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Cellular Automata Simulating Experimental Properties of Traffic Flow
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A model for 1D traffic flow is developed, which is discrete in space and time. Like the cellular
automaton model by Nagel and Schreckenberg [J. Phys. I France 2, 2221 (1992)], it is simple, fast,
and can describe stop-and-go traffic. Due to its relation to the optimal velocity model by Bando
et al. [Phys. Rev. E 51, 1035 (1995)], its instability mechanism is of deterministic nature. The
model can be easily calibrated to empirical data and displays the experimental features of traffic
data recently reported by Kerner and Rehborn [Phys. Rev. E 53, R1297 (1996)].
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Cellular automata (CA) are interesting for their speed
and their complex dynamical behavior [1], including such
fascinating phenomena as self-organized criticality [2–4],
formation of spiral patterns [5], or oscillatory and chaotic
sequences of states [1,5,6]. Their enormous computation
speed and efficiency is a consequence of the following
properties, which are ideal preconditions for parallel com-
puting: (i) discretization of space into identical sites x,
(ii) a finite number of possible states f(x) (iii) the (par-
allel) update at times T = t∆T with an elementary time
step ∆T , (iv) globally applied update rules, based on (v)
short-range interactions with a finite (small) number of
neighbouring sites. Despite these simplifications, cellular
automata have a broad range of applications, reaching
from realistic simulations of granular media [7] or fluids
[8] (including interfacial phenomena and magnetohydro-
dynamics), over the computation of chemical reactions
[5,9], up to the modeling of avalanches [3]. Their ap-
plication to traffic dynamics [10,11] has stimulated an
enormous research activity [12–14], aiming at an under-
standing and control of traffic instabilities, which are re-
sponsible for stop-and-go traffic and congestion, both on
‘freeways’ and in cities.
Recently, Kerner and Rehborn [15] have reported some

characteristic properties of empirical highway traffic flow,
which a realistic traffic model should display: (i) At small
densities, traffic flow is stable, i.e., arbitrarily large dis-
turbances of homogeneous traffic will disappear in the
course of time. (ii) Above a certain critical density, any
small perturbation will give rise to the formation of a
traffic jam. (iii) Between the stable and the unstable re-
gions, there exists a density interval beginning at about
20 vehicles per kilometer, where traffic flow is metastable.
That is, sufficiently small disturbances (so-called ‘sub-
critical perturbations’) will fade away, whereas ‘super-
critical’ perturbations exceeding a certain minimal am-
plitude will cause a traffic jam. (iv) The outflow from
traffic jams has a typical value which is independent of
the initial conditions and, to a large extent, independent
of the average surrounding traffic density. It varies only
with road or weather conditions, and the average vehi-
cle characteristics (regarding their lengths and acceler-

ation capabilities). (v) The typical outflow is consider-
ably smaller than the maximum flow and lies at about
1600vehicles/km for slow lanes, and on fast lanes be-
tween 1800vehicles/km (measured in Germany [15]) and
2100vehicles/km (on Dutch motorways [12]). It is as-
sociated with a density of 20 ± 5 vehicles per kilome-
ter. (vi) Downstream jam fronts move with a velocity of
−15± 5 km/h. Notice that properties (iv) and (vi) orig-
inate from the uniform acceleration behavior of queued
vehicles, resulting from the similar distances and veloci-
ties that they share inside traffic jams. While the prop-
agation velocity C of traffic jams is given by the dissolu-
tion speed of a jam front, the outflow Qout is related to
the time gap T between successive departures from the
traffic jam [16].
The cellular automaton proposed by Nagel and

Schreckenberg [10] meets the properties (i), (ii), and (vi),
and most of the other properties can be reproduced by
separate variants of it [17–19]. In particular, the continu-
ous version by Krauß et al. [18] and the CA by Barlovich
et al. [19] seem to display metastable states. Moreover,
the continuous version is in good agreement with em-
pirical traffic data [18]. Here, we will present a “unify-
ing” cellular automaton which, in a certain parameter
range, reproduces all of the above properties. Remark-
ably, the characteristic quantities can be calculated an-
alytically. Moreover, consistent with macroscopic traffic
models, the mechanism of traffic jam formation is deter-
ministic [20,13] rather than based on internal fluctuations
(“randomization”) [18]. Being related to the optimal ve-
locity model [21], it originates from the delayed adapta-
tion to an equilibrium velocity, which, in the instability
region, rapidly decays with growing density [13,20].
We propose the following simple and fast discrete

model that can be well calibrated to macroscopic traf-
fic data: To maximize simulation speed, we first choose
the time step ∆T of the temporal update as large as pos-
sible. It is limited to ∆T ≈ 1 s, since this corresponds
to the safe time headway required for avoiding accidents.
The spatial discretization ∆X of the road should not be
larger than the minimal vehicle distance ℓ. A fine veloc-
ity discretization ∆V = ∆X/∆T is reached by taking a
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fraction ∆X = ℓ/n of ℓ (n ∈ {1, 2, 3 . . .}). Velocity steps
of the order 5 − 10 km/h require ∆X ≤ ℓ/2. In the fol-
lowing, the spatial coordinate X = x∆X and distances
D = d∆X are measured in units of ∆X , time T = t∆T
in units of ∆T , and any velocity in units of ∆V .
Assume we want to distinguish A different vehicle

types a ∈ {1, 2, . . . , A}, e.g. cars and trucks [22]. Then,
at each time t ∈ {0, 1, 2, . . .}, every site x ∈ {1, 2, . . . , l}
can be in one of the states ft(x) = (a, v), where ft(x) =
(0, 0) corresponds to an empty site, and ft(x) = (a, v)
with a > 0 represents a vehicle of type a with velocity
v ∈ {0, 1, 2, . . . , vamax}. For safety reasons, the velocity vt
must be smaller than the distance dt to the vehicle ahead.
The states of the cellular automaton are updated in par-
allel according to the following successive steps: First,
each vehicle is moved by its actual velocity vt to posi-
tion x + vt, which means ft+1(x + vt) = ft(x), if a > 0
and vt > 0. Then, the states of the previously occupied
positions are reset to ft+1(x) = (0, 0). Any other site
keeps its previous state. Finally, all vehicle velocities are
modified along with the proposed acceleration rule

v′t+1 = vt +
⌊

λa[va(dt+1)− vt]
⌋

, (1)

vt+1 = v′t+1 −

{

1 with probability p, if v′t+1 > 0
0 otherwise,

(2)

where ⌊y⌋ is defined by the largest integer i ≤ y. There-
fore, the above equation implies vt+1 ≤ λava(dt+1) +
(1 − λa)vt, meaning that the new velocity is a weighted
average of the previous velocity vt and the optimal ve-
locity va of vehicle type a, or somewhat less. A small
value of the model parameter λa ≥ 0 relates to a great
inertia of vehicle motion, whereas a large value λa ≤ 1
implies a fast adaptation to the distance-dependent op-
timal velocity va(d). The corresponding adaptation time
is τa = ∆T/λa. If the (back-bumper-to-back-bumper)
distance dt+1 to the next vehicle exceeds a certain finite
value dfin, the vehicles do not interact, and va is given
by the maximum velocity vamax of vehicle type a. For
small distances, va should be determined by the velocity-
dependent safe distance d(va) ≈ ℓ/∆X + va, required to
avoid accidents. The model parameter (‘slowdown prob-
ability’) p describes individual velocity fluctuations due
to delayed acceleration (imperfect driving). Here, we are
interested in the limit p → 0.
In order to compare this discrete model with the ob-

served properties of traffic flows, it is necessary to inves-
tigate aggregate quantities 〈h〉. These are defined by

〈h〉x,t =
1

∆t

t+∆t−1
∑

t′=t

1

2∆x+ 1

x+∆x
∑

x′=x−∆x

h
(

ft′(x
′)
)

. (3)

The vehicle density is given by ρ(x∆X, t∆T ) = 〈Θ(a)〉/
∆X , the traffic flow by Q(x∆X, t∆T ) = 〈vΘ(a)〉/∆T ,
and the average velocity by V (x∆X, t∆T ) =

Q(x∆X, t∆T )/ρ(x∆X, t∆T ), where Θ(a) = 1 for a ≥
0, otherwise = 0. During the simulation runs, the den-
sity minima and maxima, their propagation speed, and
the associated traffic flows were evaluated automatically,
as well as the spatially averaged vehicle velocity and traf-
fic flow on the circular road of length L = 20km. The
corresponding values were averaged over several hours af-
ter a sufficiently long transient period. Averages over the
whole street are indicated by an overbar.
First, let us discuss the case of one type a = 1 of vehic-

les. Our simulation results can be summarized as follows:
At small average densities ρ, homogeneous traffic flow is
stable, and the spatially averaged velocity V is given by
the density-independent value (vmax

1 −⌈1/λ1−1⌉−p)∆V .
It is zero for high densities [Fig. 1(a)], since λ1v1(d) > 1 is
necessary for the acceleration of a vehicle from standstill.
At medium densities, the resulting velocity-density re-

lation is largely dependent on λ1: Regime I: For 1 >
∼ λ1 ≥

λstab(v
1
max, p) (corresponding to a quasi-instantaneous

adaptation to the optimal velocity), V (ρ) is close to the
piecewise constant relation v1(1/ρ). Accordingly, the as-
sociated average traffic flow Q is a piecewise linear func-
tion of ρ. Regime II: In a certain interval λmin(v

1
max, p) ≤

λ1 ≤ λmax(v
1
max, p), traffic flow is unstable for a certain

range ρout ≤ ρ ≤ ρmax of medium densities, and Q(ρ)
becomes the self-organized linear relation

Q(ρ) =
1

T

(

1−
ρ

ρjam

)

(4)

demanded by Kerner [16] [Figs. 1(a) and 2(b)]. T denotes
the average time gap between the acceleration of succes-
sive vehicles. The linear relation (4) reflects a mixture of
free and jammed traffic with characteristic densities ρout
and ρjam, respectively, where the jammed regions grow
with increasing density. Qout = Q(ρout) is the typical
outflow from traffic jams [16]. The slope

C =
∂Q

∂ρ
= −

1

T ρjam
(5)

corresponds to their dissolution velocity [16]. The de-
pendence of the spatially averaged velocity V on ρ is
given by V (ρ) = Q(ρ)/ρ. Regime III: In a parameter
range λmax(v

1
max, p) < λ1 < λstab(v

1
max, p), there is still

an unstable range of traffic, but Q(ρ) is piecewise lin-
ear with different slopes C and different values of ρjam
or ρout [like in Fig. 1(b)], where the above relations are
separately fulfilled for each linear piece. This may be un-
derstood as crossover behavior between the cases I and
II. Notice that the discretization of vehicle dynamics im-
plies 1/ρmax = k1 ∆X and T = k2 ∆T/k3 with small
integers ki (see below). Thus, C is restricted to a few
discrete values k1k3

k2
∆V . Regime IV: For λ1v

1
max < 1, λ1

is so small that v′t+1 ≤ vt which, for p 6= 0, implies that
traffic eventually comes to rest.
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The characteristic quantities can explicitly be calcu-
lated. Let us show this for the simple but nontrivial
case p → 0 and v1(d) = min(d − 1, 3) modeling city
traffic. With ∆X = 6.25m we have ρjam = 1/∆X =
160vehicles/km. Now, let us assume that a disturbance
has produced a queue of vehicles with velocities v = 0
and distances d = 1 to the respective vehicles ahead, and
a free road in front of the first vehicle. We can character-
ize the acceleration behavior of a vehicle by the sequence

(vt′ , dt′)
v∗

t′→ (vt′+1, dt′+1)
v∗

t′+1

→ (vt′+2, dt′+2)
v∗

t′+2

→ . . . , (6)

where, for λ = 0.77, vt+1 = max(dt − 2, 0) if (vt + 1) ≤
dt ≤ 4, and dt+1 = (dt + v∗t+1 − vt+1) (v∗t+1 being the
velocity of the vehicle ahead). Denoting with t′ the time
when the state (0, 1) of the respective vehicle ahead has
changed to another state, we find two alternating se-
quences: (0, 1) → (0, 1) → (0, 3) → (1, 4) → (2, 4) →
(2, 4) → . . . and (0, 1) → (0, 2) → (0, 4) → (2, 4) →
(2, 4) → . . . That is, cars start to accelerate alternatingly
every one or two time steps ∆T . With ∆T = 1 s, we find
an average of T = 1.5 s, which implies the dissolution ve-
locity C = −15km/h. Moreover, the resulting density in
front of jams is given by the evolving maximal distance
4∆X , which gives ρout = 40vehicles/km and, according
to Eq. (4), an outflow of Qout = 1800vehicles/h. All this
is in total agreement with simulation results [Fig. 1(a)].
Now, let us investigate the behavior for fixed λ1 = 0.77

and density ρ = 80vehicles/km, but various p [Fig. 2(a)].
If p is continuously reduced, the backward dissolution
velocity C is decreasing, whereas the outflow Qout from
traffic jams, and the difference between the jam density
ρjam and the self-organized density ρout downstream of
traffic jams are rapidly growing towards an almost con-
stant value. In particular, the amplitude (ρjam − ρout) of
traffic jams is constant over more than five decades.
In the deterministic case p = 0, the formation of traf-

fic jams requires some initial inhomogeneity. Let us in-
vestigate the response to localized perturbations of the
form ρ(x, 0) = ρ+∆ρ{cosh−2[(x−L/2)/w+]− (w+/w−)
cosh−2[(x− L/2−w+ − w−)/w−]}, as suggested in Ref.
[23]. Typically, one observes a piecewise linear response
like in regime III [Fig. 1(b)]. However, its dependence on
the perturbation amplitude ∆ρ indicates multistability,
i.e. the coexistence of a variety of solutions. These corre-
spond to periodic patterns of vehicle updates (which nat-
urally result in deterministic systems with a finite num-
ber of states). In the presence of noise (p > 0), only one
of them survives [Fig. 2(a)], i.e. most of them are unsta-
ble with respect to fluctuations. This explains the role of
randomization for the behavior resulting in regime II.
Finally, let us focus on the density-dependent behav-

ior for fixed λ1 = 0.77 and p > 0. We find that initial
localized perturbations of the above form, regardless of
their amplitude ∆ρ, are damped out for average densities
ρ below some value ρc1(v

1
max, p) and above some value

ρc4(v
1
max, p). In a certain density range ρc2(v

1
max, p) <

ρ < ρc3(v
1
max, p), the perturbation grows for any finite

amplitude. In the density regimes ρc1(v
1
max, p) ≤ ρ ≤

ρc2(v
1
max, p) and ρc3(v

1
max, p) ≤ ρ ≤ ρc4(v

1
max, p), we ob-

serve metastability [Fig. 3], i.e. perturbations with an
amplitude ∆ρ ≥ ∆ρcr(ρ) will grow, otherwise they will
fade away in the course of time (‘local cluster effect’
[20,23]). Notice that ρc2 ≈ ρout and ρc3 ≈ ρmax.
These findings can be understood by analogy with the

continuous optimal velocity model by Bando, Sugiyama
et al. [21] that results in the limit ∆T → 0 and ∆V → 0.
It displays stable traffic at low and high vehicle densities,
unstable traffic on the condition dv1(d)/dd > λ1/2, and
metastable regimes between the unstable and stable ones
[21]. However, in the continuous optimal velocity model,
the jam density ρjam is not independent on how a traffic
jam is formed, since fast cars are more crowded than slow
ones, after they had to stop. This undesired property can
be avoided by a refined model [24] or just by a suitable
discretization, like in the proposed cellular automaton,
when operated in regime II.
In summary, we have developed a cellular automaton

for one-lane traffic which reproduces many of the em-
piricially observed features of traffic flow in a “unified”
way. In particular, the model showed the characteristic
quantities of traffic flow, which we managed to calculate
analytically. By appropriate specification of the tabu-
lar functions va(d) and the parameters λa, p, ∆T , and
∆V , the model can be calibrated to empirical data. The
most interesting case is to operate the model in regime II,
since this guarantees the desired properties (iv) and (vi).
The characteristic quantities like C and Qout are deter-
mined by ρout, ρjam = k1 ∆T , and T = k2 ∆T/k3. The
latter can be enforced by a suitable choice of ∆X and
∆T . va(d) and λa determine the maximum velocity, the
approximate velocity-density relation, the instability re-
gion, and the amplitude (ρjam−ρout) of traffic jams. The
metastable regimes and the difference between the max-
imal possible traffic flow and the self-organized outflow
Qout from traffic jams grow with increasing vamax. Finally,
p allows to influence the characteristic ‘wave length’ be-
tween successive traffic jams [Fig. 2(a)]. Suitable choices
are ∆T ∈ [1 s, 1.3 s], λa ≈ 0.77 and p ≤ 0.01. The opti-
mal velocity functions va(d) were chosen proportional to
relations that were determined from traffic data of the
Dutch freeway A9. The results are in good agreement
with macroscopic traffic data [Fig. 2(b)–(d)].
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FIG. 1. Simulation results for v1(d) = min(d − 1, 3),
λ1 = 0.77, ∆T = 1 s, ∆X = 6.25m, and (a) p = 0.001,
(b) p = 0, w+ = w

−
= 200m, and ∆ρ = ρ/2. Illustration

(a) shows the ‘optimal flow’ ρv1(1/ρ) (+) and the resulting
average flow Q(ρ) (✷) as a function of the average density ρ,
(b) the densities inside (—) and in front of (– –) traffic jams.
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FIG. 2. (a) Characteristic parameters of traffic flow as
a function of the slowdown probability p for the model
parameters specified in Fig. 1. (b) Comparison of the
model corresponding to λa = 0.77, p = 0.001, ∆T = 1 s,
∆X = 2.5m, and the optimal flow relation specified by ’+’
with 1-minute-averages of single-vehicle data from the left
lane of an undisturbed cross section of the Dutch highway
A9 (·). Boxes illustrate the simulated average flow result-
ing in the limit of long times. (c) Simulation of ‘stop-and-go
waves’ at an average density of 28 vehicles/km for a mixture
of 90% cars and 10% trucks (the optimal velocities of which
are only 70% of the cars). The occuring minimal and maxi-
mal velocities, the minimal densities, and the largely varying
time intervals of successive breakdowns of velocity are in good
agreement with the Dutch freeway data (1-minute-averages)
displayed in (d). The mixture of vehicle types also explains
the observed fluctuations in the density and average velocity
of vehicles.
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FIG. 3. (a) Critical amplitudes of localized perturbations
with w+ = 200m and w

−
= 800m as a function of average

density for the model specified in Fig. 2(b). Whereas larger
perturbations cause the formation of traffic jams, smaller ones
will fade away (ρc1 = 21 vehicles/km, ρc2 = 23 vehicles/km,
ρc3 = 150 vehicles/km, ρc4 ≥ 164 vehicles/km). (b) The av-
erage wave length of emerging stop-and-go waves diverges at
ρc2 (checked for large system sizes). This is why they are not
triggered by fluctuations below this density.


