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  Abstract   The application of agent-based modelling (ABM) to simulating dynamics 
within geographical systems has seen a considerable increase over the last decade. 
ABM allows the disaggregation of systems into individual components that can 
potentially have their own characteristics and rule sets. This is a powerful paradigm 
that can be exploited through simulation to further our knowledge of the workings 
of geographical systems. We present in this chapter an overview of ABM; the 
main features of an agent-based model are given, along with a discussion of what 
constitutes an agent-based model. The distinction between cellular automata (CA), 
microsimulation (MSM) and agent-based models are discussed along with the 
advantages and limitations of ABM for modelling geographical systems. We conclude 
with a brief discussion of important areas for further research.      

    5.1   Introduction 

 Many geographical systems are characterised by continual change and evolution 
through time and space. The impacts of interactions between individual agents 
(humans, cities or more abstract representations), or an individual agent and the 
environment (physical, social, information etc) can be felt at multiple scales as well 
as over differing timescales. Previous approaches to modelling the complexity of 
geographical systems have focused on representing these systems as static aggrega-
tions of populations, rational aggregate behaviour and fl ows of information. Examples 
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of these “traditional approaches” include multiple regression, location-allocation 
and spatial interaction models; Batty  (  2012  )  provides a detailed discussion of the 
different approaches applied within geographical modelling. 

 While the utility of these approaches are exemplifi ed within the academic litera-
ture, one of the central criticisms that can be levelled at them is treatment of all 
geographical components as largely homogeneous entities, for example, populations 
modelled with the same characteristics. Over the course of the twentieth century 
geography has incorporated ideas and theories from other disciplines including 
economics, mathematics and computer science. These ideas have strengthened the 
signifi cance of both modelling and understanding the impact of individual agents and 
the heterogeneity of geographical systems at different spatial and temporal scales. 
Simulating these processes and their impacts ‘realistically’ presents a signifi cant 
challenge for the twenty-fi rst century geographer. 

 To understand geographical problems such as sprawl, congestion and segregation, 
researchers have begun to focus on bottom-up approaches to simulating human 
systems, specifi cally researching the reasoning on which individual decisions are 
made. One such approach is agent-based modelling (ABM) which allows one to 
simulate the individual actions of diverse agents, and to measure the resulting system 
behaviour and outcomes over time. The distinction between these new approaches 
and the more aggregate, static conceptions and representations that they seek to 
complement, if not replace, is that they facilitate the exploration of system processes 
at the level of their constituent elements. 

 Essential to the progression of ABM has been the development of automata 
approaches more generally. An automaton is a processing mechanism with character-
istics that change over time based on its internal characteristics, rules and external 
input. Automata process information input to them from their surroundings and their 
characteristics are altered according to rules that govern their reaction to these inputs. 
Two classes of automata tools – cellular automata (CA) and agent-based models – have 
been particularly popular, and their use has dominated the research literature. 

 The purpose of this chapter is to provide an overview to ABM. The key features 
of an agent-based model will be presented along with a discussion of what consti-
tutes an agent-based model and brief overviews of the main areas of consideration 
when undertaking modelling. The distinction between CA, microsimulation (MSM) 
and ABM approaches are briefl y outlined. The advantages and disadvantages of 
ABM for simulating geographical systems are then discussed before an overview of 
geographical applications are given. We conclude the chapter with a summary and 
discussion of areas that require further consideration.  

    5.2   What Is an Agent? 

 There is no universal agreement amongst researchers on the precise defi nition of the 
term ‘agent’ with researchers continually debating whether defi nition should be by 
an agent’s application or environment; however defi nitions do tend to agree on more 
points than they disagree (Macal and North  2005  ) . Diversity in their application 
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makes agent characteristics diffi cult to extract from the literature in a consistent and 
concise manner as often an agent-based model is described from the perspective of 
its constituent parts (Bonabeau  2002  ) . 

 From a pragmatic modelling standpoint, there are several features that are common 
to most agents (Wooldridge and Jennings  1995  – extended and explained further by 
Franklin and Graesser  1996 ; Epstein  1999 ; Macal and North  2005  ) . These are briefl y 
presented below:

    • Autonomy : agents are autonomous units (i.e. governed without the infl uence of 
centralised control), capable of processing information and exchanging this 
information with other agents in order to make independent decisions. They are 
free to interact with other agents, at least over a limited range of situations, and 
this does not (necessarily) affect their autonomy.  
   • Heterogeneity : agents permit the development of autonomous individuals e.g. 
an agent representing a human could have attributes such as age, sex, job etc. 
Groups of agents can exist, but they are spawned from the bottom-up, and are 
thus amalgamations of similar autonomous individuals.  
   • Active : agents are active because they exert independent infl uence in a simulation. 
The following active features can be identifi ed:

     – Pro-active/goal-directed : agents are often deemed goal-directed, having 
goals to achieve (not necessarily objectives to maximise) with respect to their 
behaviours.  
    – Reactive/Perceptive : agents can be designed to have an awareness or sense of 
their surroundings. Agents can also be supplied with prior knowledge, in effect 
a ‘mental map’ of their environment, thus providing them with an awareness of 
other entities, obstacles, or required destinations within their environment.  
    – Bounded Rationality : throughout the social sciences, the dominant form of 
modelling is based upon the rational-choice paradigm (Axelrod  2007  ) . Rational-
choice models generally assume that agents are perfectly rational optimisers 
with unfettered access to information, foresight, and infi nite analytical ability 
(Parker et al.  2003  ) . However, agents can be confi gured with ‘bounded’ 
rationality (through their heterogeneity). This allows agents to make inductive, 
discrete, and adaptive choices that move them towards achieving goals.  
    – Interactive/Communicative : agents have the ability to communicate exten-
sively. For example, agents can query other agents and/or the environment 
within a neighbourhood.  
    – Mobility : agents can ‘roam’ the space within a model. Juxtaposed with an 
agent’s ability to interact and their intelligence, this permits a vast range of 
potential uses. However, agents can also be fi xed.  
    – Adaptation/Learning : agents can also be designed to be adaptive, producing 
Complex Adaptive Systems (CAS; Holland  1995  ) . Agents can be designed 
to alter their state depending on previous states, permitting agents to adapt 
with a form of memory or learning. Agents can adapt at the individual level 
(e.g. learning alters the probability distribution of rules that compete for 
attention), or the population level (e.g. learning alters the frequency distribution 
of agents competing for reproduction).       
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 This list is not exhaustive or exclusive; within an application agents can possess 
other characteristics and for some applications, some features will be more important 
than others (Wooldridge and Jennings  1995  ) . Often, there are many different types of 
agents within one simulation. 

    5.2.1   What Does an Agent Look Like? 

 Agents can be representations of any type of autonomous entity. These could be, for 
example, people, buildings, cars, land parcels, water droplets or insects. Figure  5.1  
shows the similarities between the concept of (i) a “social” human and (ii) a grocery 
retailer and of a representation of an agent within an object-orientated program (see 
Abdou et al.  2012 ; Crooks and Castle  2012 ; Grimm and Railsback  2012  who explore 
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constructions of agent-based models in more detail). It should be noted that ABM is 
not the same as object-oriented simulation, although the object-oriented paradigm 
provides a suitable medium for the development of agent-based models. For this 
reason, ABM systems are invariably object-oriented (Gilbert and Terna  2000  ) .  

 A collection of multiple, interacting agents, situated within a model or simulation 
environment such as represented by the artifi cial world as shown in Fig.  5.2  is termed 
an agent-based model. Here, agents can be representations of animate entities such 
as humans that can roam freely around an environment or be inanimate, such as a 
petrol retailer, that has a fi xed location but can change state.   

    5.2.2   Rules, Behaviour and Relationships 

 Each of the inanimate and animate agents outlined above can possess rules that 
will affect their behaviour and relationships with other agents and/or their surround-
ing environment. Rules are typically derived from published literature, expert 
knowledge, data analysis or numerical work and are the foundation of an agent’s 
behaviour. One rule-set can be applied to all agents or each agent (or categories of 
agents) can have its own unique rule set. For example, the retail petrol agents in 
Heppenstall et al.  (  2006  )  all operated on the same basic rule set based on a desire to 

  Fig. 5.2    ABM: the creation of artifi cial worlds populated by agents (Adapted from Cederman  2004  )        
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maximise profi ts. Further work saw different types of retailer agents, for example 
supermarkets, international, national and independent stations, given their own 
“realistic” rule-sets based on published behaviour, data analysis and numerical 
analysis (Heppenstall et al.  2006  ) . 

 Rules are typically based around ‘if-else’ statements with agents carrying out an 
action once a specifi ed condition has been satisfi ed. However, rules can also be put 
into action in ignorance of the actions of other agents. Agents can also be imbedded 
with a notion of learning and thus ‘intelligence’ through evolutionary computation 
(see Heppenstall et al.  2007  for further details). More recently there has been a 
move towards incorporating behavioural frameworks within agent-based models to 
better represent human behaviour. For example, Malleson et al.  (  2010  )  used the 
PECS (Physical conditions, Emotional states, Cognitive capabilities and Social 
status) framework to represent the motivations and desires of criminals. This type of 
work marks a move towards a more sophisticated handling of agent behaviour. 
Kennedy  (  2012  )  provides an overview of different frameworks for handling human 
behaviour in agent-based models. 

 Agents can interact with each other and amongst themselves and with the 
environment. Relationships may be specifi ed in a variety of ways, from simply 
reactive (i.e. agents only perform actions when triggered to do so by some external 
stimulus e.g. actions of another agent) to goal-directed (i.e. seeking a particular 
goal). The behaviour of agents can be scheduled to take place synchronously 
(i.e. every agent performs actions at each discrete time step, all change occurs 
simultaneously), or asynchronously (i.e. agent actions are scheduled by the 
actions of other agents, and/or with reference to a clock).  

    5.2.3   Agent Environments 

 Environments defi ne the space in which agents operate, serving to support their 
interaction with the environment and other agents. For example, depending on the 
space defi ned for agent interactions, proximity may be defi ned by spatial distance 
for continuous space, adjacency for grid cells, or by connectivity in social networks. 
Agents within an environment may be spatially explicit, meaning agents have a 
location in geometrical space, although the agent itself may be static. For example, 
within a route navigation model, agents would be required to have a specifi c loca-
tion for them to assess their route strategy. Conversely, agents within an environ-
ment may be spatially implicit; this means that their location within the environment 
is irrelevant. 

 In a modelling context, agent-based models can be used as experimental media 
for running and observing agent-based simulations. To this extent, they can be 
thought of as a miniature laboratory where the attributes and behaviour of agents, 
and the environment in which they are housed, can be altered and the repercussions 
observed over the course of multiple simulation runs, thus providing a tool to ‘think 
with.’ The ability to simulate individual actions of many diverse agents and measure 
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the resulting system behaviour and outcomes over time (e.g. changes in patterns of 
traffi c fl ow), means agent-based models can be useful tools for studying the effects 
on processes that operate at multiple scales and organisational levels (Brown  2006  ) . 
In particular, the roots of ABM are within the simulation of human social behaviour 
and individual decision-making (Bonabeau  2002  ) . In this sense ABM has trans-
formed social science research by allowing researchers to replicate or generate the 
emergence of empirically complex social phenomena from a set of relatively simple 
agent-based rules at the micro-level (Balan et al.  2003  ) .   

    5.3   Individual-Based Models 

 Agent-based models fall into the broad category of individual based models. Within 
this category are also the closely related techniques of CA and MSM. This section 
clarifi es the scope of these other techniques and emphasises the distinction from 
agent-based models. CAs and MSM are more fully explained in Iltanen  (  2012  )  and 
Birkin and Wu  (  2012  ) . 

    5.3.1   Cellular Automata 

 The basic features of CA are well-known from the research literature. A CA is a 
discrete dynamic system, the behaviour of which is specifi ed in terms of local rela-
tions. The space in a CA system is divided into a lattice or grid of regularly-space 
cells of the same size and shape, usually square. Each cell has a value either 0 or 1 
or on a scale from 0 to 1. The state of a cell and its behaviour is determined by the 
state of other cells in close proximity at a previous time step, by a set of local rules 
and by the cell itself (Benenson and Torrens  2004 ; Torrens  2003 ; Wolfram  2002  ) . 

 An important feature of a CA is that the automata’s location does not move; they 
can only change their state. The position of the cells and their neighbourhood rela-
tions remain fi xed over time. In contrast, agents can be either fi xed in location or 
free to ‘roam’ around their environment. Unlike agents, CAs cannot have more than 
one attribute; for example, a cell could be occupied or unoccupied, but the cell could 
not contain multiple attributes such as building type, date built etc. 

 Both CA and agent-based models, model the complexity of social systems with 
similar individual level representations. However, they differ in their emphasis; CA 
model social dynamics with a focus on the emergence of properties from local inter-
actions while agent-based models simulate more complex situations where agents 
control their own actions based on their knowledge of the environment (Birkin and 
Wu  2012  ) . 

 In practice, CA and ABM have often been applied separately to explore a wide 
variety of geographical phenomena. This is particularly evident in urban modelling. 
For example, CA models are commonly applied to represent possible land-use 
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changes (for example, White et al.  1997 ; Landis and Zhang  1998  )  while ABM are 
often applied to crowd dynamics and traffi c simulation (see Benenson and Torrens 
 2004  for further reviews). However, models are increasingly being developed using 
a combination of CA and ABM techniques to produce fl exible and powerful models, 
and the distinction between them is increasingly becoming blurred.  

    5.3.2   Microsimulation 

 MSM is a well established methodology that works on the principle of creating small 
area microdata at a point in time, and then generating future microdata from that 
basis (Ballas et al.  2005  ) . MSM has been extensively applied to modelling the effects 
of different policy scenarios on individual ‘units’, for example understanding the 
implications of a factory closure on individual households. 

 As with CA and ABM, MSM operates at the level of the individual, is able to 
simulate the global consequences of local interactions whilst allowing the character-
istics of each individual to be tracked over time. However, crucially in contrast to 
ABM, MSM only models one-direction interactions: the impact of the policy on the 
individuals, but not the impact of individuals on the policy and interactions between 
individuals are not simulated. Furthermore MSM models do not have the behavioural 
modelling capability of ABM. 

 Birkin and Wu  (  2012  )  see the relationship between ABM and MSM as compli-
mentary; linking the two approaches can help overcomes inherent limitations in 
both approaches, for example problematic validation in ABM and the absence of 
real behavioural modelling in MSM. Examples of the hybridisation of these 
approaches can be found in the work of Boman and Holm  (  2004  )  and more recently 
Wu et al.  (  2008  ) .   

    5.4   Constructing an Agent-Based Model 

 Creation of an agent-based model can be facilitated through the use of an object-
orientated language, modelling toolkits and platforms. Here we briefl y discuss 
these approaches describing their advantages and disadvantages. For a more 
detailed discussion, the reader is directed to Crooks and Castle  (  2012  ) . 

 Frequently used programming languages are Java and C++. While programming 
from the ground up allows complete control over every aspect of the agent-based 
model, this can be a time-consuming option unless the researcher is an experienced 
programmer. Model implementation can be cumbersome and considerable time can 
be spent on non content-specifi c aspects such as graphical user interfaces (GUI’s), 
visualisation and data importing. 

 Toolkits do not require substantial coding experience and provide conceptual 
frameworks and templates that allow the user to design a customised model. 
Prominently used toolkits include the highly popular Repast, SWARM and MASON, 
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although Crooks and Castle  (  2012  )  note that there are over 100 toolkits currently 
available. These toolkits are often supported by libraries of pre-defi ned methods and 
functions that can be easily incorporated into an agent-based model and linked into 
other software libraries, for example geographical information systems (GIS) such 
as OpenMap or GeoTools. Using a toolkit can greatly reduce the model construction 
time allowing more time to be dedicated to research. However, drawbacks include a 
substantial time investment on behalf of the researcher to learn the how to design 
and implement a model in the toolkit and the programming language the software 
uses. After this investment of time, it is possible that the desired functionality is not 
available. 

 In addition to toolkits, there is a steady increase of available software for con-
structing agent-based models. Notable examples include NetLogo and AgentSheets. 
Utilisation of such software is particularly useful for rapid development of basic or 
prototype models. The major drawback using software is that researchers are 
restricted to the design framework supported by the software and maybe unable to 
extend or integrate additional tools.  

    5.5   Working with Agent-Based Models 

 Once a model has been designed at the level of abstraction deemed necessary for the 
purpose of the model and an appropriate toolkit or software chosen for implementation 
(see Grimm and Railsback  2012 ; Crooks and Castle  2012  for more of a discussion), 
several other important issues need to be considered. These revolve around gaining 
an understanding and communicating the inner workings of the model but also 
considerations with respect to verifi cation, calibration and validation of the model 
itself. It is to these issues that we now turn. 

    5.5.1   Verifi cation, Calibration and Validation 

 One of the greatest challenges of utilising ABM concerns the issues of verifi cation, 
calibration and validation (Crooks et al.  2008  ) . “Verifi cation is the process of 
making sure that an implemented model matches its design. Validation is the 
process of making sure that an implemented model matches the real-world.” (North 
and Macal  2007 , pages 30–31). Verifi cation is thus as a much a matter of testing the 
logic of the model through its computer programme as testing its formal logic. It 
involves checking that the model behaves as expected which is something that is 
often taken for granted. Validation relates to the extent that the model adequately 
represents the system being modelled (Casti  1997  )  and in this sense, it involves the 
goodness-of-fi t of the model to data. However, the validity of a model should not be 
thought of as binary event (i.e. a model cannot simply be classifi ed as valid or 
invalid); a model can have a certain degree of validity (Law and Kelton  1991  ) , 
which of course is encapsulated by various measures of fi t. 



94 A.T. Crooks and A.J. Heppenstall

 In contrast, calibration involves fi ne-tuning the model to a particular context and 
this means establishing a unique set of parameters that dimension the model to its 
data. This is not validation  per se  but calibration can often involve validation because 
the parameters are often chosen so that performance of the model related to data is 
optimal in some way, in terms of some criterion of goodness-of-fi t, for example. 
This is a large subject area and suffi ce it to say, many if not most agent-based 
models suffer from a lack of uniqueness in parameter estimation due to the fact that 
their assumptions and processes tend to outweigh the data available for a complete 
assessment of their goodness-of-fi t. 

 Concerns have been raised pertaining to verifi cation and validation by numerous 
researchers (e.g. Batty and Torrens  2005 ; Crooks et al.  2008  )  and can be considered 
limitations to ABM (see Sect.  5.7 ). Ngo and See  (  2012  )  present a more detailed discus-
sion of how verifi cation, calibration and validation issues can be addressed while Evans 
 (  2012  )  raises awareness of error and uncertainty with respect to input data, parameteri-
sation, and model form and offers guidance to minimising and understanding such 
errors. These issues are only mentioned here to stress to the reader that these are 
important and need to be considered when working with agent-based models.  

    5.5.2   Communication and Visualisation 

 Agent-based models tend to be overtly visual and this is extremely helpful as visuali-
sation is one of the most effective ways to communicate key model information with 
regard to ABM (North and Macal  2007  ) . Some argue that by making models more 
visual they become more transparent (Batty  2007  )  but also by visualising key model 
processes, helps to convey the model clearly and quickly (Kornhauser et al.  2009  )  and 
thus aiding with the verifi cation and validation of model outputs. For example, via the 
GUI of the model we are able to track the simulation history as advocated by Axelrod 
 (  2007  ) . Through this we can observe and explain how aggregate outcomes emerge 
from the local interactions of many individuals. Moreover, there are also qualitative 
evaluations of model validity that might be made from visualising outcomes of such 
models. For example, Mandelbrot ( 1983 )    argues that models which generate spatial or 
physical predictions that can be mapped or visualised must ‘look right’. 

 Patel and Smith  (  2012  )  provide a review of tools, techniques and methods for 
such visualizations in the second and third dimensions. Such tools as game engines 
and virtual worlds (see Crooks et al.  2009  )  provide a highly visual and immersive 
medium for ABM and has the potential to greatly aid in the communication and 
understanding of agent-based models. The dynamic and real-time visualisation and 
communication options (especially those in virtual worlds) provided by agent-based 
models allows us to address the challenge modellers face on how we might com-
municate and share agent-based models with all those we seek to infl uence. In the 
past, model results were mainly presented through the discussion of the model 
outcomes via static charts or screen shoots. However, as one of the key aspects of 
ABM lies in their dynamics, real-time visualisation of models and their outcomes 
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can capture this and in a sense, show how micro interaction of individuals leads to 
more aggregate outcomes. 

 However, visualisation alone does not address all the issues relating to the 
communication of agent-based models. We also need methods to convey the model 
structure and key model parameters that allow for replication of such models. 
Replication of models allows others to gain confi dence about the model and its under-
lying assumptions (see Crooks et al.  2008  ) . Replication can be aided through the 
releasing of the source code of the model, along with the data and parameters presented 
in a paper or by providing a detailed description of the model such as the “ODD” 
(Overview, Design concepts, Details) protocol (Grimm and Railsback  2012  ) .   

    5.6   Advantages of Agent-Based Modelling 

 The way we currently conceptualise and model human geographical systems, in 
particular the evolution of cities, has changed, from the aggregate to disaggregate, 
and from the static to the dynamic as highlighted in Table  5.1 . ABM provides us 
with tools to explore this change in approach. There are three main claimed advan-
tages of the agent-based approach over traditional modelling techniques, such as 
top-down techniques of non-linear dynamical systems in which related state vari-
ables are aggregated (e.g. through differential equations). The agent-based approach: 
(i) captures emergent phenomena; (ii) provides a natural environment for the study 
of certain systems; and (iii) is fl exible, particularly in relation to the development of 
geospatial models.  

 Traditional urban models focused on modelling the system of interest top-down 
in contrast to model developers who divided the city into a few 100 units, while 
assuming average behaviour of individuals. Through their ability to describe behaviour 
and interactions of a system’s constituent parts from the bottom-up, 1  ABM provides 

   Table 5.1    The changes in 
modelling techniques using 
ABM over traditional 
modelling of the 1960s and 
1970s (Source: Bernard  1999  )    

 Traditional modelling  Agent-based modelling 

 Deterministic (one future)  Stochastic (multiple futures) 
 Allocative (top-down)  Aggregative (bottom-up) 
 Equation based formulas  Adaptive agents 
 Do not give explanations  Explanatory power 
 Few parameters  Many parameters 
 Spatially coarse  Spatially explicit 
 Environment given  Environment created 
 You react to them  You learn from them 

   1   While ABM deals with individual and not aggregate behaviour, often it is neither feasible nor 
desirable to model complete agent heterogeneity. Instead agents are often given a representative 
behaviour; thus we move from average aggregate behaviour to average individual behaviour. 
However, greater heterogeneity can be introduced by adding ‘noise’ to such agents.  
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an alternative approach. Bonabeau  (  2002  )  has identifi ed a non-exhaustive list of 
conditions where ABMs can be useful for capturing emergent behaviour:

    1.    Interaction between agents is complicated, non-linear, discontinuous, or discrete 
(i.e. the behaviour of an agent can be altered dramatically, even discontinuously, 
by other agents). This can be particularly useful if describing discontinuity of 
individual behaviour, for example, using differential equations;  

    2.    The ability to design a heterogeneous population of agents with an agent-based 
model is signifi cant. Agents can represent any type of unit. Unlike agent-based 
models, aggregate differential equations tend to smooth out fl uctuations. This is 
important because under certain conditions, fl uctuations can be amplifi ed: a 
system can be linearly stable but susceptible to large perturbations. Heterogeneity 
also allows for the specifi cation of agents with varying degrees of rationality. This 
offers advantages over approaches that assume perfectly rational individuals, if 
they consider individuals at all;  

    3.    The topology of agent interactions is heterogeneous and complex. Aggregate fl ow 
equations usually assume global homogeneous mixing, but the topology of an 
interaction network can lead to signifi cant deviations from predicted aggregate 
behavior and,  

    4.    Agents exhibit complex behaviour, including learning and adaptation.     

 Furthermore, the ability of agent-based models to describe the behaviour and 
interactions of a system allows for system dynamics to be directly incorporated 
into the model. This represents a movement away from the static nature of earlier 
styles of urban and regional modelling (see Batty  1976  ) . However, while time in 
ABMs is still discrete, i.e. it still moves in ‘snapshots’, the time steps may be 
small enough to approximate real time dynamics. Additionally different processes 
occur over different time periods, for example, long term economic cycles, daily 
commuting and hour by hour social interaction. Agent-based models can incor-
porate these different scale time processes into a single simulation by using a 
variety of automata clocks designed to mimic the temporal attributes of the specifi c 
urban process under study (Torrens  2003  ) , thus allowing the modeller to realis-
tically simulate urban development or a particular geographical phenomenon 
(O’Sullivan  2001  ) . 

 In many cases, ABM is a natural method for describing and simulating a system 
composed of real-world entities especially when using object-orientated principles 
(Gilbert and Terna  2000  ) . The agent-based approach is more akin to ‘reality’ than 
other modelling approaches. Agent-based simulations provide an opportunity to 
represent and test social theory which cannot easily be described using mathematical 
formulae (Axelrod  1997  ) . The models often map more naturally to the structure 
of the problem than equation-based models (Parunak et al.  1998  )  by specifying 
simple behavioural and transition rules attached to well defi ned entities, therefore 
providing a medium for the infusion of any geographic theory or methodology into 
the model. In particular, the agent-based approach can be useful when it is more 
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natural to describe the constituent units of a system under some of the following 
conditions (Bonabeau  2002  ) :

    1.    The behaviour of individuals cannot clearly be defi ned through aggregate 
transition rates (e.g. the decision to move);  

    2.    Individual behaviour is complex. Although hypothetically any process can be 
explained by an equation, the complexity of differential equations increases 
exponentially as the complexity of behaviour increases. Describing complex 
individual behaviour with equations can therefore become intractable;  

    3.    Activities are arguably a more natural way of describing a system than pro-
cesses; and,  

    4.    Agent behaviour is stochastic. Points of randomness can be applied strategically 
within agent-based models, rather than arbitrarily within aggregate equations.     

 Finally, the agent-based approach to modelling is fl exible, particularly in relation 
to geospatial modelling. Notably, spatial simulations benefi t from the mobility that 
agent-based models offer. An agent-based model can be defi ned within any given 
system environment (e.g. a building, a city, a road network, a computer network, 
etc). Therefore agent-based models are essentially without scale. It is the phenom-
ena of interest which drives the scale to be used, for example, from the micro 
movement of pedestrians within a building during an evacuation (e.g. Gwynne 
et al.  2001  ) , to the movement of cars on a street network (e.g. Nagel  2003  )  to the 
study of urban growth (e.g. Brown et al.  2005  ) . Additionally as ABM allows for 
the representation of individual objects, it is therefore possible to combine these 
objects to represent phenomena at different scales within the same model. 
Furthermore, agents have the ability to physically move within their environment, 
in different directions and at different velocities. Agent mobility makes ABM very 
fl exible in terms of potential variables and parameters that can be specifi ed. 
Neighbourhoods can also be specifi ed using a variety of mechanisms such as well 
understood geographical relations such as market catchments areas, travel to work 
zones, walking distance buffers etc. 

 The implementation of agent interactions can easily be governed by space, 
networks, or a combination of structures (as highlighted in Alam et al.  2012  )  This 
would be far more complex to explain by mathematics, for example (Axtell  2000  ) . 
Signifi cantly, agent-based models can regulate behaviours based on interactions 
at a specifi c distance and direction (thus allowing for action-at-a-distance). In 
addition, agent-based models also provide a robust and fl exible framework for 
tuning the complexity of agents (i.e. their behaviour, degree of rationality, ability 
to learn and evolve, and rules of interaction). Another dimension of fl exibility is 
the ability to adjust levels of description and aggregation. It is easy to experiment 
with aggregate agents, sub groups of agents, and single agents, with different 
levels of description coexisting within a model. Thus, the agent-based approach 
can be used when the appropriate level of description or complexity is unknown, 
and fi nding a suitable level requires exploration.  
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    5.7   Limitations of Agent-Based Modelling 

 The enthusiasm of adopting the ABM approach for modelling geographical systems 
is curtailed by some limitations. Although common to all modelling techniques, 
one issue relates to the purpose of the model; a model is only as useful as the 
purpose for which it is constructed. A model has to be built at the right level of 
abstraction for every phenomenon, judiciously using the right amount of detail for 
the model to serve its purpose (Couclelis  2002  ) . If the level of abstraction is too 
simple, one may miss the key variables. Too much detail, and the model will have 
too many constraints and become overly complicated. Abdou et al.  (  2012  )  provide 
useful advice for designing and building an agent-based model. This remains an art 
more than a science (Axelrod  2007  ) . Axtell and Epstein  (  1994  )  provide practical 
guidelines for the evaluation of model performance depending on the level of 
model abstraction. 

 The nature of the system being modelled is another consideration. For example, 
a system based on human beings will involve agents with potentially irrational 
behaviour, subjective choices, and complex psychology (see Kennedy  2012 , for an 
overview of how behavioural frameworks can be implemented in agent-based 
models). These factors are diffi cult to quantify, calibrate, and sometimes justify, 
which complicates the implementation and development of a model, as well as the 
interpretation of its simulation outputs. However, the fundamental motivation for 
modelling arises from a lack of full access to data relating to a phenomenon of 
interest. Often, the target itself is neither well-understood nor easy to access. 
The development of agent-based models offers a means to increase the utility of 
simulation models, by closely tailoring the model and subsequent analysis to the 
needs of end users (Parker et al.  2003  ) . In particular, the visual communication 
often provided by spatially explicit models, especially those coupled with GIS, can 
be effective at depicting formal model results to a wide range of users (Axtell 
 2000  ) . Nevertheless, a model’s output must be interpreted appropriately. Varying 
degrees of accuracy and completeness in the model inputs determine whether the 
output should be used purely for qualitative insight, or accurate quantitative fore-
casting. Crooks and Castle  (  2012  )  review the purpose of different ABM approaches 
in more detail especially relating to explanatory and predictive (descriptive) 
modelling approaches. 

 By their very defi nition, agent-based models consider systems at a disaggregated 
level. This level of detail involves the description of potentially many agent attributes 
and behaviours, and their interaction with an environment. The only way to treat this 
type of problem in agent computing is through multiple runs, systematically varying 
initial conditions or parameters in order to assess the robustness of results (Axtell 
 2000  ) . There is a practical upper limit to the size of the parameter space that can be 
checked for robustness, and this process can be computationally intensive, thus time 
consuming. Although computing power is increasing rapidly, the high computational 
requirement of ABM remains a limitation when modelling large systems (see Parry 
and Bithnell  2012  ) . 
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 In this sense, agent-based models have the potential to suffer from similar limita-
tions of the fi rst generation of urban models such as Lee’s  (  1973  )  criticism of data 
hungriness. However, this can be overcome by considering what level of abstraction 
is needed to examine the phenomena of interest (for example, is ‘all the detail 
needed?’). Or a series of smaller models could be created examining specifi c aspects 
of the system. There is also a lack of personal data both for the present and the past. 
For example in the UK, the smallest measure of individual data from the census is 
the Output Area which contains around 125 households (notwithstanding    access to 
personal data, see Benenson et al.  2002  )  which can be obtained through MSM tech-
niques as demonstrated in Birkin and Wu  (  2012  ) . 

 Critics of complexity theory point out that the wide variety of surprising behaviour 
exhibited by mathematical and computational models are rarely found in the real-
world. In particular, ABMs are very sensitive to initial conditions and to small 
variations in interaction rules (Couclelis  2002  ) . This path dependence means that 
using ABM for prediction can be challenging (see Batty and Torrens  2005  ) . 
Consequently, modellers of complex systems are never likely to enjoy the intellectual 
comfort of ‘laws’ as seen in the physical or chemical worlds (Wilson  2000  ) . Despite 
this, and the other limitations that have been highlighted, ABM is a useful tool for 
exploring systems that exhibit complex behaviour. They highlight uncertainty behind 
modelling geographical systems and provide a technique to explore such uncertainty 
through their ability to generate possible futures rather than generating defi nitive 
models with strong predictive assumptions (Epstein  1999  ) . Complexity theory has 
brought awareness of the subtle, diverse, and interconnected facets common to 
many phenomena, and continues to contribute many powerful concepts, modelling 
approaches and techniques (see Manson et al.  2012  for further information). In this 
vein, Section 5.8 explores general ABM applications before focussing on agent-based 
models of geographical systems.  

    5.8   Applications of Agent-Based Models 

 It is impractical to comprehensively review the full range of ABM applications within 
this chapter, and even examination of a representative sample presents a challenging 
exercise. ABMs have been developed for a diverse range of subject areas, such as: 
archaeological reconstruction of ancient civilisations (Axtell et al.  2002 ; Kohler et al. 
 2000  ) ; understanding theories of political identity and stability (Lustick  2002  ) ; 
understanding processes involving national identity and state formation (Cederman 
 2001  ) ; biological models of infectious diseases (Yang and Atkinson  2005  ) ; growth of 
bacterial colonies (Kreft et al.  1998  ) ; single- (Emonet et al.  2005  )  and multi-cellular 
level interaction and behaviour (Athale and Deisboeck  2006  ) ; alliance formation 
of nations during the Second World War (Axelrod and Bennett  1993  ) ; modelling 
economic processes as dynamic systems of interacting agents (Tesfatsion  2006  ) ; 
company size and growth rate distributions (Axtell  1999  ) ; geographical retail 
markets (Heppenstall et al.  2006  ) , size-frequency distributions for traffi c jams 
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(Nagel and Rasmussen  1994  ) ; price variations within stock-market trading (Bak et al. 
 1999  ) ; voting behaviours in elections (Kollman et al.  1992  ) ; identifying and explor-
ing behaviour in battlefi elds (Ilachinski  1997  ) ; spatial patterns of unemployment 
(Topa  2001  ) ; trade networks (Epstein and Axtell  1996  ) ; business coalitions over 
industry standards (Axelrod  2006  ) ; social networks of terrorist groups (North et al. 
 2004  ) , to name but a few. These examples can be constructed as lying on a continuum, 
from minimalist academic models based upon ideal assumptions, to large scale 
commercial decision support systems based upon real-world data. In relation to the 
focus of this chapter, the remainder of this section concentrates on the origin of ABM 
applied to urban phenomena, particularly in a geographical context. 

 Despite the advantages of ABM as a tool for simulation, ABM has only 
recently been adopted for geospatial research. Thomas Schelling is credited with 
developing the fi rst social agent-based model in which agents represent people, 
and agent interactions represent a socially relevant process. Schelling’s  (  1971  )  
model demonstrated that stark segregation patterns can emerge from migratory 
movements among two culturally distinct, but relatively tolerant, types of house-
hold. Yet ABM did not begin to feature prominently in the geographical litera-
ture until the mid-1990s when Epstein and Axtell  (  1996  )  extended the notion of 
modelling people to growing entire artifi cial societies. Epstein and Axtell’s 
Sugarscape model demonstrated that agents could emerge with a variety of char-
acteristics and behaviours suggestive of a rudimentary society (e.g. in terms of 
patterns of death, disease, trade, health, culture, confl ict, war, etc). 

 The above two models have inspired a number of modelling efforts with respect 
to urban simulation and it is to this that we now turn briefl y. Further information and 
summaries of ABM applications are presented in Parts 3 and 4 of this book. As 
stated previously, ABMs can be applied to any scale, from the atomic to the global. 
How one defi nes an agent depends on what phenomena one is interested in. 

 Numerous efforts have been made to apply ABM to environmental modelling 
especially land-use and land-cover change models (see Parker  2005 ; Parker et al. 
 2012 ; Magliocco  2012 ; for further details). ABM specifi cally pertaining to urban 
phenomena including dynamics in Latin American cities (Barros  2012  )  urban 
housing dynamics (Benenson et al.  2002  ) , urban growth and residential location 
(Torrens  2006 ; Brown et al.  2005 ; Liu and Feng  2012  ) , and gentrifi cation (Jackson 
et al.  2008  ) . The impact of policy on geographical areas has also been investigated 
through ABM, for example education planning (Harland and Heppenstall  2012  )  
and crime simulation (Malleson  2012  ) . Due to the ability of agents within ABMs to 
move, they are also commonly used to simulate traffi c movement (e.g. Beuck et al. 
 2008  ) . Additionally, numerous applications have been developed specifi cally to 
study micro-scale phenomena such as pedestrian models (Johnasson and Kretz 
 2012  ) , which explore how agents move around their environment. Other useful 
examples of spatially explicit agent-based models include: the simulation of 
pedestrians in the urban centres (Haklay et al.  2001  ) , the examination of crowd 
congestion at London’s Notting Hill carnival (Batty et al.  2003  ) , and emergency 
evacuation of buildings (e.g. Gwynne et al.  2001  ) .  
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    5.9   Conclusion 

 Successfully replicating the processes and dynamics that occur within geographical 
systems is highly challenging. There are a potentially infi nite number of individual 
components linked together by often unknown interconnected processes that play out 
at different spatial and temporal scales. The notion of bottom-up modelling advocated 
by ABM allows the results of local phenomena to be understood and measured at a 
global level. While established methods, such as SI (Spatial Interaction) modelling, 
treat populations as aggregate homogeneous components, ABMs potentially 
allow every individual to be assigned their own characteristics. This is a powerful 
paradigm that holds great promise for facilitating greater understanding of geo-
graphical systems. 

 This chapter has provided a general introduction to ABM. Along with a presenta-
tion of the main characteristics of ABM, the distinction between ABM, CA and 
MSM have been discussed. Important considerations when working with ABM, for 
example validation, verifi cation and visualisation, were presented along with the 
advantages and limitations of this approach for geographical systems. The chapter 
concluded by exploring a diverse range of geographical applications of ABM.      
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