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ABSTRACT 

The Cell-DEVS methodology is formal modeling technique that permits defining each cell in a cell space 

as individual independent entity. We used Cell-DEVS to build a library that allows defining different 

models of traffic. We show how to model cell spaces with emerging behavior using this methodology. We 

present basic models and visualization tools based on 3D models in Maya. 
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1 INTRODUCTION 

Transit volume is growing up, and it is necessary to control, redirect and optimize it. As transit behavior 

is very complex to study, the application of simulation allows analyzing different scenarios for transit 

control strategies. Gridlock occurs on a daily basis on major routes into and out of a city and traffic jams 

happen all the time within major centers. Traffic engineers need to determine where the traffic is going to 

build up and how soon and what would be the optimal route to follow to avoid gridlocks.   

A well-established method to determine such results is using modeling and simulation. If we can predict 

the amount of traffic flowing into a specified city section and can predict how individual drivers are going 

to react on city streets, then we can predict how the city traffic is going to develop in advance. A 

simulation can give city planners the ability to make modifications to an existing city map or even create 

their own city section and see the results based on parameters that they set that determine the amount of 

traffic that will be entering the city section and the normal destined route for the traffic when the get to 

the city section. Traffic simulations are useful to test traffic policies, signals, measuring the consequences 

of collisions or men at work, controlling pollution, avoiding traffic jams, etc. Due to the complex 

characteristics of these systems, models reflecting a higher number of features can provide more accurate 

results.  

An important aspect of the transit flow models is the structure chosen to represent the streets, highways or 

transit lanes; this structure determines the kind of movements of vehicles. It permits to distinguish the 

difference between simple models that represent transit flow on one-lane roads, and the more complex 

that model bi-directional multi-lane roads with street intersections. The later models represent a more 

complete behavior, modeling for example, the exchange of vehicles between lanes and turning around a 

crossroad. Another important aspect to consider are the special characteristics that affect the movement of 

vehicles. This includes, for example, the representation of different kinds of vehicles, control signals, 

deviations and accidents. When a higher number of features of the traffic is included in the model, the 

simulated behavior is more accurate, and the results more precise. 

Cellular Automata (CA) is a formalism well suited to describe this problem. A model built using CA uses 

discrete variables for time, space and system states (Burks and Von Neumann 1970). The states in the 
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lattice are updated according with a local rule in a simultaneous and synchronous way. The cell states 

change in discrete time steps according with a local computing function. The function considers the 

present cell's state and a finite set of nearby cells (called the cell's neighborhood). Several works have 

been proposed using cellular automata for traffic simulations.  

CA are synchronous, a fact that poses several constraints in the timing precision for the models, and a 

discrete-time approach might be not effective. The Cell-DEVS formalism was proposed to solve this kind 

of problems. Cell-DEVS (Wainer 2009) extends CA providing Discrete Events Systems Specifications 

based on DEVS (Zeigler et al. 2000), a formalism for modeling discrete-event dynamic systems that 

allows for hierarchical decomposition of the model by defining a way to couple existing DEVS models. 

Cellular models can be described as discrete event models with explicit transport and inertial delays to 

model speed of the vehicle movement accurately.  

Here we present new constructions for a library for traffic analysis implemented as DEVS and Cell-

DEVS models. The library contains numerous models, including a one-lane one-direction traffic cellular 

model, a bidirectional traffic cellular model, crossings with traffic lights or stop signs and pedestrian 

control systems, traffic monitoring models, roundabouts, controller for a bridge with alternating traffic 

lights, highway tolls, highway interchanges, etc. The models are public domain and the tool and library 

are available at http://cell-devs.sce.carleton.ca. We also introduced advanced visualization using Maya for 

3D models. 

2 BACKGROUND 

Nowadays, most existing techniques are based on microscopic models, which describe both the system 

entities and their interactions at a high level of detail (for example, a lane change could consider nearby 

cars, as well as detailed driver decisions). Different modeling techniques have been used to create traffic 

simulations, including queuing networks (Schmidt 2000), Cellular Automata (Treiber et al. 2000), 

software agents (Balmer et al. 2004), and other approaches, including Game Theory (Chen and Ben-

Akiva 1998), Petri Nets (Tolba et al. 2005), up to fluid or electrical flow models. 

Cellular Automata (CA) is a popular technique widely used for defining these kinds of models (Maniezzo 

2004; Nagel et al. 2000; Nagel 2002; Esser and Schreckenberg 1997; Marinosson 2002; Rickert et al. 

1996). CA define a grid of cells using discrete variables for time, space and system states (Chopard and 

Droz 1998, Wolfram 2002). Cells are updated synchronously and in parallel for every cell in the space 

according with a local rule using a finite set of nearby cells (the neighborhood). Cellular models represent 

a quite intuitive way of analyzing the traffic flow in detail, and they enable good visualization of the 

results. Nonetheless, CA are synchronous, a fact that poses precision constraints and extra computing 

time. The Cell-DEVS formalism (Wainer and Giambiasi 2002) was proposed to solve these problems by 

defining cell spaces as DEVS (Discrete Events systems Specifications) models (Zeigler et al. 2000). 

Using Cell-DEVS, a cell space is described as a discrete event model in which explicit delays can be used 

to accurately model the cell timing properties. 

Cell-DEVS is an extension of DEVS that can be used for modeling and simulation of systems in a cell 

space. It is a combination of DEVS and cellular automata (CA) with explicit timing delays (Wainer 

2009). Each cell becomes an individual atomic model and the cell space becomes a coupled model where 

all the cells are linked to their neighbors through input and output ports, as in regular DEVS models. A 

cell-DEVS model can be described by the conceptual diagram presented in Figure 1.  

Each cell receives N inputs, usually from neighboring cells but they could also be provided by a regular 

DEVS model. When a cell receives these inputs, it triggers τ, the local computing function that will 

determine the next state, s′. At this moment, if the cell’s future state s′ is different than its current state s, 

it will schedule an output of its new state following a transportation delay specified by d. Whenever a cell 

changes state, its new state s′ and scheduled time for transition are added to a local queue. Cells with 

transport delays will always output their new state, provided a state change has occurred. If a cell’s state 

http://cell-devs.sce.carleton.ca/
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does not change following the local computing function τ, it becomes passive and waits for further 

external events. Cells can also use inertial delays which allow pre-emption of the cell’s state transition. A 

cell with inertial delay that does not manage to keep its new state until the next scheduled time elapses is 

pre-empted and foregoes its output phase for the pre-empted state transition (Wainer 2009).  

 

Figure 1: Cell-DEVS atomic model definition (with transport delay). 

The CD++ tool implements the DEVS theory. It allows defining models according to the specifications 

introduced in the previous section (Wainer et al. 2001, Rodríguez and Wainer 1999). A set of independent 

applications related with the tool allows the user to have a complete toolkit to be applied in the 

development of simulation models.  

The tool is built as a hierarchy of models, each of them related with a simulation entity. Atomic models 

can be programmed and incorporated onto a basic class hierarchy programmed in C++. A specification 

language allows defining the model's coupling, including the initial values and external events.  

CD++ tool includes an interpreter for a specification language that allows describing the behavior of each 

cell of a cellular model, including its delay and neighborhood. In addition, it allows to define the size of 

the cell space and their connection with other DEVS models, the border and the initial state of each cell. 

To do so, the theoretical definitions of the Cell-DEVS formalism were used. The behavior specification 

for a cell is defined using a set of rules, each indicating the value for the cell's state if a condition is 

satisfied. The output of the model should be delayed by using a specified time. If the condition is not 

valid, the next rules in the list are evaluated until a rule is satisfied or there are no more rules. The main 

operators available include  Boolean, Comparison, Arithmetic, Number types, Neighborhood values, 

Time, Conditionals, Angle conversion, Pseudo-random numbers, Error rounding, Predefined constants 

(pi, e, gravity, etc.), and many others. 

3 TRAFFIC MODELING, SIMULATION AND VISUALIZATION  

In this section we introduce examples of our library, built using CD++, and discuss various case studies in 

the field of traffic modeling and simulation. We first show an example of a discrete-event model of a 

crossing with traffic lights and a speeding camera, and then various Cell-DEVS models showing how to 

define microscopic cellular models.  

Driving through an intersection after the light has turned red is probably one of the most dangerous traffic 

violations. According to the Insurance Institute for Highway Safety, every year, these accidents kill about 

800 people and rack up an estimated $7 billion dollars in property damage, medical bills, lost productivity 

and insurance hikes. Collisions resulting from red-light running tend to be more severe than other 

intersection collisions because they usually involve at least one vehicle travelling very quickly. In the 

most red-light running collisions, the vehicles hit each other at right angles causing severe injuries and 

often leading to death. Public awareness of red-light cameras improves driving behavior.  

We built a library to simulate red-light running detection, including three components built as DEVS 

models: electromagnetic detectors, embedded in the pavement just before the limit line, cameras and 

controller. Electromagnetic detectors, triggered by speeding vehicle, send signal to the controller that (if 
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the traffic light is red) activates the Camera which catches red-light runner. By using the speed 

measurements, the system predicts if a particular vehicle will not be able to stop before entering the 

intersection, and activates the camera. The first photo shows the rear view of the vehicle just before it 

enters the intersection, with the light showing red, and the second photo, taken a second or two later, 

shows the vehicle when it is in the intersection. The DEVS modes built for this kind of traffic modeling 

includes a Red Light Runner Detection (RLRD), a coupled model. RLRDs consist of two main 

components: an atomic Electromagnetic Detector (ED) and a coupled Camera System (CS). ED is in 

charge of detecting speeding vehicles and sending an activation signal. CS model is composed of two 

simple atomic models – Camera Controller (CC) and Camera (C). CC is responsible for detection input 

signals “RED On” and “ED activated” and producing the “Camera On” output signal when both input 

signals are detected. C, activated by an input signal from CC, captures video evidence and then sends it to 

a receiver. We also use a Counter for the number of violations to be sent to a Data Center model for 

analysis. Counter is an atomic model, responsible for counting number of violations and compute 

statistics. The camera system is supposed to record the vehicle license plate, the date and time, the 

location, the vehicle speed, and the amount of time elapsed since the light turned red and the vehicle 

passed into the intersection. The events can be captured as a series of photographs or a video.  

Figure 2 shows the structure of a case study in which we employed the library components to build a 

model of an intersection between two 2-lane streets with traffic lights and the detection system. Video 

evidence shows the vehicle before it enters the intersection on a red light signal and its progress through 

the intersection. Then, the data and images are sent wirelessly to the relevant law enforcement agency. 

We also include a Traffic Lights (TL) model, a coupled model consisting of two connected atomic models 

that create “RED On” signals. 

Red-light 
running camera

Electromagnetic 
detector

Electromagnetic 
detector

Red-light running 
camera

NORTH

SOUTH

EAST

WEST

 

Figure 2. Intersection equipped by the Red-Light Running Detection System. 

 

The top-level model, presented in Figure 3 is a coupled model composed of six basic components: the 

Traffic Lights model (TL), four identical Red Light Runner Detection (RLRD) models (one for each 

direction) and Counter. The four RLRDs represent four directions of intersection (NORTH, SOUTH, 

EAST, and WEST) respectively.  
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Figure 3. Structured model of the Red-Light Running Detection System. 

The library contains a number of atomic and coupled models that allow defining this model. We will 

show the details of one of the Atomic Models, in this case, the Traffic Lights Atomic Model, which 

represents two traffic lights working together on the intersection. The combination of traffic light cycles 

and the signal phase duration is represented in the following Table 1. As we can see, from the table 

duration of the Green signal is 60 sec, duration of the Yellow signal – 30 sec. Duration of the Red signal 

equal to the sum of Green and Red, 10 sec. 

Table 1. Light cycles and signal phase durations. 

State Direction Time, sec Outputs 

EW NS redEW redNS 

1 Green Red 60 0 1 

2 Yellow Red 30 0 1 

3 Red Green 60 1 0 

4 Red Yellow 30 1 0 

 

This model can be formally defined as  

 

Trafficlights=<X, S, Y, int, ext, , ta > 

X=Φ;   

 

Y= {redEW, redNS,}; 
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S={ EW_GREEN_NS_RED, EW_YELLOW_NS_RED, EW_RED_NS_GREEN,  

  EW_RED_NS_YELLOW }; 



int:  

 case EW_GREEN_NS_RED: 

  this->holdIn(active, greenTime); break; 

 case EW_YELLOW_NS_RED: 

  this->holdIn(active, yellowTime); break; 

 case EW_RED_NS_GREEN: 

  this->holdIn(active, greenTime); break; 

 case EW_RED_NS_YELLOW: 

  this->holdIn(active, yellowTime); 

 

 𝜆: 

if (curLightState == EW_RED_NS_YELLOW) 

  curLightState = EW_GREEN_NS_RED; 

 else 

  curLightState++; 

 

 switch(curLightState) 

  case EW_GREEN_NS_RED: 

   sendOutput( msg.time(), redEW, 0 ); 

   sendOutput( msg.time(), redNS, 1 ); 

   break; 

  case EW_YELLOW_NS_RED: 

   sendOutput( msg.time(), redEW, 0 ); 

   sendOutput( msg.time(), redNS, 1 ); 

   break; 

  case EW_RED_NS_GREEN: 

   sendOutput( msg.time(), redEW, 1 ); 

   sendOutput( msg.time(), redNS, 0 ); 

   break; 

  case EW_RED_NS_YELLOW: 

   sendOutput( msg.time(), redEW, 1 ); 

   sendOutput( msg.time(), redNS, 0 ); 

break; 

} 

 

ta (GreenTime) = 60 sec. 

ta (YellowTime) = 30 sec 

  

After implementing the model in CD++, we can use it for different scenarios. The following Table 2 

shows a simulation scenario to test the library, and the simulation results. 

Table 2. Testing TrafficLights 

Time Direction Outputs 

EW NS redEW redNS 

00:00:00:000 Yellow Red 0 1 

00:00:03:000 Red Green 1 0 

00:00:10:000 Red Yellow 1 0 

00:00:13:000 Green Red 0 1 

00:00:20:000 Yellow Red 0 1 

00:00:23:000 Red Green 1 0 
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TrafficLights outputFunction 

Timestamp: 00:00:10:000 curLightState: 3 

EW_RED_NS_YELLOW, redEW: 1, redNS 0 

TrafficLights internalFunction 

Timestamp: 00:00:10:000 redew 1 redns 0 

TrafficLights outputFunction 

Timestamp: 00:00:13:000 

curLightState: 0 EW_GREEN_NS_RED, redEW: 0, redNS 1 

TrafficLights internalFunction 

Timestamp: 00:00:13:000  redew 0  redns 1 

TrafficLights outputFunction 

Timestamp: 00:00:20:000 curLightState: 1 

EW_YELLOW_NS_RED, redEW: 0, redNS 1 

TrafficLights internalFunction 

Timestamp: 00:00:20:000 redew 0   redns 1 

TrafficLights outputFunction  

Timestamp: 00:00:23:000  curLightState: 2 

EW_RED_NS_GREEN, redEW: 1, redNS 0 

TrafficLights internalFunction 

Timestamp: 00:00:23:000 redew 1  redns 0 

As we can see, the model reproduces the case study according to the required specifications, allowing one 

conducting studies on the speed of traffic light configuration. Such formal model and its simulation 

results could be better analyzed using 3D visualization. In this case, we built a Maya extension to allow 

3D visualization of the models. Maya is a powerful application for three dimensional modeling and 

animation. To do that, we built Python script to interface a JASON file extracted from CD++. When the 

user developed python script is run, it should automatically execute the files and start animation. Below is 

Figure 4, which represents the software stack used.  

 

Figure 4: Software Architecture and tools for 3D visualization 
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MASH is a procedural node-based toolset that allows designers and artists to combine nodes to quickly 

create unique animations and effects. Its intuitive and easy-to-use procedural instancing and animation 

toolset is ideal for creating complex motion graphics, UI design, environments, animation, and effects. 

Maya now comes with Arnold, one of the best renderers available, to help make the rendering process faster 

and deliver better results. The animation workflow in Maya has seen some big changes the past few releases, 

and now, with a new Time Editor plus an improved Graph Editor, animating in Maya is faster and more artist-

friendly. Workspaces define the configuration of windows and panels, providing more flexibility to 

reconfigure panel layouts; you can open, close, and move windows and panels, dragging and dropping to 

dock and undock, almost anywhere in the interface. We used these tools to build the following 

components: 

- Python parser: we built an interface from JSON to Maya, which converts a JSON - XML like file 

generated by CD++ into a language Maya can understand. Maya has inbuilt objects which can be pulled in 

when required into the scene. If we need any new objects, we can generate them using the basic objects given 

by default in the tool. For our project, we created a city landscape, used to initialize MAYA file will initially 

have objects, running the python script, and converting the JASON file into timeline keyframes. Maya 

keyframes are used for animation (we also refer to them as "keys"). Keyframes are basically a marker 

used to specify an object's position and attributes at a given point in time.  

- Traffic flow: To illustrate a micro scaled model of a DEVS traffic flow model, we show an example in 

Figure 5. Traffic flows from the left to right, and it will be stopped to let the right-hand side traffic to pass as 

per traffic rules.  

          

Figure 5: Traffic execution in a Cell-DEVS model 

Based on this basic behavior, we define a 3D visualization including trees, plants, street vendor shops and 

high rise buildings to simulate a look and feel of a suburban city.  

Over imposing the cellular models into the 3D visualization results is simple; the formalization of the 

DEVS and Cell-DEVS models allows the software integration to be easily done and the analysis of the 

results in an immersive environment achievable. This can be seen in Figure 6. 
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Figure 6: City Visualization view 

4 CONCLUSION 

We introduced examples of a DEVS library which provides an application-oriented specification 

language, which allows the definition of complex traffic behavior using simple rules for a modeler. The 

models are formally specified, avoiding a high number of errors in the application, thus reducing the 

problem solving time. The high level specification of the problem to be modeled reduces the developing 

efforts, as the techniques presented permit to automatically build the structure for coupled models, and to 

generate rules for atomic models. In this way, changes in the system specification can be done in a simple 

fashion, without spending time in coding or testing every proposed solution to existing problems. In this 

way, a traffic analyzer can focus in the problem solving task, avoiding implementation or low level 

details. 

The constructions are mapped into DEVS and Cell-DEVS. These translated models are formally 

specified, and its correctness was proved, avoiding errors in their definition. Using this approach we could 

obtain: 

- Efficiency: by describing a high level specification of the problem to be modeled, we have reduced 

the effort needed in developing the application. The models execute using a discrete-event 

approach, which provide higher precision and speedups than the discrete time approaches. 

Likewise, the proposal automatically builds the structure for coupled models, generates rules for 

atomic models. In this way, changes in the system specification can be done in a simple fashion, 

without spending time in coding or testing every proposed solution to existing problems. 

- Adaptation: new rules can be easily incorporated, as we showed with different examples here (traffic 

lights, truck behavior, potholes, etc.).  

- Abstraction: the specifications were translated into executable models. In this way, a traffic analyzer 

can focus in the problem solving task, avoiding implementation or low level details. 
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