equal to one cell. The density at which the recovery associated with latter transitio
occurs, is equal té = % vehicles/cell, at which point all vehicles travel at a speed of one cell/time step, but now with
all space gaps equal to two cells. Fukui and Ishibashi later modified the delaying process, resulting in a system th
always relaxes to a state in which the space-mean speed oscillates between two values, both smaller than one cell/ti

step[90].
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The original background for Takayasu and Takayasu's work, was based on the presence of sofcalise (HIso
known agpink noiseor flicker noisg in the Fourier transformed density fluctuations of motorway traffic. The seemingly
random stop-and-go motions of jammed vehicles, could indicate a chaotic behaviour (as opposed to just statistice
noise), closely coupled with self-organised criticality (see also the end of Section [8.2.2n the free-flow regime
of the T2-TCA model, jams have a finite life time leading to a flat spectrum, as opposed to the congested regime where
jams have an infinite life time, leading to & &pectrun{89].

Schadschneider and Schreckenberg later provided a generalisation &ff@ATodel: keepingmax= 1 cell/time
step, they now modified the braking and acceleration behaviour of a vehicle. On the one hand, they kept Takayasu ar
Takayasu’s original acceleration rule R2, Eqg. (53), and on the other hand, they allowed a vehicle with a space gap of jus
one cell to accelerate withsdow-to-start probabilityl — p, [91]. They furthermore also introduced a randomisation for
moving vehicles, similar to the STCA (see Section 3.2.1), making vehicles stop with a slowdown probpaSititeral
interesting phenomena occur for certain values of both probabititéeasl p;. The modified spatial slow-to-start rule
can lead to the appearance ofiafiection pointin the (k, ¢) diagram at very high densities. The effect gets strongly
exaggerated whep, — 1, at which point a completely blocked state of zero flow appears for all global densities
k> 0.5 vehicles/cel]91,18,3]

3.3.2. The model of Benjamin, Johnson, and Hui (BJH-TCA)

Around the same time that Takayasu and Takayasu proposed tHEEA model, Benjamin, Johnson, and Hui (BJH)
constructed another type of TCA model, using a slow-to-start rule that iseshporal naturg92]. Their BJH-TCA
model is based on the STCA (see Section 3.2.1), but extended it with a rule that adds a small delays to a stopped car th
is pulling away from the downstream front of a queue. Benjamin et al. attribute this rule to the fact that it mimics the
behaviour of a driver who momentarily looses attention, or when a vehicle’s engine is slow to react. Their slow-to-start
rule allows a stopped vehicle to move again with giv-to-start probabilityl — p;. If the vehicle did not move, then
it tries to move again but this time with probabilipy. Due to this peculiar acceleration procedure, all vehicles require
a memory that, as mentioned before, makes the slow-start-rule temporal in[Bhtlea result of this new systematic
behaviour, jams will now become less ravelled (as opposed to the STCA), because the slow-to-start rule will have the
tendency to merge queues.

The BJH-TCA model was also applied to the description of a motorway with an on-ramp, leading to the conclusions
that (i) it actually is beneficial to have jams on the main motorway, due to the fact that these jams homogenise the
traffic streams as they compete for stopped vehicles, and (ii) it is desirable to set a maximum speed limit on this mair
motorway which allows to maximise the performance of the on-ramp. Note that in their discussion, Benjamin et al.
used the queue length at the on-ramp as a performance measure. In our opinion, this is not a very good choice as
ignores e.g., the total time spent in the system, which we believe is a more important measure (see also the work c
Bellemand93] and Hegyi[94] in this respect).

To conclude, we note that thé, ¢) diagrams of the BJH-TCA andZITCA models qualitatively look the same,
with the exception the former does not have the possibility of an inflection point, or a density region with zero flow, as
was the case for the latter model (see Section 3[911,18]

3.3.3. Velocity-dependent randomisation TCA (VDR-TCA)

As already explained in the introduction of this section, reducing the outflow from a jam is responsible for the capacity
drop and hysteresis phenomenon. To this end, Barlkew#l. proposed a TCA model that generalises the STCA model
(see Section 3.2.1) by employing an intuitive slow-to-start rule for stopped vef88&S6] Similar to the STCA-CC
(see Section 3.2.2), the complete rule set for the VDR-TCA is as follows:

(RO) determine stochastic noise

vit—1)=0= p'(t) < po,
Vit —1)>0= p'(t) < p, (55)

(R1) acceleration and braking

vi(t) < minfv;(t — 1) + 1, g, (t — 1), vmax} , (56)



34 S. Maerivoet, B. De Moor / Physics Reports 419 (200564

Fig. 25. A time—space diagram of the VDR-TCA model dgtax= 5 cells/time step,pg =0.5, p =0.01, and a global density éf= % vehicles/cell.

The shown lattice contains 300 cells, with a visible period of 1000 time steps. We can see the breakdown of an initially homogeneous traffic patterr
As the phase separation takes place, a persistent compact jam is formed, surrounded by free-flow traffic. The significant decrease of the density
the regions outside the jam results from the jam’s reduced outflow.

(R2) randomisation
&) < p'(t) = vi(r) < max{0, v; (1) — 1}, (57)
(R3) vehicle movement

xi(t) < x;i(t = 1) +v;(r) . (58)

As before, inrule R2, Eq. (57§(r) € [0, 1[ denotes a uniform random number (specifically drawn for vehatléme
t) and p/(r) is the stochastic noise parametdgpendent on the vehitéespeedhence the name ‘velocity-dependent
randomisation’). The probabilitiesy and p are called theslow-to-start probabilityand theslowdown probability
respectively, withpo, p € [0, 1]. Note that Barlowi’et al. only considered the case with two different noise parameters
(i.e., po andp), ignoring the more general case where we can have a noise parameter for each possible speed (i.¢
Pos - - -» Pumay)- 1Heir model was also considered for systems with open boundary condfidins

Depending on their speed, vehicles are subject to different randomisations: typical metastable behaviour results whi
po> p, meaning that stopped vehicles have to wait longer before they can continue their journey. This has the effect ¢
a reduced outflow from a jam, so that, in a closed system, this leads to an equilibrium and the formatomphat
jam. For such a typical situation, e.gag = 0.5 andp = 0.01, the tempo-spatial evolution is depictedrig. 25 We
can see an initially homogeneous traffic pattern (omtastableophase) breaking down and kicking the system into a
phase-separated stateonsisting of a compact jam surrounded by free-flow traffic. In such a state, traffic jams in the
system will absorb as many vehicles as is necessary, in order to have a free-flow phase in the rest of tH6]system
Note that the VDR-TCA can also be equipped with a cruise control, by turning of fluctuations for vehicles driving at
the maximum speetiax-

In the left part ofFig. 26 we have plotted a histogram of the distributions of the vehicles’ speeds, for all global
densitiest € [0, 1]. Here we can clearly see the distinction between the free-flow and the congested regime: the space
mean speed remains more or less constant at a high value, then encounters a sharp transition (i.e., the capacity dr
resulting in a steady declination as the global density increases. Note that as the critical density is encountered, tl
standard deviation jumps steeply; this means that vehicles’ speeds fluctuate wildly at the transition point (because th
are entering and exiting the congestion waves). Once the compact jam is formed, the dominating speed quickly becom
zero (because vehicles are standing still inside the jam). Although most of the weight is attributed to this zero-speet
there is a non-negligible maximum speed present for intermediate densities. If the global density is increased furthe
towards the jam density, this maximum speed disappears and the system settles into a state in which all vehicles eitt
have speed zero or one (i.e., systemwide stop-and-go traffic).

Studying the(k, ¢) diagram in the right part dfig. 26 gives us another view of this phase transition. We can see
a capacity drop taking place at the critical density, where traffic in its vicinity behaves in a metastable manner. This
metastability is characterised by the fact that sufficiently large disturbances of the fragile equilibrium can cause thq
flow to undergo a sudden decrease, corresponding to a first-order phase transition. The state of very high flow is the
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Fig. 26.Left a contour plot containing the histograms of the distributions of the vehicles’ speasia function of the global densikyin the
VDR-TCA (with vmax = 5 cellg/time step,pg = 0.5 andp = 0.01). The thick solid line denotes the space-mean speed, whereas the thin solid line
shows its standard deviation. The grey regions denote the probability derRigbs.a (k, g) diagrams for the same TCA model. The dotted line
denotes global measurements that were obtained when starting from homogeneous initial conditions; the solid line is based on a compact superja
as the initial condition. The right part clearly shows a typical reversglape, which indicates a capacity drop.

destroyed and the system settles into a phase separated state with a large megajam and a free-flow zone. The large |
will persist as long as the density is not significantly lowered, thus implying that recovery of traffic from congestion
follows a hysteresis loop. In contrast to the STCA-CC'’s bistability, the VDR-TCA model is tnekastablebecause
now the free-flow branch in thé, ¢g) diagram becomes unstable for large enough perturbations. Furthermore, the
spontaneous formation of jams in the downstream front that troubled the STCA, is suppressed in the VDR-TCA model.
Note that ifpg < p, then the behaviour of the system will be drastically different. Four distinct traffic regimes emerge
in the limiting case whergg = 0 andp = 1; in this case, the model is calléast-to-star{98]. In these four regimes,
moving vehicles can never increase their speed once the system has settled into an equilibrium. Furthermore, the
exists a regime which experiences forward propagating density waves, corresponding to a non-concave region in th
system’s flow—density relation. For more information, we refer to our wofR97100]

3.3.4. Time-oriented TCA (TOCA)

Considering the STCA model (see Section 3.2.1), Brilon and Wu acknowledged the fact that it is quite capable of
reproducing traffic dynamics in urban street networks. However, they also recognised the fact that the model performe:
rather inadequate when it comes to correctly describing the characteristics of traffic flows on motorways, e.g., compare
to field data of a German motorway. Brilon and Wu blamed the unrealistic car-following behaviour of the STCA model
for its inferior capabilities. At the core of their argument, they attributed this to the fact that the STCA model is
exclusively based on spatial variables (e.g., space headways). In order to alleviate these problems, they proposed
use a model that was based on temporal variables (e.g., time headways), leading to more realistic vehicle—vehicl
interactiong68]. The rule set for this time-oriented TCA model (TOCA) is as follows:

(R1) acceleration

gt —1D>@i(t—-1)-3,)
A E1(t) < pace
=0 (1) < minfv;(t — 1) + 1, vmax} , (59)

(R2) braking

Vi (t) <~ min{vi(t), 8si (t - 1)} ’ (60)
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Fig. 27. Typical time-space diagrams of the TOCA modehigax = 5 cellytime stepg; = 1.2 time steps, angacc= pdec= 0.9. The global

density was set té = % vehicles/cell [eft) andk = 0.5 vehicles/cell fight). The shown lattices each contain 300 cells, with a visible period of

580 time steps. In the left part, we can see the breakdown of an initially homogeneous traffic pattern, resulting in dilute jam that is surrounded b
free-flow traffic. In the right part, we see a fully developed jam, dominating the entire system. As can be seen, for moderately light densities, the
jams in the TOCA model contain moving vehicles.

(R3) randomisation

gt =D <(wit—1)-g.)
A Eo(t) < pdec
—v; (1) < maxX{v; (r) — 1,0}, (61)

(R4) vehicle movement

x; (1) <—x,-(t—1)+v,-(t) . (62)

In the above rules;(t), ¢»(¢) € [0, 1] are random numbers drawn from a uniform distributign;. o is thesafe
time gap paccis theacceleration probabilityandpgecis thedeceleration probabilityBecause all interactions between
vehicles in the STCA are bounded by the update time step, their speeds will never oscillate, leading to a rigid and stab
system. As a consequence of the TOCA's temporal rules however, vehicles will now behawastically, taking a
safe time gap into account that allows them to adapt their speeds with a relaxation. In this case, a vehicle will resort t
emergency braking (i.e., an instantaneous deceleration) only if it gets too close to its direct frontdblEadgpical
parameter values for the TOCA afg = 1.2 time steps an@lacc= pdec=0.9. Brilon and Wu also extended their model
with rudimentary rules that allowed for lane changes on unidirectional multi-lane roads.

In the left part ofFig. 27, we can see a similar tempo-spatial behaviour as with the VDR-TCA (see Section 3.3.3), in
that an initially homogeneous traffic pattern breaks down, resultidgute jamthat is surrounded by free-flow traffic.
The major difference between jamming in the VDR-TCA and TOCA models however, is that in the former model,
vehicles come to a complete stop when entering a jamKgee25). They remain stationary until they can leave the
downstream front of the queue. In contrast to this, the jams in the TOCA model contain moving vehicles. Pushing the
global density even further to= 0.5 vehicles/cell as was done in the right parfadd. 27, results in a fully developed
jam that dominates the entire system and contains temporarily stopped vehicles.

Fig. 28 depicts two groups ofk, ¢) diagrams for the TOCA model, withyax = 5 cellg/time step. The left part
shows four diagrams for different combinationspagc and pgec € {(0.9, 0.1), (0.9, 0.9), (0.1, 0.1), (0.1, 0.9)}, each
time withg, = 1.2 time steps. As can be seen, the default case pgth= pdec = 0.9 leads to an inflection point
at a moderately high density &f= 0.5 vehicles/cell, resulting in two different slopes for the congested branch of
the TOCAs (k, g) diagram. At this point, vehicles will have average space gaps less than one cell, and bggause
is rather high, vehicles will have the tendency to slow down (agd is smaller then one, so their acceleration is
somewhat inhibited). As a result, a large jam, comparable to the system'’s size, will dominate tempo-spatial evolutior
Furthermore, the acceleration probability.c should take on rather high values, otherwise the global flow in the system
is too low because vehicles are not accelerating anymore. In the right gég. &8 we have shown a large amount
of diagrams for differeng; with pacc= pdec= 0.9. Here we can see that, fgy < AT, the resulting density—flow
curves are non-monotonic. Higher values gor in more vehicles that drive more cautiously, apparently leading to
higher values for the critical density and the capacity flow. Note that the seemingly small capacity drops at the end ©
each free-flow branch are in fact finite-size effd@t3,101]
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Fig. 28. Two groups ofk, ¢) diagrams for the TOCA model, witliax=>5 cells/time stepLeft four diagrams for different combinations pfccand
Pdec With g, = 1.2 time stepsRight a large amount of diagrams for differepf with pacc= pdec=0.9. Forg, < AT, the resulting density—flow
curves are non-monotonic. Note that the seemingly small capacity drops at the end of each free-flow branch are in fact finite-§iz& Bifelcts

In their original paper, Brilon and Wu claim that their TOCA model results in a better agreement with empirical data,
a fact which is based on a qualitative comparison of th@ () diagramg68]. Note that, after personal communication
with the authors, it seems they performed a minimisation of the square errors ik, e diagram. However, in
order to get the correct values for calibrating the TOCA's parameters, they just manually guessed, without performing
a thorough numerical optimisation. Despite this optimistic view, Knospe et al. later investigated the TOCA model’s
capabilities more thoroughly. Their conclusions state that a quite large value for the deceleration profabilsty
necessary in order to obtain realistic capacity flows. Although the time headway distribution of a jam’s downstream
front in the TOCA model is correct with respect to real-life observations, its downstream front moves too fast due
to the large deceleration probability. As a result, the jams in the TOCA model are more dilute, as could be seen in

Fig. 27 [19]

3.3.5. TCA models incorporating anticipation

One of the models related to anticipative driving (i.e., only taking a leaders’ reactions into account, without predicting
them), can be found in the work of Krauf3 et al. who derived a collision-free model based on the STCA (see Section
3.2.1), but which usesontinuousvehicle speeds. Their model can be considered as a simplified version of the Gipps
model[1]. Although the model restricts vehicles’ deceleration capabilities, it is still able to correctly reproduce the
capacity drop and hysteresis phenompgi].

Another model with anticipation was proposed by Eissfeldt and Wa#®dr Their model is based on KrauR3's
work [1], and employs a next-nearest-neighbour interaction, which stabilises dense flows and results in a hon-uniqu
flow—density relation.

Recently, Larraga et al. introduced a TCA model that includes a drigatisipationof the leading vehicle’s speed
[41]. In contrast to the STCA model (see Section 3.2.1), the acceleration and braking rules are decoupled. As a firs
rule, the standard acceleration towards the maximum speed is applied, after which the randomisation is performed b
means of a second rule. Only then, the model considers braking in its third rule; however, the deceleration is not only
based on the space gap between both vehicles, but also on an anticipation of the leading vehicle’s speed:

(R3) anticipation and braking

vi (1) <= min qv; (1), g, (t — 1) + [(1 —o) - vip1(t —1) + %} : (63)

safe distance
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Fig. 29.A(k, ¢) diagram of Nishinari et al.’s extended BCA model, withax=5 cells/time stepAT =1.3s,AX =7.5m, and a driver’s perspective

of two vehicles ahead. The resulting diagram exhibits multiple metastable branches. Vehicles inside jams come to a complete stop only for the lowe
metastable branch; for the higher branches, vehicles inside jams are still able to move forward. Depending on the strength of a local perturbatio
traffic will shift from the highest branch to one of the lower branches (image reproduce {Lafé

with v; () on the right-hand side corresponding to the computed speed after applying rule] R&notingx
rounded to the nearest integer, 1(+ — 1) the speed of the leading vehicle at the current time stepy;aad0, 1]
an anticipatory driving parameter for tit@ vehicle. In their work, Larraga et al. consideredvalto be equal.

The interesting aspect of this anticipatory TCA model, is that for certain valuesibtan result indense pla-
toons of vehiclegravelling coherently and thereby leading to forward propagating density structures. In the free-flow
regime, the(k, ¢) diagram also exhibits a slight curvature near the capacity flow, similar to the ER-TCA model (see
Section 3.2.5). Del Ri6 and Larraga later also extended the model to accommodate for multi-lane traffttOBjws

3.3.6. Ultra discretisation, slow-to-accelerate, and driver’s perspective

Itis also possible to derive a cellular automaton model, based on the discretisation of a partial differential equatior
Starting from a PDE (e.g., the Burgers equatjiib}), we can obtain an finite difference equation by discretising the
spatial and temporal dimensions, resulting in a model that still has continuous state variables. As a further step, w
can now also discretise these state variables, using a process callédetitiscretisation metho@JDM) [103]. The
result of the UDM can be interpreted as a cellular automaton ifcther representationThe latter means that for a
TCA model, a road is considered to be a field, whereby the individual cars are not distingd8#kd he interesting
part of this type of CA is that its cells are allowed to hold multiple vehicles, which makes it possible to implicitly
model multi-lane traffic in a simplified sense (because the effects of lane changes are neff@sd) next step, this
obtained CA can be cast in itagrangian representatigrby means of aftuler—Lagrange transformatiofi04,105]

The resulting Lagrange representation treats the positions of all vehicles individually, thus leading to the well-known
position-based rule sets of the TCA models discussed in this report.

Nishinari proposed an interesting TCA model, based on the above UDM scheme. Their discretisation leads to th
so-calledBurgers cellular automato(BCA), which is for single-lane traffic equivalent to the CA-184 TCA model (see
Section 3.1.1)106,107] Emmerich et al. also provided a TCA model, by applying the UDM scheme to a Korteweg—-de
Vries equation. In contrast to the BCA model, their work resulted in a second-order TCA model because the CA's
global map not only needs the configuration at the previous timerstef, but also the configuration at time step
t —2[108,3]

Nishinari et al. recently extended the BCA model, thereby allowing for slow-to-start effectsmgghy- 1 cell/time
step[109]. Their model contains a rule similar to the classic notion of slow-to-start rules, but now generalised for
moving vehicles, leading to the terminology oflslbw-to-accelerateule. Taking the idea of anticipation one step
further, they also incorporateddaiver's perspectivemeaning that a vehicle will base its acceleration and braking
decisions not only on the basis of its space gap and the anticipated speed of the vehicle ahead, but also on the sp
gap with thenextleading vehicle (or even a vehicle located more downstream). As a result, the model erhibijite
metastable branchas the (k, ¢) diagram, as can be seenfiy. 29 For the lowest metastable branch, vehicles inside
jams will come to a complete stop. In contrast to this, vehicles will still be able to move forward inside jams for the
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Fig. 30.Left several(k, ¢) diagrams of the MC-STCA, faf € {2, 4, 8, 16, 32, 64} cells andp = 0.5. As can be seen, an increase of the average
vehicle length apparently results in a higher critical density, with an associated higher capacity flow (followed by a capacRyghiti)e same
setup for the MC-STCA, but now with a fixde= 8 cells andymax =5 x 8 = 40 cellgtime step. Thek, ¢) diagrams depict the results of changing
the slowdown probability € {0.1, 0.3, 0.5, 0.7, 0.9}: an increase op, leads to decrease of both the critical density and the capacity flow.

higher branches. Note that depending on the strength of a local perturbation, traffic will shift from the highest branch to
one of the lower branches. Finally, Nishinari et al. also combined the model with the classic STCA (see Section 3.2.1).
thereby allowing for stochasticity in both the acceleration and braking rules.

4. Multi-cell models

Whereas all the previously discussed TCA models were based on a single-cell setup, this section introduces sor
of the existing multi-cell TCA models (still for single-lane traffic). In a multi-cell model, a vehicle is allowed to span
a number of consecutive cells in the longitudinal direction, i;e2,1 cell.

In the subsequent sections, we discuss several multi-cell TCA models encountered in literature. We first start with at
overview of the artifacts that can be introduced when switching to a multi-cell setup. Subsequently, we describe three
multi-cell TCA models, which have more intricate rule sets than the simple models of Section 3:

e Helbing—Schreckenberg TCA (HS-TCA)
o Brake-light TCA (BL-TCA)
e The model of Kerner, Klenov, and Wolf (KKW-TCA)

Note that with respect to the measurements performed on the TCA models’ lattices, we assume homogeneous traff
flows, i.e., all vehicles have the same length. This allows us, after suitable adjustment with the average vehicle lengtl
I =1;, to express the global density iase [0, 1.

4.1. Artifacts of a multi-cell setup

It might seem that a translation of the classic STCA model (see Section 3.2.1) into a multi-cell version would be
straightforward. However, using a finer discretisation introduces a very specific artifattysteresisin order to
investigate this phenomenon, we have performed several experiments based on a multi-cell translation of the STC;
model (now called the MC-STCA). In what follows, we assume a closed-loop lattice consisting cell€ The
simulations ran each for & 10° time steps, Wit AT = 15s.

Setting the slowdown probability tp = 0.5, the left part ofFig. 30 shows the resultingk, ¢) diagrams for dif-
ferent spatial discretisations, each time for homogeneous initial conditions. The average vehicle length was set t
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I € {2,4,8,16,32 64 cells. In these experiments, we also scaled the maximum speg@orrespondingly (e.g., if

[ =4 cells, thervmax would become 5 4 = 20 cellg/'time step), as can be seen from the coinciding free-flow branches

in the left part inFig. 30 We also notice that an increase of the average vehicle length apparently results in a higher
critical density, with an associated higher capacity flow. Furthermore, the flow seems to encaapeacity dropat

this critical dense.

What causes this capacity drop? To answer this question, we must first consider what happens in the determinis
case where =0. Here, our experiments have shown that there is no difference between a single- and a multi-cell setur
Settingp > 0, the randomisation rule R2, Eq. (47), introduces fluctuations in the high speeds of vehicles in free-flow
traffic. However, these speed fluctuations are actually small compared to the vehicles’ speeds themselves. Because
this limited influence, the free-flow branch of ttie ¢) diagrams remaingery stableThe smaller the discretisation, i.e.,
the larger the average vehicle length, the more stable the free-flow branch becomes for larger densities (note howe\
that the capacity drop gets less pronounced for increasing average vehicle lengths). This capacity drop behaviour d
to a stabilisation effect, is akin to the observations in the STCA's cruise-control limit (see Section 3.2.2), and thus
different from the VDR-TCA (see Section 3.3.3), where a reduced outflow from a jam causes the dro 1®fldw
contrast to this, random initial conditions or a superjam to start the simulations with, will always lead to the congestec
branch, thereby indicating a hysteretic phase transition. As the left plig.d30indicates, changing the discretisation
level of the STCA, by adjusting the average vehicle length and relatively keeping the same maximum speed, has on
an effect on the length of the free-flow branch; the traffic dynamics in the congested regime remain the same.

Holding! fixed at 8 cells andmax= 5 x 8 = 40 cellytime step, the right part dfig. 30shows the resultingk, ¢)
diagrams for different values of the slowdown probabifitg {0.1, 0.3, 0.5, 0.7, 0.9}. It is clear that an increase pf
leads to a decrease of both the critical density and the capacity flow. Note that the size of the capacity drop remair
approximately the same for the differgmt

To conclude, we mention the work of Grabolus who performed extensive numerical studies on the STCA. He alsc
noted that it is possible to translate any multi-cell STCA variant intequnivalensingle-cell STCA model, by suitably
adjusting the values of the density and the maximum sfe®id

Interestingly, the use of a smaller discretisation was already considered by Barrett et al. in the early course of th
TRANSIMS project[110,1] In their work, they introduce the terminology ofulti-resolutionTCA models, corre-
sponding to our multi-cell setup. Although they discuss several methods for integral refinements of the TCA's lattice
they do not make any mention of the observed hysteresis phenomenon introduced by a finer discretisation.

4.2. Advanced multi-cell models

Having discussed the repercussions of switching to a multi-cell setup, we now illustrate three TCA models that havi
more complex rule sets. We discuss their properties by means of time—space diagrams, fundamental diagrams of glol
and local measurements, and histograms of the distributions of the space and time gaps.

4.2.1. The model of Helbing and Schreckenberg (HS-TCA)

Similar in spirit as the STCA (see Section 3.2.1) and the ER-TCA (see Section 3.2.5), Helbing and Schreckenber
proposed their HS-TCA model in analogy with the optimal velocity m¢tliel]. In fact, their model can be seen as a
direct discretisation of the OVM, with the following rule set:

(R1) acceleration and braking

vi() < it =D+ [a(V(gs ¢t = D) —vi(r = 1))] , (64)
(R2) randomisation

) < p = vi(t) < max0, vi(1) — 1}, (65)
(R3) vehicle movement

xi(t) < xi(t—1) +v(@) . (66)
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Table 1

A possible optimal velocity function (OVF) for the TCA model of Helbing and Schreckenberg (HS-TCA)

gj‘,' V(gS,) gS,’ V(gs,)
0,1 0 11 8
2,3 1 12 9
4,5 2 13 10
6 3 14,15 11
7 4 16-18 12
8 5 19-23 13
9 6 24-36 14
10 7 >37 15

The OVF is represented as a table, giving the optimal spéggl. ) (expressed as cells/time step) associated with each possible spage gap
(expressed as a number of cells).

Fig. 31. Typical time—space diagrams of the HS-TCA model, with2 cells, p = 0.001 « = 1 + 1.3, andvmax = 15 cellgtime step. The shown
closed-loop lattices each contain 3@ = 600 cells, with a visible period of 580 time steps. The global dersitias set to 0.25 vehicles/cell

(left) and 0.40 vehicles/celtight). The formation of congestion waves leads to dense, compact jams containing stopped vehicles. Vehicles strive to
decelerate smoothly, but are allowed to accelerate instantaneously when exiting jams fronts.

The functionV (gy;) in rule R1, Eq. (64), is the discrete version of the optimal velocity function; it is specified in the
form of a lookup table, containing speed entries for each space gapa(sles] and has the following meaning: higher
values for the parameteiindicate an almost instantaneous adaptation of the vehicle’s speed to the OVF, whereas lower
values denote an increasing inertia and longer adaptation fiiié$ However, as stated by Chowdhury et al. and
Knospe et al., the role ofis a bit unclear as it does not exactly correspond to the timescale of the adaptation to the OVF
(which is the case for the original optimal velocity mod&I)19]. Furthermore, certain values fecan, in combination
with the OVF, lead to collisions between vehicles (becauseduces a vehicle’s braking capability). Knospe et al.
later provided the necessary conditions that guarantee collision-free driving, and avoid the possible backward movin
of vehicles[19]. Note that, similar to the Fukui-Ishibashi models (see Sections 3.1.2 and 3.2.3), vehicles are allowed
to accelerate instantaneously in the HS-TCA model. The model is stochastic, in that it introduces randomisation by
means of rule R2, Eq. (65), with(r) € [0, 1[ a random number drawn from a uniform distribution.

In Fig. 31, we have given two time—space diagrams of the HS-TCA for global denksii@<®5 and 0.40 vehicles/cell.

The length of a vehicle was= 2 cells,p = 0.001,0 = 1-1.3,vmax = 15 cellgtime stepAT = 1s, andAX = 2.5m.

Due the small slowdown probability, the system dynamics are strongly deterministic, totally dependent on the initial

(homogeneous) conditions. In the left diagram we can observe how vehicles can accelerate instantaneously when exitir
a jam. Note that for higher densities, all jams become dense and compact, always containing stopped vehicles, as
depicted in the right diagram. Because of the non-linearity introduced by the discretised optimal velocity function, all

tempo-spatial patterns in the system are of a chaotic nature (i.e., nonlinear with stochastifi8pise)

The &, vy) and(k, g) diagrams irFig. 32are based on local and global measurements. A feature of these diagrams
is that the local measurements tend to form clusters around certain space-mean speeds (see the Ieify.p22t of
these clusters correspond to the speeds dictated by the discretised optimal velocity fundabiedf each time
associated with an average space gap corresponding to the inverse of the locally measured density. As a result, t
(k, q) diagram in the right part dfig. 32shows several branches, each one with a different OVF speed. The lowest
branch corresponds to the speed of the backward propagating waves, i.e., the jam speed. Even more striking, is that frc
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Fig. 32. The k, vy) (left) and(k, ¢) (right) diagrams for the HS-TCA, obtained by local and global measurements. The local measurements tend to
form clusters around certain space-mean speeds, corresponding to the speeds dictated by the discretised optimal velocityrabietiohtuse
clusters are visible in the right diagram as branches with different slopes. Remarkably, from a certain finité& dehsighicle/cell on, all vehicles
always come to a full stop and the flow in the system becomes zero.
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Fig. 33. Histograms of the distributions of the vehicles’ space gafteft) and time gapg; (right), as a function of the global densikyin the
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The grey regions denote the probability densities.

a certain finite density < 1 vehicle/cell on, all vehicles always come to a full stop and the flow in the system becomes
zero[111].

To conclude our discussion of the HS-TCA, we give the histograms of the distributions of the space and time gaps i
the left and right parts, respectively,leig. 33 The most prominent features of these histograms, are that (i) there exist
small clusters of probability mass between certain space gaps (i.e., 15-20, 25-25, and 35-40 cells), corresponding
groups of vehicles, (ii) for higher densities, we can observe a spread-out cluster of probability mass, corresponding t
the lowest local measurements in the left parfEigf. 32 and (iii) in contrast to the previous TCA models, the median
of the time gap for the HS-TCA is already very small for densities0.1.

The HS-TCA might seem an interesting improvement, as its being based on a discretisation of the optimal velocit)
model. But although its authors state thatr#ggroduces many of empirically observed featufdd 1], Knospe et al.
showed several shortcomings in the mddél]: care must be taken to avoid collisions, and the model fails to reproduce
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the synchronised-flow regime entirely. This latter can be understood by looking at the dense, compact structure o
jams in the time—space diagramskig. 31, and the occurrence of branches with distinct speeds as in the right part
of Fig. 32

4.2.2. Brake-light TCA (BL-TCA)

Recently, an interesting idea was pursued by Knospe et al.; their TCA model inahtit@pationeffects, introduced
by equipping the vehicles withrake lights[112]. The focus of this (and the following) TCA model lies in a correct
reproduction of the three phases of traffic as introduced by Kerner[&f7al]. In a sense, the BL-TCA incorporates
many of the features encountered in previously discussed single-cell TCA models. First of all, the BL-TCA has
randomisation for spontaneous braking. Secondly, it has slow-to-start behaviour for the capacity drop and hysteresi
phenomena. Moreover, it incorporates anticipation which can lead to a stabilisation of the free-flow branch. Finally,
it includes elements for reproducing synchronised traffic. These latter two aspects clearly go beyond the standar
incentive if drivers to avoid collisions. As such, it is the desire for smooth and comfortable driving (which resembles
human behavioyr is responsible for the occurrence of traffic states like e.g., synchronised B&ifido achieve all
this, the rule set of the BL-TCA becomes quite complex, in comparison with some of the more standard single-cell
TCA models of Section 3:

(RO) determine stochastic noise
b1t =D =1At,(t = 1) <t;(t = 1)
=p{) < pb
vi(t—1)=0
= p(t) < po,
else
= p(t) < pa ,
bi(t) < 0, (67)
(R1) acceleration
(bi(t =1)=0Abiy1(r = 1) =0)
\% th,‘ (t) 2 ts,’ (t)
=; (1) < minfv; (t + 1), vmax} » (68)

(R2a) determine effective space gap

g5 (1) < g5, (t = 1) +maxy minfvi1( — 1), g5, (t — D} ~&scecuniny O (69)

anticipated speed of leading vehicle

(R2b) braking

vi (1) < minfv; (1), g5, (1}
vi(t) <vi(t = 1)
=bi(t) < 1, (70)

(R3) randomisation

)y <p(t) = pO)=ppAvit) =vit—D+1
=bi(1) < 1, v;j(t) < maxo0, v;(t) — 1}, (71)

(R4) vehicle movement

xi(t) < xi(t — 1D+ (1), (72)
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Fig. 34. Typical time—space diagrams of the BL-TCA model (refer to the text for the used parameter values). The shown closed-loop lattices eac
contain 300x 5= 1500 cells, with a visible period of 580 time steps. The global defsitgs set to 0.25 vehicles/celéft) and 0.40 vehicles/cell

(right). The visible forward propagating density waves are a result of the anticipation and synchronisation phenomena. At higher densities, stabl
jams occur, indicative of the wide-moving jam phase.

whereb; () denotes the state (0 or 1) of the brake light ofithevehicle at time step #;,, = g5, /v; andz,, = minf{v;, h}
with hthe interaction range of the brake light. As sughis the time to reach the leading vehicle, which gets compared
with aninteraction horizony, that depends on the spegdand is constrained Hy. If the leading vehicle is far away, its
brake light should not influence the following vehicle. Furthermore, rule RO also takes into account that drivers are mor:
alert when they are travelling at high speeds. The slowdown probapiiityrule RO, Eq. (67), corresponds to either
thebraking probability p,, the slow-to-start probabilitpg, or the classic slowdown probabiliy; for decelerations.
Finally, g5 () in rules R2a and R2b, Egs. (69) and (70), respectively, denotesffietive space gafpased on the
anticipated speedf the leading vehicle and taking into accoursgurity constraingsge,,- Just as the previous TCA
models, the BL-TCA is stochastic, in that it introduces randomisation by means of rule R3, Eq. (7 WihO, 1[
arandom number drawn from a uniform distribution. If a vehicle was in the process of braking due to the previous rules
then its brake lighb; is turned on. Note that Knospe also extended the BL-TCA with rules that allow asymmetric lane
changing on a two-lane road (unidirectional), incorporating a right-lane preference as well as an overtaking prohibitior
on the right lane. As such, the model correctly reflects the density inversion phenomenon (see also Section 5.:
[39,113]

In the remainder of this discussion, we ggt= 0.94, po = 0.5, p; = 0.1, h = 6 time stepsg;.ec,u, = 7 Cells,
vmax= 20 cellg'time step, with a vehicle length 65 cells, AT =1s, andAX = 1.5m[112,19] With respect to the
calibration of the BL-TCA model’'s parameters, Knospe et al. provide a nice overview, giving intuitive analogies for
each of these parameters (e ,is associated with the speed of the backward propagating wig\#s)

InFig. 34, we have given two time—space diagrams of the BL-TCA for global densiti€s25 and 0.40 vehicles/cell.
As can be seeninthe time—space diagram in the left part, the anticipation and synchronisation phenomena lead to forwe
propagating density waves, where vehicles carry the density downstream. Going to higher densities, we can see sta
jams, indicative of the wide-moving jam phase (see also Kerner’s three-phase traffic[eafy

Looking at the &, v5) and(k, ¢) diagrams inFig. 35 we can use the local measurements to discriminate between
the free-flow ¢), synchronised-flow-}, and jammed regimes). The synchronised regime is visible as a wide scatter
in the data points, having various speeds but relatively high flows. The data points in the wide-moving jam correspon
to Kerner’s so-called lind [57,1]. The use of a finer discretisation can lead to metastable states (see Section 4.1), bu
as Knospe et al. note, the slow-to-start behaviour in rule RO, Eq. (67), is necessary in order to produce the correct spe
of the backward propagating wave, as a result of a reduced outflow from[A§dm

Finally, Fig. 36 depicts the histograms of the distributions of the space and time gaps in the left and right parts,
respectively. In contrast to the HS-TCA, there are no more clusters for the space gap (see lefEmar88f but
rather a smooth region of probability mass: as the global density of the system increases, the average space ¢
diminishes continuously and monotonically. The observations for the distributions of the time gaps correspond to thos
encountered in literaturid 12,191 from the right part ofFig. 36 we can see a wide range of probability mass at low
densities (free-flow traffic), corresponding to a wide distribution of time gaps. At intermediate densities (synchronisec
flow), the distribution tends to peak, leading to a small dense cluster at approximatedyl5 vehicles/cell, with a
median time gap of 1 time step. Finally, at higher densities (jammed traffic), the distribution of the time gaps gets more
peaked, as is illustrated by the narrowing of the grey region of probability mass.



S. Maerivoet, B. De Moor / Physics Reports 419 (200564 45

20 2 0.8
Sl O free-flow O free-flow

« synchronised

¢ jammed

ks + synchronised
“ +  jammed 0.7

=
[
T
2
.

=
(2]

0.6}
14
12 0.5} .
0.4f

[

0.3f

0.2

Global space-mean speed [cells/time step]
=
o
Global flow [vehicles/time step]

0.1H

0 0.2 0.4 0.6 0.8 1

Global density [vehicles/cell] Global density [vehicles/cell]

Fig. 35. The k, vy) (left) and(k, ¢) (right) diagrams for the BL-TCA model, obtained by local and global measurements. The local measurements
discriminate between the free-flow)( synchronised-flow-}, and jammed regimes). The synchronised regime is visible as a wide scatter in the
data points, having various speeds but relatively high flows. The data points in the wide-moving jam correspond to Kerder’s line

+INF

95 o 1 r 60
85 251
80 50 1 3 50
20+
60 S 40

154
45 430 130

Space gap [cells]
o
o
Time gap [time steps]

10+
30 120 i r 120

15 410 410

[
o
ORNWAUI

0 T T T T T T T T T T T T T T T T
00 01 02 03 04 05 06 07 08 09 10 00 01 02 03 04 05 06 07 08 09 10

Global density [vehicles/cell] Global density [vehicles/cell]

Fig. 36. Histograms of the distributions of the vehicles’ space gafeft) and time gapg; (right), as a function of the global densikyin the
BL-TCA model. The thick solid lines denote the mean space gap and median time gap, whereas the thin solid line shows the former’s standart
deviation. The grey regions denote the probability densities.

4.2.3. The model of Kerner, Klenov, and Wolf (KKW-TCA)

Based upon the BL-TCA of Knospe et al., Kerner, Klenov, and Wolf (KKW) refined this approach by extending
it. Their work resulted in a family of models that incorporate the notion efchronisation distanctr individ-
ual vehicleg114]. Derived from this model class, Kerner et al. proposed discretised versions in the form of traffic
cellular automata models. In this report, we consider the KKW-1 TCA model, of which the complex rule set is as
follows [115]:

(R1a) determine synchronisation distance

Dj(t) <— Do+ Dyv;(t — 1) , (73)
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(R1b) determine acceleration and deceleration

vi(t —1) <vi;1(t — 1) = dacg(t) < a ,
Vi(t —1) =vi41(t = 1) = Aace(t) <0,
Vi(t —1) > vi41(t = 1) = Aaeg(t) < —b , (74)

(R1c) determine desired speed

8s; (1 = 1) > (D;(t) — i)
= Vdes(t) < vi(t —1) +a,
g5t =< (Di (1) — i)
= vdeg (1) < vi(t — 1) + Aace (1) , (75)

(R1d) determine deterministic speed

vi (1) < max0, min{vmax, gs; (1), vdes (1)}} (76)
(R2a) determine acceleration probability

vi(t) <vp = pa(t) < Ppa »
vi(t) Zvp = pa(t) < Ppay » (77)

(R2b) determine braking probability

v; (1) =0 = pp(t) < po ,
vi(t) >0 = pp(t) < pa , (78)

(R2c) determine stochastic noise

) < pat) = n;(t) < a,
Pa() <E) < pa(t) + pp(t) = n;(t) < —b,
() = pa®) + pp(t) = n;(t) <0, (79)

(R2d) determine stochastic speed
vi (1) < max{0, min{vmax, vi (t) + n; (1), vi (t) +a}} , (80)
(R3) vehicle movement

x; (1) <—xi(t—1)+v,-(t) . (81)

As can be seen from this overview, the KKW-TCA model’s rule set is mainly composedistéeministigoart (rules
Rla-d) and atochastigart (rules R2a—d). In the deterministic part, the synchronisation disfanisscomputed first
with rule R1a, which uses a linear function (other forms, e.g., quadratic functions, are also possible). The paramete
Do andD1 need to be estimated. Rule R1c determines the desired spgethe first part of the rule allows the vehicle
to accelerate, whereas the second part of the rule uses an acceldggidiefined by rule R1bg(andb are parameters
denoting the acceleration, and respectively braking, capabilities). As such, a vehicle will tend to adapt its speed to th:
of its direct frontal leader, whenever the vehicle is within a zone of interaction (i.e., the synchronisation distance). The
deterministic speed is then computed by means of rule R1d, which takes into account the maximum,gpéeke
space gag;, to avoid a collision, and the previously computed desired speed of rule R1c.

In the stochastic part for computing the speed, a randomisation is introduced in rule R2d by means of a stochast
accelerationy;. The values ofj; are obtained in rule R2c with probabiligy, for accelerating, and probability, for
braking. The former is dependent on the vehicles computed deterministic speed and the patgmgterand p,,
with p,, > pe, and p,, + pe, <1. The latter,p; is dependent on the vehicles computed deterministic speed and the
slowdown probabilityp,; and the slow-to-start probabilityo with pg > pg.
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Fig. 37. Typical time—space diagrams of the KKW-TCA model (refer to the text for the used parameter values). The shown closed-loop lattices eact
contain 300x 15= 4500 cells, with a visible period of 580 time steps. The global deksitgs set to 0.25 vehicles/celé{t) and 0.40 vehicles/cell
(right). Note the stable flow of vehicles surrounding the dense and compact superjams.
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data points, having various speeds but flows comparable to the capacity flow.

In the remainder of this discussion, we 8gt=60,D1=2.55,a=b=1,v, =28, p,, =0.2, p,, =0.052,po=0.425,
pa = 0.04, vnax = 60 cellgtime step, with a vehicle length 6t 15 cells,AT = 1s, andAX =0.5m[19].

Considering the KKW-TCA models’ time—space diagram&ig. 37, we can see that, in contrast to the BL-TCA
(see Section 4.2.2), there are less spontaneous formations of small traffic jams. The forward propagating density wave
in Fig. 34are absent in the KKW-TCA model. However, the two models show good correspondence with respect to
the speed of the backward propagating waves.

Similar as in the BL-TCA model’s effective space ggp(7), the synchronisation distand is responsible for
producing the typical two-dimensional scatter in thel;) and(k, ¢) diagrams irFFig. 38 When a driver who is within
the synchronisation distance adapts the vehicle’s speed, the only factors taken into account are the current speed of t
direct frontal leader and a safety criterion (in the form of the current space gap); it is this effect that produces the scatte
in the data, because the exact specification of this speed is absent. In both diagragm8&the local measurements
discriminate between the free-flow)( synchronised-flow-}, and jammed regimes). One of the major differences
between these two models, is that the flow in the synchronised regime is almost a factor two larger for the KKW-TCA
than the BL-TCA. The KKW-TCA also experiences a capacity drop similar as in the BL-TCA, but also undergoes an
abrupt transition when going from the synchronised-flow to the wide-moving jam regime around a global density of
some 0.4 vehicles/cell (see the left partFad. 38. Because the model is built around the assumption that vehicles
tend to approximate the behaviour of their direct leader within a certain synchronisation distance, the resulting traffic
regimes correspond well to Kerner’s empirical observat[ésl].
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In Fig. 39 we have depicted the histograms of the distributions of the space and time gaps in the left and right parts
respectively. The distributions are similar to those of the BL-TCA, but there are some important differences. With
respect to the space gaps in the left parfigf. 39 there is a high variance in the jammed regime, due to the fact that
there are vehicles in free-flow traffic, as well as inside the wide-moving jams (although most of the probability mass is
assigned to the zero space gap inside the dense jams). Considering the time gaps in the righigp&8Q efe can see
that they always form a tight cluster around the median of the distribution, indicating very narrow distributions with an
pronounced peak. This is completely different behaviour than in the BL-TCA model (see the rightFigrt38). The
main reason is probably due to the lack of an anticipation effect in the KKW-TCA model. Even more severe, is the fac
that the KKW-TCA model, despite its elaborate construction based on a synchronisation distance, completely fails t
describe the microscopic structure of motorway traffic. The BL-TCA model however succeeds in having a good fit on
both macroscopic and macroscopic scales, as stated according to Knospels, 48]

5. Multi-lane traffic, city traffic, and analytical results

Inthis final section on traffic cellular automata models, we take a look at some other aspects related to TCA models. W
first discuss some properties and methodologies for modelling multi-lane traffic in the context of a cellular automaton
after which we briefly consider several approaches for dealing with city traffic. The final part of the section concludes
with an overview of different analytical treatments of TCA models.

5.1. Multi-lane traffic

In this section, we briefly discuss some properties and methodologies for modelling multi-lane traffic in the context
of a cellular automaton. To this end, we illustrate the types of lane changes that are possible, then discuss the gene
setup for a lane-changing model. We conclude with a short overview on the implementation of lane-change rules ar
explain the phenomenon of ping-pong traffic, an artifact introduced by an inferior implementation.

5.1.1. Types of lane changes

In general, there are two types of lane changes identifiethdatory lane changg#1LC) and discretionary lane
changeqDLC) [1]. In the former case, a vehicle is obliged to execute a lane change, e.g., because it needs to exit th
motorway at an off-ramp, or because the vehicle is by law obliged to drive in the right shoulder lane. In the latter case
a vehicle changes a lane at its own discretion, e.g., when approaching and overtaking a slow-moving leading vehicle
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With respect to the rules for lane changing, there are also two approaghasetri@andasymmetricln the US, the
symmetric approach is more applicable: this is embodied by the fact that motorways have a large number of lanes (i.e
more than three), with vehicles driving at lower speeds (e.g., 60 miles/h, corresponding to some 100 km/h), effectively
using all lanes more homogeneously. Such a system is typically caep-your-lang as frequent lane changes
are discouraged. In contrast to this, people in most European countries are obliged by law to drive on the outer righ
shoulder lane whenever possible. Motorways have fewer lanes (typically either two or three, unidirectional), operating
at higher speeds of e.g., 120 km/h. In addition, most of these countries have instituted an overtaking prohibition on the
right lane, with large trucks restricted to the two most right lanes.

With respect to this latter system of asymmetric lane changes, the phenomethamsifor lane inversiorplays
an important role, especially on the numerous 2 motorways in Europe (see also the beginning of Section 3 for
a discussion of this phenomenon). Another aspect that has a significant influence, is the change of driver behaviou
e.g., near on-ramps. Here, drivers might avoid the shoulder lane to allow traffic to enter, or because of their increase
attention, they might induce a more subtle effect such as the capacity funnel (see also our disc{s8]darimore
details on this phenomenon).

5.1.2. General setup for lane changing

Deciding on whether or not to perform a lane change, is typically split in two separate steps: first, a vehicle checks if
it is desirableto change lanes, i.e., making the distinction between a mandatory or discretionary lane change. If a lane
change is indeed desirable, then the second step proceeds to check whether or not such a lane change can be perfort
at all with respect to safety and collision avoidance. Thus, there is a cheglfacceptance

One of the first approaches to model such lane-changing behaviour an a two-lane road in a TCA model, is due tc
Nagatani. His work was based on the deterministic CA-184 model (see Section[316]1)One of the artifacts of
his lane-changing rules, was the existence of states in which blocks of vehicles alternated from one lane to anothe
without moving at all. To circumvent this problem, Nagatani randomised the lane-changing belfiatijuRickert
et al. later applied this lane-changing methodology, by extending the STCA model (see Section 3.2.1) to handle two
lane unidirectional traffi¢118]. Wagner et al. later assessed the previous work of Rickert et al. concluding that it did
not capture certain aspects (e.g., density inversion) of traffic flows very[¥d]. To this end, they built upon the
previous work, adding a more specialised security constraint that takes into account the fact that vehicles should als
consider the following vehicles in the target lane, thereby avoiding severe disruptions. As a final comment, they state
that the lane-changing rules in a TCA model typically do not provide a realistic microscopic model, but they rather
lead to a good correspondence with respect to observed macroscopic features (e.g., the frequency of lane changes)

In order to address the correct reproduction of the density inversion phenomenon, Nagel et al. artificially introduced
aslack parametercapturing the inclination of a driver to change back to the right lane. They furthermore also provided
an extensive classification of some 10 lane-changing rules and criteria encountered in li{eEtémother excellent
overview of multi-lane traffic is given by Chowdhury et F].

As all the previous work dealt with unidirectional roads, it seems logical to considigectional traffig i.e., traffic
with adjacent but opposing lanes. Simon and Gutowitz were among the first to consider a TCA model of such traffic,
with vehicles driving on two lang4.20]. Central to their approach, is the notion dbaal densitythat each driver must
assess before attempting to complete an overtaking manoeuvre. When a driver encounters a slower moving vehicl
a check is made whether or not there is enough spaéent of this leading vehicle (this is the local density). If
the check is positive, then a lane change can be performed (under the condition of course that there is a safe Qe
in the opposing lane). With this scheme in mind, high density traffic thus excludes such overtaking manoeuvres, due
to the fact that the local density is too low to complete them.

Note that some authors, e.g., Gundaliya efldl1], Mallikarjuna and Ramachandra Rd@2], use a peculiar variant
of a multi-lane setup. Their models have essentially a multi-cell structure, but now the multi-cell concept is extended
in the lateral direction. So cells not only get smaller, but also ‘thinner’, allowargable-width vehiclese.g., motor
cycles that can more easily pass other vehicles in the same lane. In our opinion, this leads to unnecessary complexi
giving little benefits. In fact, we believe that such a scheme directly opposes the idea behind a CA model, as explaine
at the introduction of this report. We strongly feel that heterogeneity in a TCA model sbolyile incorporated by
means of different lengths, maximum speeds, acceleration characteristics, anticipation levels, and stochastic noise f
distinct classes of vehicles and/or drivers. Any other approach would be better off with a continuous microscopic model.
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5.1.3. Implementation of lane-changing rules and the phenomenon of ping-pong traffic
The basic implementation of a lane-changing model in a TCA setting, leads to two substeps that are consecutive
executed at each time step of the CA:

o first, the lane-changing model is executed, exchanging vehicles belateslly adjacent lanes,
e then, all vehicles are moved forward (i.eongitudinal) by applying the car-following part of the TCA model’s
rules.

One immediate result from this approach, is that a lane change in a TCA model is completed within one time ste|
(i.e.,AT). This is in contrast to real-life traffic, where lane changes have a duration of several sg&jnds

For more than two lanes, care must be taken to avoid so-cadteztiuling conflictduring the first substep. Consider
for example three lanes, with two vehicles driving in the outer left, respectively outer right, lane at the same longitudina
position. If the cell in the middle lane is empty, then the vehicles may decide to move to this location, resulting in a
lateral collision. In order to compensate this, one possibility is to choose a vehicle at random (or by preference), therek
allowing it to perform its requested lane change. Another possibility is to perform left-to-right lane changes in even
time steps, and right-to-left lane changes in odd time steps.

As hinted earlier, the ‘correctness’ of a lane-change model should be judged on the basis of certain macroscop
observations. Examples of these are the frequency of lane changes with respect to different densities, the capacity flo
for all lanes separately and combined, the critical density at which a breakdown occurs in each of the .| &)
indicators can be found in the many small fluctuations typically exhibited by multi-lane TCA models, instead of the
large jams in single-lane traffic. Traffic flows get more fluid if vehicles are allowed to pass moving bottlEEs k)
However, under certain conditions, Helbing and Huberman have shown the existence of coherent states, where vehicl
speeds are synchronised across adjacent lanes. For heterogeneous traffic flows, this can lead to a moving ‘solid blo
of vehicles[123].

When implementing lane-change rules in a TCA model, care must however be taken that the implementation doe
not introduce any unrealistic artifacts. A prominent example of this, plaguing many TCA models, is a phenomenon
calledping-pong traffic Nagatani was among the first to observe this peculiar behaviour of vehicles in traffic flows (see
Section 5.1.2). In ping-pong traffic, vehicles typically alternate between lanes during successive time steps. As explaine
earlier, one way to resolve this behaviour is by randomising the lane-change decision, thereby quickly destroying an
such artificial patterngl17,118]

5.2. City traffic and intersection modelling

When modelling city traffic, essentially two approaches can be followed: either the entire road network is considerec
as a two-dimensional lattice (i.e.gaid), or each road in the network is a single longitudinal lattice (single- or multi-
lane) with explicitly modelled intersections. The former was historically used in the context of phase transitions in a
CA, whereas the latter is more applicable to describe real-life traffic flows in populated cities.

Inthis section, we illustrate both approaches, starting with a classic grid layout as embodied by the Biham—Middleton-
Levin (BML) and Chowdhury—Schadschneider (ChSch) TCA models, after which we briefly comment on explicit
descriptions of intersections in TCA models.

5.2.1. Grid traffic

The first model of ‘city traffic’ was proposed by Biham, Middleton, and Levine (BML). It was developed around the
same time Nagel and Schreckenberg presented their STCA (see Section 3.2.1). The BML-TCA, is a two-dimension:
model that describes traffic on a square grid in a toroidal setup (i.e., opposing sides are identified), with vehicle:
distributed randomly over the lattid@24]. The model is in fact a very simplistic model, in that it assumes that all
vehicles either move from the south to the north direction, or from the west to the east. Each cell of the lattice is
assumed to contain a traffic light, in the sense that all west—east vehicles try to move during even time steps, and :
south—north vehicles during odd time steps (thigx = 1 cell/time step for all vehicles). The BML-TCA constitutes
a fully deterministic model, where the only randomness is introduced through the initial conditions. Note that its
one-dimensional version corresponds to the CA-184 and the TASEP (see Sections 3.1.1 and 3.2.4).
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Fig. 40.Left snapshot of the spatial structure in the BML-TCA foe 0.25. In this free-flow regime, all vehicles move alternatingly, with the
right-oriented arrows denoting west—east travelling vehicles, and the upward-oriented arrows denoting south—north travellinfRigtticame

setup as before, but now fér~ 0.4082. In this congested regime, a global cluster emerges, completely composed of blocked \R#ticiesan

overview of the ChSch-TCA, showing the street segments of finite length between the BML-TCA's original intersections. The first two images are
reproduced aftef124], the third afte96].

Depending on the global density of vehicles in the lattice, the model results in two distinct traffic regimes, with
a sharp first-order phase transitiobetween them. The first regime, i.e., free-flow traffic, corresponds to a state
with alternate moving vehicles (i.e., west—east and south—north moving); an example is depicted in the left part of
Fig. 40 In the congested regime, a self-organised global cluster emerges, completely composed of blocked vehicle
(see e.g., the right part dfig. 40. When the phase transition between both regimes occur, the space-mean speed
changes abruptly from one to zero cells/time §tEp1,125] Fukui and Ishibashi studied the repercussions of a local
disruption in the lattice (e.g., a crashed vehicle that remains stopped for an eternal period), and found that it provide:
the seed of a growing global clusfd26]. Biham et al. also considered a less restrictive version of the above model,
in which now all vehicles try to move at each time step. In case of conflicts between a west—east and a south—nortl
vehicle, one of them is chosen at random. Another variation considers also opposing traffic, which camgtehd to
lockedsituations where no vehicles are able to move at all. A generalisation of the BML-TCA, was provided by
Freund and Poschel who consider a similar setup, but now with traffic moving in all four dired®fisFinally, Shi
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is able to obtain analytical expressions for the critical densities at which the previously mentioned phase transition
occur[128].

In the work of Chowdhury et al. a comprehensive overview is given, describing extensions to the BML-framework
[3]. This overview includes asymmetric distributions of the west—east and south—north vehicles, unequal maximun
speeds, two-level crossings (where two vehicles can share the same cell), faulty traffic lights (here, either a west—ezc
or south—north vehicle is chosen at random to occupy a cell, irrespective of the current time step), road blocks, line
and point-defects (i.e., a crowded ‘street’ of the model, corresponding to a dense horizontal or vertical row of cells)
random turning of vehicles, cut-off streets (similar to a row of two-level crossings), and so forth and so on.

Chowdhury and Schadschneider later extended the BML-TCA model to incorporate randomisation effects like in the
STCA model, having the result that jamming can now occur spontanefiZ8y Their model furthermore contains
street segments of finite length between the cells, with vehicles driving according to the STCA's rules on these street
The original cells in the BML-TCA model form the signallised intersections of the Chowdhury—Schadschneider model
(ChSch-TCA), as can be seen in the bottom paffigf 40 At sufficiently large densities, a transition can occur that
leads to a self-organising state of completely gridlocked traffic. Barltatgér provided a solution to this problem,
making the model well-suited for assessing the results of different traffic light control policies in[@a]ity

5.2.2. Explicit intersection modelling

In contrast to the previous section were all traffic operations were essentially defined on a two-dimensional lattice
it is also possible to consider a complete road network, consistisgpzrate linkshat are connected to each other by
means ofntersectionsThese intersections can either be signallised, or unsignallised, turning priorities can be defined,
as well as different geometrical layouts (e.g., roundabouts).

Road networks based on the above assumptions, typically combine a set of basic building blocks. As such, th
network is logically decomposed in a setrafdesandlinks. The former denote the intersections, whereas the latter
can, depending on the implementation, refer to individual lanes, a group of adjacent lanes, or even a road with two-wa
traffic. In general, traffic operations on motorways are primarily influenced by the behaviour of vehicles on links, i.e.,
their car-following and lane-changing behaviour. Conversely, traffic operations in cities and denser street networks, al
primarily defined by the behaviour of vehicles at intersections, i.e., queueing delays at traffic lights, priority turns, etc.
In many cases, the intersection logic is simplified, such that all decisions (conflict resolving, etc.) arectakea
vehicle enters the intersectipid].

Several non-exhaustive examples include the work of Esser and Schreckenberg with applications to the city c
Duisburg[130], the work of Simon and Nagel who primarily focussed on single-lane traffic in combination with
several setups for controlling traffic lights, applying their work to the city of Dallas (different links have different
slowdown probabilities associated with them, thus enabling to model different street cap@tiidsihe work of
Diedrich et al. who consider the effects of various implementations of on- and off-ramps in the classic STCA model
[132], and all the references on TRANSIMS, the travel behaviour in Switzerland, the region of Dallas, the city of
Portland, and the city of Geneva (where all intersections are replaced by generalised roundabouts), mentioned in c
discussion if1].

All these examples have in common that they are based on simple building blocks. Despite this elegance, most
them however, do not provide satisfactory information regarding the calibration and validation of their underlying
models (this for example with respect to the correct observed queueing delays at intersections). A popular techniqt
is to usesourcesandsinks where vehicles are added and removed, allowing tuning of the simulator in order to agree
with incoming on-line measurements. Clearly, we feel that besides a need for elaborate descriptions of the employe
models, there is perhaps even a bigger need for correct information with respect to these models’ fidelity and accurac

5.3. Analytical results

Because most studies based on TCA models heavily rely on numerical simulations, this creates the danger of intr
ducing artifacts (e.qg., finite-size effects) that obscure the true dynamics of the systems under consideration. Althoug
most of these problems should resolve in the so-calednodynamic limitvhereK ¢, Tmp — 400 (i.e., a lattice
with infinite length considered over an infinite time period), resorting to this approach is computationally not feasible.
As a result, researchers have focussed on analytical methods. Except for the most trivial cases with a deterministic (i.
noiseless) TCA model, these analytical methods most of the time provide approximations at best.
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In this section, we illustrate several of these analytical methods encountered in literature. Our discussion focusses ¢
the concept of a mean-field theory, after which we elaborate on some of its improvements that lead to better agreeme!
with numerical results.

Note that other avenues for analytical treatments of CA models, and TCA models in particular, are also explored. In
this section, we will however not go into detail about them. For more information, we refer the reader to the interesting
work of Fuks and Boccarfl33-137]

5.3.1. Mean-field theory

As mentioned in the introduction of this section, for the case of arbitragyandp =0 or 1, or forvmax=1 cell/time
step, the analytical solution of the resulting TCA model is exactly known. This solution, expressad ag)itiagram,
corresponds to the set of diagrams as depictédgnl10(see Section 3.1.2) for the DFI-TCA.

The problem is to find an analytical description of how the system evolves in time through the state space, i.e., wha
are the occurring configurations? The evolution of a system, can be described by what is cadlsttlaequation
For cellular automata, this equation is a first-order differential equation, describing the change in probability of a
system’s lattice to be in a certain configuration. The downside is that, in general, this master equation cannot be solve
exactly.

For the TASEP model (see Section 3.2.4) with open boundary conditions and random sequential update, the mast
equation can be solved exadtlyd8,18] In afirst step, the master equation is elegantly written in vector form, comprising
atransfer matrixthat contains the time-evolution of the probabilities. By assumingrtagix-product ansat¢gMPA)
formalism, the transfer matrix can be rewritten as a product of local transfer matrices, operating on sets of cells. This
provides a algebra that can be solved exactly, thereby solving the TASEP analytically. Note that for the TASEP with
a parallel update however, obtaining the exact solution is difficult, because no simple MPA decomposition into local
matrices is possible.

In contrast to this promising result, obtaining an analytical solution becomes harder to even intractable for the
STCA model (see Section 3.2.1) withhax > 1 cell/time step and & p < 1. In the master equation, probabilities of
cluster of cells will occur, making its solution very haisB]. One well-known method that is suitable for dealing
with many-particle systems in statistical mechanics, is the constructiomefaa-field theoryMFT) of the model.

Such a MFT can provide an approximation of the master equation; in some cases, the MFT turns out to be an exac
solution.

The idea behind a MFT, is that all correlations between neighbouring cells are neglected. For TCA models, such &
site-oriented mean-field theo(@OMF) assumes that all cluster probabilities are replaced by single cell probabilities.
The MFT now replaces the effects of these individual cells with an average effect (the ‘mean field’), which simplifies
computations considerably. When translating the STCA's rules R1-R3, i.e., Egs. (46)—(48), R1 is decoupled into
separate acceleration and braking rules R1a and R1b, after which their order is changed to R1b, R3, R4, Rla. TF
upshot of this is that there are no stopped vehicles in the system, thereby reducing the number of possible states for
cell by one. Ifumax=1 cell/time step, then the system can be fully described by cell occupancies. Applying this SOMF
theory to the STCA model, results in considerably underestimation of the flow in the system (even for the restricted
case Ofvmax =1 cell/time step]139,71,53]

5.3.2. Improving the SOMF theory

As mentioned in the previous section, settingix = 1 cell/time step leads to an underestimation of the flow. How-
ever, when switching from a parallel update procedure to a random sequential one, the resulting SOMF theory become
exact! It turns out that the reason for the underestimation, can be traced back to its neglecting of all correlations
between cells (which are a consequence of the parallel update procedure). As explained in the beginning of Sectio
3.2.4, using a parallel update excludes certain Garden of Eden states. However, the SOMF theory naively include
these paradisiacal states. As a solution, these GoE states can be eliminated, resulpagaistacal mean-field
theory(pMFT). In systems with higher maximum speeds, more GoE states occur, making it difficult to derive a pMFT.
Even then, the theory still remains an approximation (albeit a better one) when using a parallel update procedure
[140,71,53]

Taking into account short-range correlations, can be done by consider&mgpaiented mean-field theo(C OMF).
Instead of dealing with cells and their occupancies, the COMF theory computes the probabjlitig®f finding
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a space gap of cells for a vehicle driving with speead[141]. In a sense, the COMF theory approximates the problem
by neglecting the correlations between space gaps of successive véBjclas such, it gives qualitatively good
approximations forp — 0; in all other cases, the COMF theory starts to fail, because there are also correlations
between the space gafis,3]. Note that the COMF theory has also been applied to the BJH-TCA and VDR-TCA
models (see Sections 3.3.2 and 3.3.3, respectijely)

Another approach to analytically solve the master equation, is to explicitly take into account the correlations betwee
neighbouring cells, by considerirgusterscomposed oh consecutive cell§71,53] Such asite-oriented cluster-
theoretic approaciproves to perform better than the COMF theory from the previous sddi8®). The improvement
of the approximation is even better when considering larger clusters; it is exactfor-oo [142,18,3]

6. Summary and outlook

This report gave an elaborate and understandable review of traffic cellular automata (TCA) models, which are
class of computationally efficient microscopic traffic flow models. TCA models arise from the physics discipline of
statistical mechanics, having the goal of reproducing the correct macroscopic behaviour based on a minimal descriptic
of microscopic interactions.

We began with an overview of cellular automata (CA) models, their background and physical setup. Applying this
technique to the modelling of traffic flows, we discretise a road into a number of small cells (a procedure called coars
graining), having a width of e.gAX = 7.5m. Time is also discretised into units of approximatalfy = 1s. After
introducing the mathematical notations, we showed how to perform measurements on a TCA model’s lattice of cells
and how to convert these quantities into real-world units and vice versa.

Subsequently, we gave an extensive account of the behavioural aspects of several TCA models encountered
literature. Already, several reviews of TCA models exist, but none of them consider all the models exclusively from
the behavioural point of view. In this respect, our overview fills this void, as it focusses on the behaviour of the TCA
models, by means of time—space diagrathsg) diagrams and the like, and histograms showing the distributions of
vehicles’ speeds, space, and time gaps. In the report, we have distinguished between single- and multi-cell mode
whereby in the latter vehicles are allowed to span a number of consecutive cells. We concluded with a concise overvie
of TCA models in a multi-lane setting, and some of the TCA models used to describe city traffic as a two-dimensiona
grid of cells, or as a road network with explicitly modelled intersections. The final part of the report illustrated some
of the more common analytical approximations to single-cell TCA models.

Considering the state-of-the-art in using TCA models, our analysis indicates that the field has evolved rapidly ove
the last decade. Starting from initial attempts based on rather crude models, the past few years have seen an increas
the computational complexity as well as the available computational power. More complex models are developed, ¢
which we believe the brake-light TCA model of Section 4.2.2 is the most promising: it is able to faithfully reproduce
the correct real-life empirical observations, and quite some work has been done at calibrating the model, see e.g., t
recent work of Knospe et dl19]. To conclude, we note an evolving trend of using these TCA models as the physical
models underlying multi-agent systems, in part describing the behaviour of individual people in large-scale roac
networks[1].

Acknowledgements

Dr. Bart De Moor is a full professor at the Katholieke Universiteit Leuven, Belgium. Our research is supported
by: Research Council KUL: GOA AMBIoRICS, several PhD/postdoc & fellow grants, Flemish Government: FWO:
PhD/postdoc grants, projects, G.0407.02 (support vector machines), G.0197.02 (power islands), G.0141.03 (ide
tification and cryptography), G.0491.03 (control for intensive care glycemia), G.0120.03 (QIT), G.0452.04 (new
guantum algorithms), G.0499.04 (statistics), G.0211.05 (Nonlinear), research communities (ICCoS, ANMMM,
MLDM), IWT: PhD Grants, GBOU (McKnow), Belgian Federal Science Policy Office: IUAP P5/22 (‘Dynamical
Systems and Control: Computation, Identification and Modelling’, 2002—-2006), PODO-Il (CP/40: TMS and Sus-
tainability), EU: FP5-Quprodis, ERNSI, Contract Research/agreements: ISMC/IPCOS, Data4s,TML, Elia, LMS,
Mastercard.



S. Maerivoet, B. De Moor / Physics Reports 419 (200564 55
Appendix A. TCA + Java™ software

As already briefly mentioned in the paper, all simulations were performed by meangadffier Cellular Automata
software[100]. It was developed for the Ja4 Virtual Machine (JVM), and can be downloadedrom:

http://smtca.dyns.cx

The software is also referenced on fraffic Forun? (see sectiotinks subsectiorOnline Traffic Simulation or
Visualization(Java Applety item Java(Swing application for several cellular automata models

In this appendix, we summarise our rudimentary TCA+ software. We start with an overview of its features, explain
how to run the software, and conclude with some technical details with respect to the implementation of its code base

A.1. Overview and features

The TCA+ software package’s goal is two-fold: on the one hand, it providagtaitive didactical toolfor getting
acquainted with the concept of single-lane traffic cellular automata models. On the other hand, it provides a rich enoug!
code base to perform hand-tailorsidhulation experimentss well as giving insight into the details of programming
TCA models.

In anutshell, our software considers one-dimensional traffic cellular automata with periodic boundary conditions, i.e.,
vehicles driving on a unidirectional circular road. Different sets of rules can be chosen, and for each set its parameter
(e.g., stochastic noise) can be changed at run time. Both local and global measurements can be performed on the latti
by means of artificial loop detectors. A traffic light with cyclical red and green phases was also added, allowing to study
elementary queueing behaviour. In the software, we have implemented the TCA models ligtbtiA. 1

In Fig. 41, we show a screenshot of the main graphical user interface (GUI). As can be judged from the image, the
TCA+'s GUI is rather huge, spanning approximately 1400200 pixels (scrollbars are automatically placed if it does
not fit on the screen). It consists of several panels:

a scrolling time—space diagram containing vehicle trajectories and an animation of the road situation,
a panel containing some simulation statistics,

several simulator controls,

and scrolling loop detector plots and plots of ttheq), (k, vs), and g, v,) diagrams.

In the following paragraphs, we describe each of these features in more detail. Note that there currently are twc
versions of the GUI: a standard version for all the single-cell TCA models, and a modified multi-cell TCA version with
limited functionality (mainly for creating coloured tempo-spatial diagrams).

A.1.1. Vehicle animation

Looking at the time—space diagram in the upper-left panel, we can discern the individual vehicle trajectories, as well
as the typical backwards-travelling shock waves of congestion. In this scrolling diagram, the time axis goes from the
left to the right, while the space axis goes from the bottom to the top (and is a one-to-one mapping of the consecutive
cells on the ring road). Each pixel here corresponds to a unique cell of the simulator and each vehicle is colourec
with a certain shade of yellow (in order to easily distinguish between different neighbouring vehicles). There is also
a setting available that allows stopped vehicles to be coloured red. In the upper-middle panel, the actual geometrice
configuration of the ring road is depicted. This allows us to view the current physical situation on the road, i.e., the
positions of all the vehicles. Each vehicle can be coloured with a certain shade of yellow (the same as in the time—spac
diagram). The current phase of the traffic light is also shown, as well as the positions of all the loop detectors: their
positions are indicated by the small purple boxes alongside the road. The small green box indicates the position of th
traffic light, with vehicles travelling in clockwise fashion.

1 From May 2002 until June 2005, the software has been downloaded some 800 times, of which we suspect one third to be traffic coming from
search engines’ indexing robots.
2 http://www.trafficforum.org
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Table A.1
All TCA models implemented in our TCA+ software, accompanied by references to the respective sections in the paper where they are extensive
discussed

TCA model Refer to section
CA-184 3.1.1
DFI-TCA 3.1.2
STCA 3.2.1
STCA-CC 3.2.2
SFI-TCA 3.2.3
TASEP 3.24
ER-TCA 3.25
Deterministic B-TCA 3.3.1
Stochastic -TCA 3.3.1
VDR-TCA 3.3.3
VDR-CC-TCA 3.3.3
TOCA 3.34
MC-STCA 4.1
HS-TCA 4.2.1
BL-TCA 4.2.2
KKW-TCA 4.2.3

A.1.2. Simulation statistics

In the upper-right panel, we can find the length of the ring road (expressed in the number of cells), the number o
vehicles currently in the simulator, the global vehicle density, and the current time step. There is also a small panel th:
allows to quickly set the status of the traffic light to either red or green.

A.1.3. Simulator controls and settings

The middle-left panel contains buttons for starting, stopping (i.e., pausing), resetting, and quitting the simulator.
Several preferences can also be specified, i.e., whether or not to activate several panels containing the simulato
output. There is also the possibility to log the measurements from the loop detectors to a default filelgtatteat-
values.data And finally, the type of traffic cellular automaton (i.e., its rule set) can also be selected from a list, specified
by radio control buttons.

Note that there are several initial conditions possible for each density level: it is possible to start with a homogeneou
state (all vehicles are spaced evenly), with a compact superjam of vehicles that are all stopped, or with a randol
initialisation (see also the introduction of Section 3).

If the simulation goes (visually) too fast, the cycle hold time can be increased, thereby freezing the simulation for
a while between two consecutive time steps. Besides this, the ring road’s global density and the vehicles’ maximur
speed can be specified. The sampling time for the artificial loop detectors can be adjusted (to increase or smooth c
fluctuations). And finally, all probabilities can be adjusted between 0% and 100% in incremental steps of 1%.

The red and green cycle times for the traffic light can be specified, such that the light can operate automatically
thereby inducing artificial queues at regular intervals. One can also control the traffic light manually (enabling the red o
green phase) using the small upper-right panel; but if applied, the traffic-light controls override these manual setting:

A.1.4. Plots of macroscopic measurements

The software has the ability to extract both local and global macroscopic flow measurements from several uniformly
road-side placed loop detectors which record flows, densities, and space-mean speeds.

The three large coloured regions in the middle panel represent the measured (and averaged) values of the local flo
local densities, and local space-mean speeds of the loop detectors. Pair-wise correlating these values, results in
plots of the(k, ), (k, v5), and ¢, vy) diagrams in the lower-right panel. The coloured dots indicate locally obtained
measurements, whereas the black dots represent globally obtained ones.

Note the small button that allows to construct these diagrams: when it is pressed, the global density is incrementall
increased from 0% to 100%, each time adding a single vehicle to the ring road. The simulation is then ran for ¢
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Fig. 41. A screenshot of the TCA+'s main graphical user interface (GUI) for single-cell TCA models. The GUI is rather huge, spanning approximately
1400x 1200 pixels, consisting of several panels: a scrolling time—space diagram containing vehicle trajectories, an animation of the road situation.
a panel containing some simulation statistics, several simulator controls, scrolling loop detector plots and plats, gf) tfte, vs), and g, vy)

diagrams.

certain amount of time and the measurements from all the loop detectors are recorded. When all densities are process
(an indicator of the total time left is shown), the diagrams should be clearly visible in the loop detector plots in the
lower-right panel.

A.2. Running the software

When visiting the website mentioned in the introduction of this appendix, there are two options for downloading the
software. One is by downloading teempiled classesvhereas the other is to download the programrsetgce code
Once the compiled software has been downloaded, it is relatively easy to start the graphical user interface. Considerin
the single-cell setup GUI, the software is ran by executing the following command:

Note that a Jav&" Development Kit (JDK) (preferably Sur¥sshould be installed. Furthermore, due to a change
in the threading of the JaV¥ Swing™ API, it appears that only JDK/JRE 1.3.1 is suitable!

3 http://java.sun.com
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A.3. Technical implementation details

It should be noted that the software is notimplemented as an applet, but instead as a'fllalaplication because it
uses Swing" components that are not standard supported by most browsers (at least not without installing a necessa
plugin). The source itself logically consists of three different parts:

e the TCA engine with different rule sets,
o the graphical user interface,
e and a whole range of predefined experiments.

The geometrical configuration used in the single-cell TCA engine is a unidirectional ring road with a single lane.
Vehicles are located in cells &fX = 7.5 m and can have speeds of 0 to 5 cells/time step (corresponding to a maximum
speed of 135 km/h). One iteration in the simulation corresponds to a time stepefl s.

A number of artificial loop detectors are uniformly placed alongside the road, aggregating various macroscopic traffic
measurements (i.e., flows, densities and space-mean speeds). In the GUI, global measurements on the entire lat
are performed according to the methodology explained in Section 2.3.2, whereas local measurements are perform
according to Section 2.3.1. Note that for the TCA software itself, it is also possible to perform local measurements
using a detector of unit length, according to the methodology explained in Section 2.3.3.

Besides the standard single-cell GUI and the limited multi-cell GUI, there also exist some predefined experiments
These allow to create th@, ¢), (k, vs), and g, v,) diagrams, histograms of the vehicles’ speeds, space gaps, and time
gaps, as well as several order parameters (density correlations, nearest neighbours, and an inhomogeneity measure

compares the locally recorded densities to the current global density).
Inside the TCA+ software, several packages are available:

e tca.base

lattice,

e tca.automata
e tca.simulator

containing the definitions of cells, global states, loop detectors, and the traffic cellular automaton’s

e tca.experiments.fundamentaldiagrams ,
tca.experiments.histograms ,

andtca.experiments.orderparameters

Appendix B. Glossary of terms

B.1. Acronyms and abbreviations

ASEP asymmetric simple exclusion process

BCA Burgers cellular automaton

BJH Benjamin, Johnson, and Hui

BJH-TCA Benjamin—-Johnson—Hui traffic cellular automaton
BL-TCA brake-light traffic cellular automaton

BML Biham, Middleton, and Levine

BML-TCA Biham—Middleton—Levine traffic cellular automaton

CA cellular automaton

CA-184 Wolfram’s cellular automaton rule 184

ChSch-TCA Chowdhury—Schadschneider traffic cellular automaton
CML coupled map lattice

COMF car-oriented mean-field theory

DFI-TCA deterministic Fukui—Ishibashi traffic cellular automaton
DLC discretionary lane change

ECA elementary cellular automaton

ER-TCA Emmerich—Rank traffic cellular automaton

containing implementations of all the TCA models mentioned in Section A.1,
containing the classes related to the single-cell and multi-cell GUIs,

containing setups for the previously mentioned experiments.
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HS-TCA
JDK
KKW-TCA
LGA

LWR
MC-STCA
MFT

MLC

MPA
NaSch
NCCA
OVF

OVM

PCE

PCU
pPMFT
SFI-TCA
SMS
SOC
SOMF
SSEP
STCA
STCA-CC
T2-TCA
TASEP
TCA

T™MS
TOCA
TRANSIMS
UDM
VDR-TCA
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Garden of Eden state

Helbing—Schreckenberg traffic cellular automaton
Javd™M Development Kit
Kerner—Klenov-Wolf traffic cellular automaton
lattice gas automaton

Lighthill, Whitham, and Richards

multi-cell stochastic traffic cellular automaton
mean-field theory
mandatory lane change
matrix-product ansatz

Nagel and Schreckenberg

number conserving cellular automaton

optimal velocity function
optimal velocity model

passenger car equivalent

passenger car unit

paradisiacal mean-field theory

stochastic Fukui—Ishibashi traffic cellular automaton
space-mean speed

self-organised criticality

site-oriented mean-field theory

symmetric simple exclusion process

stochastic traffic cellular automaton

stochastic traffic cellular automaton with cruise control
Takayasu—Takayasu traffic cellular automaton
totally asymmetric simple exclusion process
traffic cellular automaton

time-mean speed

time-oriented traffic cellular automaton
TRansportation ANalysis and SIMulation System
ultra-discretisation method
velocity-dependent randomisation traffic cellular automaton

B.2. List of symbols

%(0)
@(1)
)

G
Gfl
Ky
&
N

[A]
@‘jf;‘(t)lG*l
(9%(0)\0
g (1)

)

ZS’

a CAss initial configuration

a CA's global configuration at time step

a CAs local transition rule

a CA's global map

a reversible CAss inverse global map

the number of cells in one lane of a TCA's lattice
a CA:s lattice (e.g.7?)

the (partially) ordered set of cells in the neighbourhood of

theith cell

the number of cells in the neighbourhood of each cell
the backward orbit of the configuratief(r) underG—1

the forward orbit of the initial configuratio#(0) underG
the state of théth cell at time step

the set of all possible states a CA's cells can be in (€.9.,
the set of all possible global configurations of a CA
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pxl the set of all possible configurations of a cell’s neighbourhood
|ZZ'1 | the number of all possible rules of a CA
T %o)c the trajectory/orbit of the initial configuratio#i(0) underG
o the entry rate of particles in the TASEP model
o the anticipatory driving parameter of vehicle
a the acceleration capability of a vehicle in the KKW-TCA model
p the exit rate of particles in the TASEP model
b the deceleration capability of a vehicle in the KKW-TCA model
bi (1) the state of the brake light of vehidlat timet in the BL-TCA model
0 the probability for a particle to move to the right inthe TASEP model
Aacg the deterministic acceleration of vehicla
the KKW-TCA model
AT a TCAs temporal discretisation
AV a TCA's speed discretisation
AX a TCA's spatial discretisation
Do a parameter for the synchronisation distance in the KKW-TCA model
D1 a parameter for the synchronisation distance in the KKW-TCA model
D; the synchronisation distance of vehicliea the KKW-TCA model
n; the stochastic acceleration of vehicia the KKW-TCA model
Y the probability for a particle to move to the left in the TASEP model
g, the average space gap

g5 (1) the effective space gap of vehiglat timet in the BL-TCA model

Sssecuryy @ SECUrity constraint for the space gap in the BL-TCA model
g, the median time gap

g the safe time gap in the TOCA model

h the upper limit to the interaction horizon in the BL-TCA model
&) a random number ifD, 1[ drawn at timet from a uniform distribution
kg the global density of a TCA's lattice

ki the local density of a TCA's lattice

Ky the number of cells in one lane of a TCA's lattice

& a TCA:'s lattice

l; the length of vehicle

I the average length of allvehicles on a TCA's lattice

Ly the number of lanes in a TCA's lattice

Mési i the gap-speed matrix of the ER-TCA model
p the slowdown probability ifi0, 1]

Po the slow-to-start probability ifi0, 1]

Da the acceleration probability ifD, 1] in the KKW-TCA model

Day a parameter for the acceleration probability in the KKW-TCA model

Das a parameter for the acceleration probability in the KKW-TCA model

Pacc the acceleration probability if9, 1] in the TOCA model

Db the braking probability if0, 1] in the BL-TCA model
the deceleration probability if0, 1] in the KKW-TCA model

Pd the slowdown probability ifi0, 1] in the BL-TCA model

Pdec the deceleration probability if0, 1] in the TOCA model

Ds the slow-to-start probability if0, 1] in the BJH-TCA model

)2 the slow-to-start probability if0, 1] in the T2-TCA model

P, (v) the probabilities of finding a space gapmtells for a vehicle driving with
speedv

qe the global flow of a TCA's lattice

qi the local flow of a TCA's lattice
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the interaction horizon in the BL-TCA model

the desired speed of vehidln the KKW-TCA model

a parameter for the acceleration probability in the KKW-TCA model
the space-mean speed in the free-flow regime

the global space-mean speed of a TCA' lattice

the local space-mean speed of a TCA's lattice

the longitudinal position of vehicles left-back neighbour

the longitudinal position of vehicles left-front neighbour

the longitudinal position of vehiclis right-back neighbour

the longitudinal position of vehiclis right-front neighbour

CCL,T*
T g g7
<0

[

= ===l el

e )

References

[1] S. Maerivoet, B. De Moor, Transportation Planning and Traffic Flow Models, 05-155, Katholieke Universiteit Leuven, Department of Electrical
Engineering ESAT-SCD (SISTA), July 2005.
[2] R. Barlovi, J. Esser, K. Froese, W. Knospe, L. Neubat, M. Schreckenberg, J. Wahle, Online traffic simulation with cellular automata, Traffic
and Mobility: Simulation-Economics-Environment, Institut fur Kraftfahrwesen, RWTH Aachen, Duisburg, 1999, pp. 117-134.
[3] D. Chowdhury, L. Santen, A. Schadschneider, Statistical physics of vehicular traffic and some related systems, Phys. Rep. 329 (2000
199-329.
[4] D. Chowdhury, L. Santen, A. Schadschneider, Vehicular traffic: a system of interacting particles driven far from equilibrium, Curr. Sci. 77
(411).
[5] D.E. Wolf, Cellular automata for traffic simulations, Physica A 263 (1999) 438-451.
[6] D. Helbing, Traffic and related self-driven many-particle systems, Rev. Mod. Phys. 73 (2001) 1067-1141.
[7] D. Helbing, T. Vicsek, Optimal self-organization, New J. Phys. 1 (13) (1999) 1-17.
[8] I. Karafyllidis, A. Thanailakis, A model for predicting forest fire spreading using cellular automata, Ecol. Model. 99 (1997) 87-97.
[9] K. Nagel, E. Raschke, Self-organizing criticality in cloud formation?, Physica A: Statist. Theor. Phys. 182 (4) (1992) 519-531.
[10] S. Gobron, N. Chiba, Crack pattern simulation based on 3D surface cellular automaton, Visual Comput.—Special Issue: Comput. Graph. Int.
2000 17 (5) (2001) 287—-309.
[11] K. Nishinari, D. Chowdhury, A. Schadschneider, Cluster formation and anomalous fundamental diagram in an ant trail model, Phys. Rev. E
67 (2003) 036120-1-036120-11.
[12] B. Immers, M. Westerman, H. de Ruiter, Sturen zonder structuren, in: Proceedings Colloquium Vervoersplanologisch Speurwerk, Amsterdam,
The Netherlands, 1998.
[13] H.J. van Zuylen, Het spel van de regels; Het richting geven aan chaotische maatschappelijke processen, Technische Universiteit Delft, 199¢
[14] D. Helbing, K. Nagel, The physics of traffic and regional development, Contemp. Phys. 45 (5) (2004) 405-426.
[15] K. Nagel, Distributed intelligence in large scale traffic simulations on parallel computers, in: Collective Cognition: Mathematical Foundations
of Distributed Intelligence, Santa Fe Institute, 2002.
[16] K. Nagel, Traffic networks, in: S. Bornholdt, H. Schuster (Eds.), Handbook on Networks, 2002.
[17] D. Chowdhury, K. Nishinari, A. Schadschneider, Self-organized patterns and traffic flow in colonies of organisms, Phase Trans. 77 (2004)
601-624.
[18] L. Santen, Numerical investigations of discrete models for traffic flow, Ph.D. Thesis, Universitat zu Koln, 1999.
[19] W. Knospe, L. Santen, A. Schadschneider, M. Schreckenberg, An empirical test for cellular automaton models of traffic flow, Phys. Rev. E 70
(016115).
[20] J. von Neumann, The general and logical theory of automata, in: L.A. Jeffress (Ed.), Cerebral Mechanisms in Behavior, Wiley, New York,
1948, pp. 1-41, paper presented at the Hixon Symposium.
[21] S. Wolfram, Statistical mechanics of cellular automata, Rev. Mod. Phys. 55 (1983) 601-644.
[22] M. Delorme, An introduction to cellular automata, in: M. Delorme, J. Mazoyer (Eds.), Cellular Automata—a Parallel Model, Kluwer Academic
Publishers Group, 1998 (ISBN 0792354931).

L. Gray, A mathematician looks at Wolfram’s new kind of science, Notices Amer. Math. Soc. 50 (2) (2003) 200-211.

L. Chua, A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science, From Bernoulli Shift to Universal Computation, Inaugural

Lecture of the International Francqui Chair, Katholieke Universiteit Leuven, June 2005.

[28] R. Gosper, Lifeis universal!, in: E. Berlekamp, J. Conway, R. Guy (Eds.), Winning Ways for your Mathematical Plays, vol. 2, 1982, Proceedings
of the Winter Simulation Conference, Washington DC, 1974, Academic Press, New York, 1974 (Chapter 25).

[29] K. Zuse, Rechnender raum, Elektron. Datenverarb. 8 (1967) 336—344.

[30] K. Zuse, Rechnender raum, Schriften zur Datenverarbeitung 1, Friedrich Vieweg & Sohn, Braunschweig, Germany.

[31] E. Fredkin, Digital mechanics: an informational process based on reversible universal CA, Physica D 45 (1990) 254-270.



62 S. Maerivoet, B. De Moor / Physics Reports 419 (200564

[32] H. Gutowitz, Cellular automata and the sciences of complexity (part 1), Complexity 1 (5).

[33] P. Sarkar, A brief history of cellular automata, ACM Comput. Surveys 32 (1) (2000) 80—107 (ISSN 0360-0300).

[34] J.P. Crutchfield, K. Kaneko, Phenomenology of spatiotemporal chaos, in: B.L. Hao (Ed.), Directions in Chaos, World Scientific, Singapore,
1987, pp. 272-353.

[35] K. Kaneko, Simulating physics with coupled map lattices, in: K. Kawasaki, A. Onuki, M. Suzuki (Eds.), Formation, Dynamics, and Statistics
of Patterns, World Scientific, Singapore, 1990, pp. 1-52.

[36] K. Nagel, Particle hopping models and traffic flow theory, Phys. Rev. E 53 (5) (1996) 4655-4672.

[37] K. Nagel, M. Schreckenberg, A cellular automaton model for freeway traffic, J. Phys. | France 2 (1992) 2221-2229.

[38] A. Moreira, Universality and decidability of number-conserving cellular automata, Theoret. Comput. Sci. 292 (2003) 711-721.

[39] W. Knospe, L. Santen, A. Schadschneider, M. Schreckenberg, Human behavior as origin of traffic phases, Phys. Rev. E 65.

[40] N. Eissfeldt, P. Wagner, Effects of anticipatory driving in a traffic flow model, Eur. Phys. J. B 23 (2003) 121-129.

[41] M. Larraga, J. del Rio, A. Schadschneider, New kind of phase separation in a CA traffic model with anticipation, J. Phys. A: Math. Gen. (37)
(2004) 3769-3781.

[42] S. Wolfram, O. Martin, A. Odlyzko, Algebraic properties of cellular automata, Commun. Math. Phys. 93 (1984) 219-258.

[43] S. Wolfram, Universality and complexity in cellular automata, Physica D 10 (1984) 1-35.

[44] K. Culik, S. Yu, Undecidability of CA classification schemes, Complex Systems 2 (2) (1988) 177—190.

[45] W. Li, N. Packard, The structure of the elementary cellular automata rule space, Complex Systems 4 (1990) 281-297.

[46] G. Braga, G. Cattaneo, P. Flocchini, C.Q. Vogliotti, Pattern growth in elementary cellular automata, Theoret. Comput. Sci. 45 (1995) 1-26.

[47] A. Wuensche, Classifying cellular automata automatically, Complexity 4 (3) (1999) 47-66.

[48] J.-C. Dubacq, B. Durand, E. Formenti, Kolmogorov complexity and cellular automata classification, Theoret. Comput. Sci. 259 (1-2) (2001)
271-285.

[49] N. Fatés, Experimental study of elementary cellular automata dynamics using the density parameter, in: M. Morvan, E. Rémila (Eds.), Discret
Models for Complex Systems—DMCSO03, vol. AB, 2003, pp. 155-166, Discrete Mathematics Theoretical Computer Science.

[50] S. Maerivoet, B. De Moor, Traffic Flow Theory, 05-154, Katholieke Universiteit Leuven, Department of Electrical Engineering ESAT-SCD
(SISTA), July 2005.

[51] K. Nagel, P. Wagner, R. Woesler, Still flowing: old and new approaches for traffic flow modeling, Oper. Res. 51 (5) (2003) 681-710.

[52] A. Schadschneider, Statistical physics of traffic flow, Physica A (285) (2000) 101.

[53] A. Schadschneider, Traffic flow: a statistical physics point of view, Physica A 313 (2002) 153-187.

[54] M. Schreckenberg, R. BarlayiW. Knospe, H. Klupfel, Statistical physics of cellular automata models for traffic flow, in: K.H. Hoffmann,
M. Schreiber (Eds.), Computational Statistical Physics, Springer, Berlin, 2001, pp. 113-126.

[55] K. Nagel, D.E. Wolf, P. Wagner, P. Simon, Two-lane traffic rules for cellular automata: A systematic approach, Phys. Rev. E 58 (2) (1998)
1425-1437.

[56] G.F. Newell, A moving bottleneck, Transport. Res. B 32B (8) (1998) 531-537.

[57] B.S. Kerner, The Physics of Traffic—Empirical Freeway Pattern Features, Engineering Applications, and Theory, Understanding Complex
Systems, Springer, 2004 (ISBN 3-540-20716-3).

[58] K. Nagel, P. Nelson, A critical comparison of the kinematic-wave model with observational data, in: H.S. Mahmassani (Ed.), Proceedings of
the 16th International Symposium on Transportation and Traffic Theory (ISTTT16), University of Maryland, 2005.

[59] D. Chowdhury, A. Pasupathy, S. Sinha, Distributions of time- and distance-headways in the Nagel-Schreckenberg model of vehicular traffic
effects of hindrances, Eur. Phys. J. B Condens. Matter 5 (3) (1998) 781-786.

[60] S. Maerivoet, B. De Moor, Non-concave fundamental diagrams and phase transitions in a stochastic traffic cellular automaton, Eur. Phys. .
B—Condens. Matter Phys. 42 (1) (2004) 131-140.

[61] M. Cremer, J. Ludwig, A fast simulation model for traffic flow on the basis of boolean operations, Math. Comput. Simul. 28 (4) (1986) 297—
303.

[62] H. Schitt, Entwicklung und Erprobung eines sehr schnellen, bitorientierten Verkehrssimulationssystems fir Stral3ennetze, Technical Repc
No. 6, Schriftenreihe der AG Automatisierungstechnik, T.U. Hamburg, Hamburg, 1991.

[63] K. Nagel, High-speed microsimulations of traffic flow, Ph.D. Thesis, Universitat zu KéIn, March 1995.

[64] M. Fukui, Y. Ishibashi, Traffic flow in 1D cellular automaton model including cars moving with high speed, J. Phys. Soc. Jpn. 65 (6) (1996)
1868-1870.

[65] C.F. Daganzo, In traffic flow, cellular automatskinematic waves, UCB-ITS-RR-2004-05, Institute of Transportation Studies, University of
California at Berkeley, October 2004.

[66] G.F. Newell, Delays caused by a queue at a freeway exit ramp, Transport. Res. B 33B (1999) 337-350.

[67] K. Nagel, H.J. Herrmann, Deterministic models for traffic jams, Physica A (199) (1993) 254.

[68] W. Brilon, N. Wu, Evaluation of cellular automata for traffic flow simulation on freeway and urban streets, in: Traffic and Mobility: Simulation-
Economics-Environment, Institut fur Kraftfahrwesen, RWTH Aachen, Duisburg, 1999, pp. 163-180.

[69] S. KrauR, K. Nagel, P. Wagner, The mechanism of flow breakdown in traffic flow models, in: Proceedings of the International Symposium on
Traffic and Transportation Theory (ISTTT99), Jerusalem, 1999.

[70] K. Nagel, Life-times of simulated traffic jams, Int. J. Mod. Ph@s5 (3) (1994) 567-580.

[71] A. Schadschneider, The Nagel-Schreckenberg model revisited, Eur. Phys. J. B 10 (3) (1999) 573-582.

[72] K. Ghosh, A. Majumdar, D. Chowdhury, Distribution of time-headways in a particle—hopping model of vehicular traffic, Phys. Rev. E 58 (3)
(1998) 4012-4015.

[73] K. Nagel, M. Paczuski, Emergent traffic jams, Phys. Rev. E 51 (4) (1995) 2909-2918.

[74] P. Bak, C. Tang, K. Wiesenfeld, Self-organized criticality, Phys. Rev. A 38 (1988) 368.



S. Maerivoet, B. De Moor / Physics Reports 419 (200564 63

[75] D.L. Turcotte, Self-organized criticality, Rep. Prog. Phys. 62 (1999) 1377-1429.
[76] K. Nagel, S. Rasmussen, Traffic at the edge of chaos, in: R.A. Brooks, P. Maes (Eds.), Artificial Life IV: Proceedings of the Fourth International
Workshop on the Synthesis and Simulation of Living Systems, 1994, p. 222.
[77] B.-H. Wang, Y.-R. Kwong, P.-M. Hui, Statistical mechanical approach to Fukui-Ishibashi traffic flow models, Phys. Rev. E 57 (3) (1998)
2568-2573.
[78] L. Wang, B.-H. Wang, B. Hu, A cellular automaton traffic flow model between the Fukui—Ishibashi and Nagel-Schreckenberg models, Traffic
Forum—Statistical Mechanics, February 2001.
[79] K. Lee, P. Hui, D. Mao, B.-H. Wang, Q.-S. Wu, Fukui-Ishibashi traffic flow models with anticipation of movement of the car ahead, J. Phys.
Soc. Jpn. 71 (7) (2002) 1651-1654.
[80] B. Derrida, E. Domany, D. Mukamel, An exact solution of a one-dimensional asymmetric exclusion model with open boundaries, J. Statist.
Phys. 69 (1992) 667—-687.
[81] A.B. Kolomeisky, G.M. Schiitz, E.B. Kolomeisky, J.P. Straley, Phase diagram of one-dimensional driven lattice gases with open boundaries,
J. Phys. A: Math. Gen. 31 (1998) 6911-6919.
[82] B.D. Greenshields, A study of traffic capacity, Highway Research Board Proceedings, vol. 14, 1935, pp. 448-477.
[83] H. Emmerich, E. Rank, An improved cellular automaton model for traffic flow simulation, Physica A 234 (1997) 676—686.
[84] B. Eisenblatter, L. Santen, A. Schadschneider, M. Schreckenberg, Jamming transition in a cellular automaton model for traffic flow, Phys.
Rev. E 57 (1998) 1309-1314.
85] C. Kayatz, Stability analysis of traffic flow models, Master’s Thesis, Eidgendssische Technische Hochschule in Zirich, August 2001.
[86] D. Jost, Breakdown and recovery in traffic flow models, Master’'s Thesis, Department of Computer Science, ETH Zurich, August 2002.
[87] D. Jost, K. Nagel, Probabilistic traffic flow breakdown in stochastic car following models, in: Transportation Research Board Annual Meeting,
Washington DC, 2003, paper 03-4266.
[88] J. Werth, Galilei-invariante Fahrzeugwechselwirkungen im Straenverkehr, Master’s Thesis, Duisburg University, Duisburg, Germany, 1998.
[89] M. Takayasu, H. Takayasu/ L noise in a traffic model, Fractals 1 (4) (1993) 860—866.
[90] M. Fukui, Y. Ishibashi, Effect of delay in restarting of stopped cars in a one-dimensional traffic model, J. Phys. Soc. Jpn. 66 (2) (1997)
385-387.
[91] A. Schadschneider, M. Schreckenberg, Traffic flow models with ‘slow-to-start’ rules, Ann. Phys. 6 (7) (1997) 541-551.
[92] S.C. Benjamin, N.F. Johnson, P. Hui, Cellular automata models of traffic flow along a highway containing a junction, J. Phys. A: Math. Gen.
29 (1996) 3119-3127.
[93] T. Bellemans, Traffic control on motorways, Ph.D. Thesis, Katholieke Universiteit Leuven, Department of Electrical Engineering ESAT-SCD
(SISTA), May 2003.
[94] A. Hegyi, B.D. Schutter, J. Hellendoorn, S. Hoogendoorn, C. Tampere, Gelijke behandeling voor verkeersstroommaodellen, Verkeerskunde 52
(4) (2001) 32—-36.
[95] R. Barlovié, L. Santen, A. Schadschneider, M. Schreckenberg, Metastable states in cellular automata for traffic flow, Eur. Phys. J. B5 (793).
[96] R.Barlovi, Traffic jams—cluster formation in low-dimensional cellular automata models for highway and city traffic, Ph.D. Thesis, Universitat
Duisburg-Essen, Standort Duisburg, October 2003.
[97] R. Barlovi, T. Huisinga, A. Schadschneider, M. Schreckenberg, Open boundaries in a cellular automaton model for traffic flow with metastable
states, Phys. Rev. E 66 (4) (2002) 6113-6123.
[98] S. Grabolus, Numerische Untersuchungen zum Nagel-Schreckenberg-Verkehrsmodell und dessen Varianten, Master's Thesis, Institut fU
Theoretische Physik, Universitat zu Koéln, 2001.
[99] S. Maerivoet, B. De Moor, Advancing density waves and phase transitions in a velocity dependent randomization traffic cellular automaton,
03-111, Katholieke Universiteit Leuven, October 2004.
[100] S. Maerivoet, Traffic Cellular Automata, Java software tested with JDK 1.3.1, bRh:7/smtca.dyns.cx (2004).
[101] S. KrauR3, P. Wagner, C. Gawron, Metastable states in a microscopic model of traffic flow, Phys. Rev. E 55 (304) (1997) 5597-5602.
[102] J. del Rio, M. Larraga, Transient situations in traffic flow: modelling the Mexico City Cuernavaca Highway, January 2005.
[103] T. Tokihiro, D. Takahashi, J. Matsukidaira, J. Satsuma, From soliton equations to integrable cellular automata through a limiting procedure,
Phys. Rev. Lett. 76 (18) (1996) 3247-3250.
[104] K. Nishinari, Euler and Lagrange representation of traffic models, in: Proceedings of the Workshop on Traffic and Granular Flow '01, Nagoya
University, Japan, 2001.
[105] J. Matsukidaira, K. Nishinari, Euler—Lagrange correspondence of cellular automaton for traffic-flow models, Phys. Rev. Lett. 90 (2003)
088701.
[106] K. Nishinari, D. Takahashi, A new deterministic ca model for traffic flow with multiple states, J. Phys. A: Math. Gen. 32 (1999) 93-104.
[107] K. Nishinari, A Lagrange representation of cellular automaton models of traffic flow, J. Phys. A: Math. Gen. 34 (2001) 10727-10736.
[108] H. Emmerich, T. Nagatani, K. Nakanishi, From modified Korteweg—de Vries equation to a second-order cellular automaton for traffic flow,
Physica A 254 (1998) 548-556.
[109] K. Nishinari, M. Fukui, A. Schadschneider, A stochastic cellular automaton model for traffic flow with multiple metastable states, J. Phys. A:
Math. Gen. 37 (2004) 3101-3110.
[110] C. L. Barrett, S. Eubank, K. Nagel, S. Rasmussen, J. Riordan, M. Wolinsky, Issues in the representation of traffic using multi-resolution cellular
automata, LA-UR-95:2658, Los Alamos National Laboratory, TRANSIMS Report Series (1995).
[111] D. Helbing, M. Schreckenberg, Cellular automata simulating experimental properties of traffic flow, Phys. Rev. E 59 (1999) 2505-2508.
[112] W. Knospe, L. Santen, A. Schadschneider, M. Schreckenberg, Towards a realistic microscopic description of highway traffic, J. Phys. A: Math.
Gen. 33 (2000) 477-485.
[113] W. Knospe, Synchronized traffic—microscopic modeling and empirical observations, Ph.D. Thesis, Universitat Duisburg, June 2002.


http://smtca.dyns.cx

64 S. Maerivoet, B. De Moor / Physics Reports 419 (200564

114] B. Kerner, S. Klenov, Microscopic theory of spatial-temporal congested traffic patterns at highway bottlenecks, Phys. Rev. E 68 (3).

115] B.S. Kerner, S.K. Klenov, D.E. Wolf, Cellular automata approach to three-phase traffic theory, J. Phys. A: Math. Gen. 35 (2002) 9971-10013

116] T. Nagatani, Self-organization and phase transition in traffic-flow model of a two-lane roadway, J. Phys. A: Math. Gen. 26 (1993) 781.

117] T. Nagatani, Traffic jam and shock formation in stochastic traffic-flow model of a two-lane roadway, J. Phys. Soc. Jpn. 63 (1994) 52.

118] M. Rickert, K. Nagel, M. Schreckenberg, A. Latour, Two lane traffic simulations using cellular automata, Physica A 231 (1996) 534.

119] P. Wagner, K. Nagel, D.E. Wolf, Realistic multi-lane traffic rules for cellular automata, Physica A 234 (1997) 687—698.

120] P. Simon, H. Gutowitz, A cellular automaton model for bi-directional traffic, Phys. Rev. E 57 (2) (1998) 2441-2444.

121] P. Gundaliya, V. Tom, S. Dhingra, Heterogeneous traffic flow modelling using cellular automata for an arterial, in: Proceedings of the Sixth
International Workshop on Transportation Planning and Implementation Methodologies for Developing Countries (TPMDCO04), Transportation
Systems Engineering, IIT Bombay, 2004.

[122] C. Mallikarjuna, K. Ramachandra Rao, Traffic flow modelling on highways using cellular automata: A review, in: J. Bandyopadhyay,
B. Maitra (Eds.), Proceedings of International Conference on Structural and Transportation Engineering (STARTO5), Elite Publishing House
New Delhi, 2005, pp. 912-919.

[123] D. Helbing, B. Huberman, Coherent moving states in highway traffic, Nature 396 (738) (1998) 738-740.

[124] O. Biham, A.A. Middleton, D. Levine, Self-organization and a dynamical transition in traffic-flow models, Phys. Rev. A 46 (10) (1992)
R6124-R6217.

[125] O. Angel, A.E. Holroyd, J.B. Martin, The Jammed Phase of the Biham—Middleton—Levine Traffic Model, March 2005.

[126] M. Fukui, Y. Ishibashi, Evolution of traffic jam in traffic flow model, J. Phys. Soc. Jpn. 62 (11) (1993) 3841-3844.

[127] J. Freund, T. Péschel, A statistical approach to vehicular traffic, Physica A 219 (1995) 95-113.

[

[

[
[
[
[
[
[
[
[

128] Y. Shi, Self-organization in BML traffic flow model: Analytical approaches, Commun. Theor. Phys. 31 (1999) 85-90.

129] D. Chowdhury, A. Schadschneider, Self-organization of traffic jams in cities: effects of stochastic dynamics and signal periods, Phys. Rev. E
59 (2) (1999) 1311-1314.

[130] J. Esser, M. Schreckenberg, Microscopic simulation of urban traffic based on cellular automata, Int. J. Ma@ 8RBy$1997) 1025-1036.

[131] P. Simon, K. Nagel, Simplified cellular automaton model for city traffic, Phys. Rev. E 58 (2) (1998) 1286—-1295.

[132] G. Diedrich, L. Santen, A. Schadschneider, J. Zittartz, Effects of on- and off-ramps in cellular automata models for traffic flow, Int. J. Mod.
Phys. C 11 (2) (2000) 335—-345.

[133] H. Fuks, N. Boccara, Generalized deterministic traffic rules, Int. J. Mod. Rbgs(1998) 1-12.

[134] H. Fuks, Exact results for deterministic cellular automata traffic models, Phys. Rev. E 60 (1999) 197-202.

[135] H. Fuks, N. Boccara, Convergence to equilibrium in a class of interacting particle systems evolving in discrete time, Phys. Rev. E 64 (1) (2001)
016117.

[136] H. Fuks, Critical behaviour of number-conserving cellular automata with nonlinear fundamental diagrams, J. Statist. Mech. Theory Exper. (5)
(2004) p07005.

[137] N. Boccara, H. Fuk; Critical behavior of a cellular automaton highway traffic model, J. Phys. A: Math. Gen. 33 (2000) 3407—-3415.

[138] N. Rajewsky, A. Schadschneider, M. Schreckenberg, The asymmetric exclusion model with sequential update, J. Phys. A 29 (1996) 305-30

[139] M. Schreckenberg, A. Schadschneider, K. Nagel, N. Ito, Discrete stochastic models for traffic flow, Phys. Rev. E 51 (4) (1995) 2939-2949.

[140] A. Schadschneider, M. Schreckenberg, Garden of Eden states in traffic models, J. Phys. A 31 (1998) 225-231.

[141] A. Schadschneider, M. Schreckenberg, Car-oriented mean-field theory for traffic flow models, J. Phys. A 30 (1997) 69-75.

[142] A. Schadschneider, Analytical approaches to CA for traffic flow: Approximations and exact solutions, in: M. Schreckenberg, D. Wolf (Eds.),
Proceedings of the Workshop on Traffic and Granular Flow '97, Springer, Berlin, 1997.

[143] Y. Georget, A Game of Life in C for X11, March 2002.



	Cellular automata models of road traffic
	Introduction
	Background and physical setup for road traffic
	Historic origins of cellular automata
	Ingredients of a cellular automaton
	The physical environment
	The cells' states
	The cells' neighbourhoods
	A local transition rule

	Road layout and the physical environment
	Vehicle movements and the rule set

	Mathematical notation
	Classic notation based on automata theory
	Classification of CA rules
	An example of a CA

	Basic variables and conventions
	Performing macroscopic measurements
	Local measurements with a detector of finite length
	Global measurements on the entire lattice
	Local measurements with a detector of unit length

	Conversion to real-world units
	From a TCA model to the real world
	From the real world to a TCA model


	Single-cell models
	Deterministic models
	Wolfram's rule 184 (CA-184)
	Deterministic Fukui--Ishibashi TCA (DFI-TCA)

	Stochastic models
	Nagel--Schreckenberg TCA (STCA)
	STCA with cruise control (STCA-CC)
	Stochastic Fukui--Ishibashi TCA (SFI-TCA)
	Totally asymmetric simple exclusion process (TASEP)
	Emmerich--Rank TCA (ER-TCA)

	Slow-to-start models
	Takayasu--Takayasu TCA (T2-TCA)
	The model of Benjamin, Johnson, and Hui (BJH-TCA)
	Velocity-dependent randomisation TCA (VDR-TCA)
	Time-oriented TCA (TOCA)
	TCA models incorporating anticipation
	Ultra discretisation, slow-to-accelerate, and driver's perspective


	Multi-cell models
	Artifacts of a multi-cell setup
	Advanced multi-cell models
	The model of Helbing and Schreckenberg (HS-TCA)
	Brake-light TCA (BL-TCA)
	The model of Kerner, Klenov, and Wolf (KKW-TCA)


	Multi-lane traffic, city traffic, and analytical results
	Multi-lane traffic
	Types of lane changes
	General setup for lane changing
	Implementation of lane-changing rules and the phenomenon of ping-pong traffic

	City traffic and intersection modelling
	Grid traffic
	Explicit intersection modelling

	Analytical results
	Mean-field theory
	Improving the SOMF theory


	Summary and outlook
	Acknowledgements
	Appendix A. TCA+JavaTM software
	Overview and features
	Vehicle animation
	Simulation statistics
	Simulator controls and settings
	Plots of macroscopic measurements

	Running the software
	Technical implementation details

	Appendix B. Glossary of terms
	Acronyms and abbreviations
	List of symbols
	References




