
Traffic Modeling with SUMO: a Tutorial

Davide Andrea Guastella∗1,2, Eladio Montero-Porras†2, Alejandro Morales-Hernández‡2,
and Gianluca Bontempi§2

1Aix Marseille University, CNRS, LIS, Marseille, France
2Machine Learning Group, Université Libre de Bruxelles

Abstract

This paper presents a step-by-step guide to generating and simulating a traffic scenario using the
open-source simulation tool SUMO. It introduces the common pipeline used to generate a synthetic
traffic model for SUMO, how to import existing traffic data into a model to achieve accuracy in traffic
simulation (that is, producing a traffic model which dynamics is similar to the real one). It also describes
how SUMO outputs information from simulation that can be used for data analysis purposes.

1 Introduction

The concept of Smart Transportation has become more predominant over the past decade, encompassing
innovative methods for the reduction of traffic congestion, traffic accidents, and air pollution, all of which
engender excessive costs to society and impact the general well-being of citizens. This is necessary because of
the increasing number of vehicles in urban environments. Although the awareness of city governments about
sustainable mobility, such as investing in the design and development of mass transportation systems to
reduce CO2 emissions, still the high number of vehicles makes it necessary to analyze and implement policies
for urban infrastructure management to optimally convey traffic and avoid congestion and the consequent
air pollution. On the one hand, the impact of the control strategies on road infrastructures is not observable
until they are deployed in the real world [5]. On the other hand, testing control strategies in real-life settings
are expensive, risky, and often unfeasible [1]. In this context, urban traffic simulation models have become an
indispensable asset, providing an in-silico environment where it is possible to design and assess alternative
control strategies before the deployment. In this context, urban traffic simulation models have become an
indispensable asset: these tools provide a lens through which it is possible to analyse control strategies in
silico. They rely on computational models to test these strategies before deploying them in the real world.

Some of the advantages of traffic simulators are detailed as follows [3]:

• Using a simulation model, traffic management experts can assess decision-making tasks to reduce traffic
congestion of certain sections of roads.

• A simulation model relies on an accurate topography of the city, consisting of buildings, roads, inter-
sections, bridges. Using appropriate modeling software, it is possible to improve the geometric design
of the road and see how these changes will affect the typical traffic flow.

• A simulation model allows evaluating the time and cost of the trip of vehicles. This is important when
it is necessary to determine the economic assessment of a road infrastructure change. A specialist
planning the transport work can conduct a comparative assessment of diverse options for traffic routes
without significant material and time costs.

∗davide.guastella@lis-lab.fr
†eladio.montero.porras@ulb.be
‡alejandro.morales.hernandez@ulb.be
§gianluca.bontempi@ulb.be

1

ar
X

iv
:2

30
4.

05
98

2v
2

 [
cs

.N
I]

 3
1

Ja
n

20
25

One of the challenges in traffic simulation lies in creating an accurate model of urban traffic: this requires
several types of data, which are not always publicly available. The required data include socio-economic
indicators as well as historical information about traffic flow. Having such information is crucial for defining
accurate synthetic traffic models.

The goal of this document is to introduce traffic scenario modeling with the open-source simulation tool
SUMO.

SUMO (Simulation of Urban MObility) is an open-source traffic simulation software designed for modeling
and analyzing transportation systems. Developed by the German Aerospace Center (DLR), SUMO allows
researchers, urban planners, and engineers to simulate realistic traffic scenarios, including private and public
transport, pedestrian movement, and traffic light systems. It provides a microscopic simulation approach,
meaning it models individual vehicle behavior based on car-following and lane-changing models. SUMO
supports various input data formats, including real-world road networks imported from OpenStreetMap
(OSM) and demand data from different sources, making it a versatile tool for traffic research and analysis.

One of SUMO’s key advantages is its flexibility in integrating with external applications, enabling users to
test traffic control algorithms, intelligent transportation systems (ITS), and autonomous vehicle coordination
strategies. It provides detailed outputs on traffic dynamics, such as travel times, emissions, and congestion
patterns for evaluating transportation policies and infrastructure planning.

The rest of the document is organized as follows: Section 2 introduces the common pipeline used to
generate a synthetic traffic model for SUMO. Section 3 describes how SUMO outputs information from
simulations, which can be used for traffic data analysis. Section 4 introduces the main tools that enable the
automatic generation of synthetic traffic models for SUMO.

2 Creating a Synthetic Traffic Scenario

SUMO enables generating random road networks or converting OpenStreetMap (OSM) extracts to a specific
format that can be used in SUMO, so to have a real-work representation of a road network. We will also
focus on modeling synthetic traffic flow, which can be generated from either existing information about
real traffic or generated randomly. Figure 1 shows the overall steps required to generate a synthetic traffic
scenario using SUMO. Each step will be discussed in the following sections.

• Input:
• OSM map (*.osm)
• Random generated map (netgenerate)

Generating the Road Network

• Import geometrical shapes: polyconvertImporting the TAZs

• Real traffic information: od2trips
• Random traffic: randomTripsTrips Generation

• Compute fastest/optimal routes : duarouter
• Iterative traffic assignment : duaiterateTraffic Assignment

• Simulation with or without user-interface: sumo/sumo-guiRunning the Simulation

• Vehicle-based information (raw position dump, emission, fcd output, lanechange)
• Simulated detectors (lane area detectors)Output Configuration

1

2

3

4

5

6

Figure 1: Main steps required to generate and simulate a traffic scenario with SUMO.

Following, we briefly describe the steps required to generate and simulate a traffic scenario:

❶ Importing the network: this step produces a road network model that can be used in SUMO. The

2

road network can be either generated randomly or converted from OpenStreetMap;

❷ Importing the Traffic Analysis Zones (TAZs): import traffic analysis zones definitions. TAZs
are polygons that delimits an urban environment according to some socio-economical indicators (such
as average income, education level, traffic pressure, or simply administrative boundaries). TAZs are
typically defined by governmental organizations. Dividing the environment into TAZs is useful to
model the traffic flow from one local area of a city to another one;

❸ Trips Generation: assign an origin and a destination to each vehicle that should be inserted into the
simulation. This can be done using either real or synthetic traffic data;

❹ Traffic Assignment: model the routes (herein a route is the complete path for going from origin to
destination) for each vehicle in the simulation;

❺ Simulation: simulate traffic using the road network and the defined traffic model;

❻ Output Configuration: output information generated from the simulation that can be used for
traffic analysis purposes;

2.1 Road Network Generation (step ❶)

This section introduces the tools available in SUMO to create a random road network and to import a road
network from OpenStreetMap.

2.1.1 Random Road Networks

The command netgenerate1 allows generating three types of abstract road networks: grid (using --grid

parameter), spider (using --spider parameter) and random (using --random parameter). The use of
randomly generated road networks is pertinent to validate data analysis techniques in traffic domain; the
same technique that rely on traffic data can be evaluated on several simulated scenarios, each one having a
specific topology, type of junctions, or traffic light options.

The following command creates a random grid-like road network topology:

> netgenerate --grid --grid.number=10 --grid.length=400

--output-file=MySUMOFile.net.xml

which produces the output shown in Figure 2.

Figure 2: Random grid road network topology generated by netgenerate.

The following command creates a random spider-like road network topology:

1https://sumo.dlr.de/docs/netgenerate.html

3

https://sumo.dlr.de/docs/netgenerate.html

> netgenerate --spider --spider-omit-center --output-file=MySUMOFile.net.xml

which produces the output shown in Figure 3.

Figure 3: Random spider-like road network topology generated by netgenerate.

The following command creates a random road network topology:

> netgenerate --rand -o MySUMOFile.net.xml --rand.iterations=200

which produces the output shown in Figure 4.

Figure 4: Random road network topology generated by netgenerate.

Additionally, by setting the option --rand.grid, additional grid structure is enforce during random
network generation, which produces the output shown in Figure 5.

2.1.2 Extracting a Road Network Topology from OpenStreetMap

In SUMO, a model of a real road network can be defined manually. To do this, an XML file must be defined,
containing elements such as the roads definition, intersections, and traffic lights. However, manually defining
the road network topology for a real urban area is impractical due to the significant amount of time required.
To tackle this issue, SUMO provides a tool to convert road network from OpenStreetMap (OSM) files.

The first step to import a road network from OSM in SUMO is to select the region to be modeled, as
shown in Figure 6.

4

Figure 5

Figure 6: OSM allows exporting a selected area into an XML format.

The next step is to export and download the map. If the “Export” button is selected and the selected
area is too big, then OSM will not export the selected area because the number of nodes within the area
is above the limit (50000 is the maximum allowed nodes in a selected region for exporting). By selecting
the “overpass API” link it is possible to overcome this problem. The output is an XML file containing
the definition of all the features in the selected region. In OSM, a feature is any physical element (natural
or human-made) in the landscape. Some examples of features are buildings, roads, vegetation, land use,
railways, and waterways.

In some cases, it is required to model a specific part of the real environment. For this, exporting the
OSM file from the website as discussed previously is not a pertinent solution, as this can include parts of
the real environment that must not be modeled. Suppose we must model the road network for a part of the
Ixelles municipality (Belgium, Figure 7):

By using the OSM tool, it is not possible to obtain a network containing only the roads included in the

5

Figure 7: Part of the Ixelles municipality, Belgium

part of environment in Figure 7. To extract the road network for a specific part of the environment, first
define the polygon in geoJSON delimiting the road network to model. Figure 8 shows a polygon enclosing
a part of the Ixelles municipality. Any online geoJSON modeling tool can be used for this purpose. Herein
we use geojson.io.

After generating the geoJSON containing the polygon that delimitates the road network to model, the
following steps must be executed to obtain a road network for SUMO:

• Download the *.pbf file of the country that includes the road network part to model (for Belgium the
file is available at https://download.geofabrik.de/europe/belgium.html)

• Install osmium and osmfilter. In Mac Os X, can be installed through brew2.

• Extract the *.pbf containing only the elements included in the defined polygon:

osmium extract -p my_poly.geojson my_country.osm.pbf

-o filtered.pbf --set-bounds --overwrite

where my poly.geojson is the geoJSON file, my country.osm.pbf is the file of the modelled country,
filtered.pbf is the filtered country *.pbf file referring to only the part included in the defined
polygon.

• Convert *.pbf to *.osm:

osmium cat filtered.pbf -o road_net.osm

• Filter only the road network. All unnecessary elements such as buildings or walkways are discarded:

osmfilter road_net.osm --keep="highway=* building=*" -o=road_net_filtered.osm

2https://brew.sh

6

geojson.io
https://download.geofabrik.de/europe/belgium.html
https://brew.sh

Figure 8: Modelling a specific part of the real environment using a geoJSON online tool.

• Finally, the output file road net filtered.osm can be converted to SUMO format using the netconvert
tool:

netconvert --osm road_net_filtered.osm -o net.xml --ramps.guess

--junctions.join --remove-edges.isolated --output.street-names

--output.original-names

All the features in the OSM XML file are represented as “node” tags. Each node has an identifier, a
position (in latitude/longitude), and other useful information that allows identifying the type of node, such
as the type of road, building (apartments, offices, theaters, etc.), or bike lane.

Before converting the OSM file into a format compatible with SUMO, it may be useful for decision-making
purposes to modify certain properties of the road network, such as the direction of the roads. Appendix B
includes the Python code to reverse the direction of one or more roads in an OSM-format road network.

To use an OSM map in SUMO, it is necessary to convert the XML file containing the definition of the
extracted urban area to a specific format for use with the simulator. SUMO comes with a tool named
netconvert3, that allows importing road networks from different sources such as:

• “SUMO plain” XML descriptions (*.edg.xml, *.nod.xml, *.con.xml, *.tll.xml)

• OpenStreetMap (*.osm.xml/*.osm), including shapes (see OpenStreetMap import)

• VISUM, including shapes and demands

• Vissim, including demands

• OpenDRIVE

• MATsim

• SUMO (*.net.xml)

• Shapefiles (.shp, .shx, .dbf), e.g. ArcView and newer Tiger networks

• Robocup Rescue League, including shapes

• a DLR internal variant of Navteq’s GDF (Elmar format)

3https://sumo.dlr.de/docs/netconvert.html

7

https://sumo.dlr.de/docs/netconvert.html

In its most simple usage, netconvert takes in input only the XML file obtained from OSM (parameter
--osm), and output a road network in XML file (parameter -o):

> netconvert --osm my_osm_net.xml -o my_sumo_net.net.xml

We suggest using netconvert with the following options:

• --ramps.guess: Enable ramp-guessing.

• --junctions.join: Joins junctions that are close to each other.

• --tls.guess-signals: Interprets tls nodes surrounding an intersection as signal positions for a larger
TLS.

• --tls.discard-simple: Does not instantiate traffic lights at geometry-like nodes loaded from other
formats than plain-XML.

• --tls.join: Try to cluster tls-controlled nodes.

• --tls.default-type actuated: Use traffic light programs that adapt to demand dynamically.

• -t $SUMO HOME/data/typemap/osmNetconvert.typ.xml: use standard types for converting to SUMO
format.

• --remove-edges.by-vclass rail slow,rail fast,bicycle,pedestrian: Remove edges where trains,
bikes and pedestrian are allowed. This keeps only the edges for vehicular traffic.

• --remove-edges.isolated: remove isolated edges in the road network.

• --output.street-names: Street names will be included in the output.

• --output.original-names: Keep the original names of the streets in OSM.

2.2 Traffic Assignment Zones (TAZs, step ❷)

Traffic Analysis Zones (TAZs) are spatial units used in transportation modeling and traffic studies to rep-
resent areas with similar travel behavior. A TAZ typically models a neighborhood or district, and serves
as a fundamental unit for estimating travel demand. Each zone can be associated with socio-economic and
demographic data, such as population, employment, and land use. This information influences the num-
ber and type of trips generated within the area. TAZs are commonly used in trip-based models, such as
the traditional four-step travel demand model (trip generation, trip distribution, mode choice, and route
assignment).

Figure 9 shows the inner part of the route network of the city of Brussels, extracted from OSM and
imported in SUMO using the netconvert tool. The area covers approximately an area of 24.000m2. For
sake of simplicity, we model only the road network, therefore excluding railways and other buildings.

We now evaluate the TAZs for the modeled area using the spatial boundaries of Brussels Capital Region’s
neighborhoods. This data is freely available from the computer center for the Brussels Region (Centre
d’Informatique pour la Région Bruxelloise, CIRB)4. The data is provided as shapefile, a geo-spatial vector
data format commonly used for Geographic Information System (GIS) software.

To use the shapefile in SUMO as TAZs, this must be converted in a proper format using the polyconvert5

tool. This tool can be used to generate additional files for SUMO containing information about all the
polygons (e.g., buildings, grounds, etc.).

The following command extracts the polygons from a shapefile and convert them in a format compatible
with SUMO. The value “UrbAdm Monitoring District” is the prefix of the shapefile from CIRB, containing
the spatial boundaries of Brussels neighborhoods.

4https://data.metabolismofcities.org/library/33895/
5https://sumo.dlr.de/docs/polyconvert.html

8

https://data.metabolismofcities.org/library/33895/
https://sumo.dlr.de/docs/polyconvert.html

0 1000m

Figure 9: Road network of the city of Brussels.

> polyconvert --shapefile-prefix UrbAdm_Monitoring_District

--shapefile.guess-projection true --shapefile.traditional-axis-mapping true

--shapefile.id-column ID -n ../bxl.net.xml -o blx.poly.xml

where UrbAdm_Monitoring_District is the prefix of the shapefile. The parameter --shapefile.guess-projection
takes a boolean value: if true, the program guesses the shapefile’s projection. --shapefile.id-column is
the name of the column containing the ID of each shape in the shapefile. The parameters -n and -o are
respectively the road network definition and the output XML file that can be used with SUMO.

Figure 10 shows the road network of Brussels city and the polygons delimiting the neighborhoods, ob-
tained from the shapefile of CIRB. Each neighborhood is colored randomly. We used the netedit tool to
visualize the road network and the neighborhood.

SUMO provides the tool edgesInDistricts6 to convert polygons delimiting the neighborhoods to TAZs.
This tool reads the polygons from an input polygon files (created using polyconvert) and output an
XML containing the TAZs definition. Each TAZ includes all the edges inside the polygon. The tool
edgesInDistricts can be used as follow:

> python $SUMO_HOME/tools/edgesInDistricts.py -n bxl.net.xml

-t taz.poly.xml -o TAZ.xml

The output file containing the TAZs has the following format:

<?xml version="1.0" encoding="UTF-8"?>

<tazs xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="http://sumo.dlr.de/xsd/taz_file.xsd">

<taz id="ANDERLECHT CENTRE - WAYEZ" color="51,128,255" edges="-1019451816#0

-1019451816#1 -106463402#0 -106463402#1 ..."/>

<taz id="ANNEESSENS" color="51,128,255" edges="-1007289475 ..."/>

...

</tazs>

6https://sumo.dlr.de/docs/Tools/District.html

9

https://sumo.dlr.de/docs/Tools/District.html

Figure 10: Spatial boundaries of Brussels capital region’s neighborhoods in SUMO. Colors are assigned
randomly to each neighborhood.

In case the polygons that separate the modeled urban area are not available, the TAZs can be generated
randomly. SUMO provides two commands for this:

• generateBidiDistricts.py: create TAZs and assign to each one edges that are opposite of each
other;

• gridDistricts.py: create a grid of TAZs for an input road network, each one with a specified size
(in meters).

Figure 11 shows the TAZs generated randomly using the gridDistricts.py tool.

2.3 Trips Generation (step ❸)

Trips are the building blocks for modeling vehicular traffic. A trip is identified by a departure time, an origin
and a destination point. A trip is associated with one unique vehicle.

2.3.1 Using OD-Based Traffic Demand

Trips in SUMO can be modeled starting from Origin/Destination (OD) matrices. The content of an OD
matrix is the number of vehicles that flow from an origin to a destination during a specific time horizon.

The command od2trips7 imports OD matrices and splits them into individual vehicle trips. In the
output file, each trip is defined by an id with starting and ending time (included inside the given time-lapse),
and the origin and destination edges in the road network. If different transportation modes are considered,
then od2trips must be used for each transportation mode and for each modeled time horizon.

The following command produces a trip file for SUMO starting from an OD demand definition in file
“OD matrix.od”:

> od2trips -v --taz-files TAZs.taz.xml --vtype passenger --prefix car

--od-matrix-files OD_matrix.od -o output/output.odtrips.xml

7https://sumo.dlr.de/docs/od2trips.html

10

https://sumo.dlr.de/docs/od2trips.html

Figure 11: TAZs generated using the gridDistricts.py tool

An OD matrix is typically in O-format, that lists each origin and each destination together with the
amount of vehicles flowing from origin to destination. Following, we show an example of OD matrix in
O-format.

$OR;D2
* From-Time To-Time

7.00 8.00

* Factor

1.00

1 1 1.00

1 2 2.00

1 3 3.00

2 1 4.00

2 2 5.00

2 3 6.00

3 1 7.00

3 2 8.00

3 3 9.00

where:

• The first line is a format specifier that must be included verbatim.

• The lines starting with ‘*’ are comments and can be omitted

• The second non-comment line determines the time range given as HOUR.MINUTE HOUR.MINUTE

• The third line is a global scaling factor for the number of vehicles for each cell

• All other lines describe matrix cells in the form FROM TO NUMVEHICLES

A further TAZ format supported by SUMO is the tazRelation. The following example shows how to
use OD traffic demand in the tazRelation format and generate a traffic demand compatible with SUMO.
Figure 12 shows a sample road network. In this network, we consider eight edges as origins and destinations.

11

D1

D2

D3

D4

D7

D5

D6

D8

Figure 12: Road network example. Edges from D1 to D8 are used to model origin and destination of vehicles.

Following, we report an example of OD demand definition in tazRelation format for the road network in
Figure 12.

<data>

<interval id="0" begin="0" end="3600">

<tazRelation from="D2" to="D7" count="100"/>

<tazRelation from="D2" to="D5" count="30"/>

<tazRelation from="D2" to="D3" count="90"/>

<tazRelation from="D8" to="D1" count="90"/>

<tazRelation from="D8" to="D3" count="200"/>

<tazRelation from="D8" to="D5" count="50"/>

<tazRelation from="D4" to="D1" count="10"/>

<tazRelation from="D4" to="D7" count="170"/>

<tazRelation from="D4" to="D5" count="90"/>

<tazRelation from="D6" to="D3" count="110"/>

<tazRelation from="D6" to="D7" count="30"/>

<tazRelation from="D6" to="D1" count="80"/>

</interval>

</data>

The from and to fields indicate respectively the origin and destination edges. The field count is the
number of vehicles that must flow from the origin to the destination edge during the interval “0”. We now
use the tool od2trips to imports OD demand in tazRelation and split them into individual vehicle trips.
This tool generates an XML file that has the following format (using the previous TAZ definition):

<routes>

<trip id="63" depart="0.79" from="D2" to="D3" fromTaz="D2" toTaz="D3"/>

<trip id="282" depart="2.83" from="D4" to="D5" fromTaz="D4" toTaz="D5"/>

<trip id="516" depart="4.77" from="D6" to="D1" fromTaz="D6" toTaz="D1"/>

<trip id="327" depart="8.55" from="D4" to="D7" fromTaz="D4" toTaz="D7"/>

<trip id="244" depart="11.12" from="D4" to="D5" fromTaz="D4" toTaz="D5"/>

<trip id="88" depart="16.72" from="D2" to="D3" fromTaz="D2" toTaz="D3"/>

<trip id="9" depart="18.39" from="D2" to="D3" fromTaz="D2" toTaz="D3"/>

...

<routes/>

12

Differently from the tazRelation format, the file generated by od2trips contains information about each
vehicle that should be inserted into the simulation. Next, we use the trip file in the subsequent traffic
assignment (Section 2.4), followed by the simulation step. The traffic assignment involves finding a path
from the origin to the destination edge.

SUMO also provides a tool that allows generating OD matrices from TAZs and route definition files,
named route2OD.py8. Following we show an example of, requiring a route file (-r), and a TAZs file (-a).

> python $SUMO_HOME/tools/route/route2OD.py -r duarouter.rou.xml

-a TAZ.xml -o OD_matrix.xml

We provide a script to generate random OD traffic demand9 (called ODDemandGenerator.py), which
can be used as follow:

> python ODDemandGenerator.py -n my_net.net.xml -t taz.out.xml -p 10

-x odpairs.xml -l 0 -j 10

The output of this script are two: the TAZ definition file and the OD demand definition.

2.3.2 Generating Random Trips

SUMO provides the tool randomTrips.py10 to generate random trips for a given road network. It does so
by choosing source and destination edge either uniformly or at random. The resulting trips are stored in an
XML file that can be later used with duarouter11, a tool available in SUMO for generating routes. The trips
are distributed evenly in a temporal interval defined by begin (option -b, default 0) and end time (option
-e, default 3600) in seconds. The number of trips is defined by the repetition rate (option -p, default 1) in
seconds.

The following command generates random trips starting in one hour interval for a given road network
(parameter -n):

> python tools/randomTrips.py -n <net-file> -e 3600

The randomTrips command allows specifying the density of traffic generated per unit of time. By
default, one vehicle is added into the simulation at each second. The period at which vehicles are added
into the simulation can be specified by using the --period <FLOAT> option: in this way, the arrival rate is
of (1/period) per second. By using values below 1, multiple vehicles are added into the simulation at each
second.

If several <FLOAT> numbers are provided, like in --period 1.0 0.5, the time interval will be divided
equally into sub-intervals, and the arrival rate for each sub-interval is controlled by the corresponding period
(in the preceding example, a period of 1.0 will be used for the first sub-interval and a period of 0.5 will be
used for the second). There are two other ways to specify the insertion rate:

• using the --insertion-rate parameter: this is the number of vehicles per hour that the user expects.

• using the --insertion-density parameter: this is the number of vehicles per hour per kilometer of
road that the user expects (the total length of the road is computed with respect to a certain vehicle
class that can be changed with the option –edge-permission).

When adding option --binomial <INT> the arrivals will be randomized using a binomial distribution
where n (the maximum number of simultaneous arrivals) is given by the argument to --binomial and the
expected arrival rate is 1/period.

Let us suppose we want to let n vehicles depart between times t0 and t1 set the options, the following
parameters must be provided:

> python tools/randomTrips.py -n <net-file> -b t0 -e t1 -p ((t1 - t0) / n)

8https://sumo.dlr.de/docs/Tools/Routes.html#route2odpy
9https://github.com/davide990/ODgenerator

10https://sumo.dlr.de/docs/Tools/Trip.html#randomtripspy
11https://sumo.dlr.de/docs/duarouter.html

13

https://sumo.dlr.de/docs/Tools/Routes.html#route2odpy
https://github.com/davide990/ODgenerator
https://sumo.dlr.de/docs/Tools/Trip.html#randomtripspy
https://sumo.dlr.de/docs/duarouter.html

By default the departures of all vehicles are equally spaced in time. Since the inserted vehicle are spread
randomly over the whole network, this comes out as a binomial distribution of inserted vehicles for each
individual edge which gives a good approximation to the Poisson distribution if the network is large (and
hence the insertion probability of each edge is small). By setting set option --random-depart, the (still
fixed) number of departure times are drawn from a uniform distribution over [begin, end]. This leads to
an exponential distribution of insertion time headways between vehicles on all edges (which is the headway
pattern of the Poisson distribution). Hence, this is useful to have a more varied insertion time pattern for
small networks.

One interesting feature that is available in randomTrips is that it is possible to assign a unique weight
to each edge into the input network by using the --weights-prefix <STRING> paraemter with the prefix
value as argument.

The tool will load weights for all edges by finding a file (within the running directory) with extension
.src.xml, .dst.xml or .via.xml. According to the file extension, weights are used differently for routes gener-
ation:

• .src.xml contains the probabilities for an edge to be selected as from-edge

• .dst.xml contains the probabilities for an edge to be selected as to-edge

• .via.xml contains the probabilities for an edge to be selected as via-edge (only used when option
--intermediate is set).

2.4 Traffic Assignment (step ❹)

So far, we have described how to create trips, each specifying a vehicle’s origin, destination, and the time at
which it should be introduced into the traffic simulation. Now, we explain how to generate routes. A route
consists of a sequence of edges that define the specific sections of the road network a vehicle must traverse
during the simulation. In other words, a route must be assigned to each trip to ensure that vehicles can
navigate from their origin to their destination.

Although in the scientific literature there are several vehicular routing algorithms [6], herein we will use
the routing method provided by SUMO through the duarouter tool. By default, this tool uses the Dijkstra
to generate routes, but there are other methods available: A*, CH (Contraction Hierarchies), CH Wrapper.

The following command shows how to use the duarouter tool to generate routes:

> duarouter --net-file osm.net.xml --route-files od2trips.out.xml

--output-file duarouter.rou.xml

where --net-file is the file name of the road network, --route-files it the file containing the trips.
The routing process can also be performed iteratively by using the duaIterate.py12 script. This executes

iteratively the following steps, in order:

1. Execute duarouter to perform the (re-)routing

2. Calling SUMO to simulate travel times

To optimize traffic flow, the duaIterate.py tool executes several simulations (the number of simulation
can be configured). For each simulation, the tool finds a set of alternative routes that reduce the travel time
for all vehicles. These routes are defined based on the traffic information produced by the simulation.

The following step consists of choosing routes in a set of alternatives. SUMO includes two route choice
models: Gawron and Logit, both considering a weight/cost function.

Gawron proposes a probabilistic approach in which each route choice is modeled by a discrete probability
distribution [4]. The algorithm takes in input the following parameters:

• the travel time along the used route in the previous simulation step,

• the sum of edge travel times for a set of alternative routes,

12https://sumo.dlr.de/docs/Tools/Assign.html#duaiteratepy

14

https://sumo.dlr.de/docs/Tools/Assign.html#duaiteratepy

• the probability of choosing a route in the previous simulation step.

In each simulation, a driver d chooses a route r from a set Rd (in which the driver is allowed to transit)
according to the probability distribution pd. Each route is associated with a cost cd : Rd → R+; this function
estimates the time required by the driver to reach the destination. The driver cannot know in advance the
amount of traffic in the road network; so, the idea is that the driver evaluate an estimate of the time needed,
and updates incrementally (at each simulation) its knowledge about the time required to reach a certain
destination.

In Logit method, the required amount of time to travel each road is calculated according to only the
information from the last simulation: it ignores old costs and old probabilities and takes the route cost
directly as the sum of the edge costs from the last simulation:

c′r =
∑
e∈r

w(e) (1)

where c′r is the updated cost of route r, w(e) is the weight of the edge e calculated from the input weight/cost
function. The probability p′r for each route r is calculated from an exponential function with parameter θ
scaled by the sum over all route values:

p′r =
exp (θc′r)∑
s∈R exp (θc′s)

(2)

where c′r is the cost of route r, w(e) is the weight of the edge e calculated from the input weight/cost function.
The following command shows how to use the duaIterate tool to generate optimized routes:

> python $SUMO_HOME/tools/assign/duaIterate.py -n road_net.xml

-t trips.rou.xml -l 2

where -n is the file name of the road network, -t it the file containing the trips, -l the number of iterations
(using a number of iterations of 1 is equivalent to calling duarouter). By default, the Gawron model is used
as the default route choice model.

2.5 Running the simulation (step ❺)

SUMO provides two ways of executing simulations: from the command line (using the sumo command)
and from the graphical interface (using the sumo-gui command). Both commands use the same set of
parameters, including the road network, routes, and the time horizon over which the simulation is conducted.
Alternatively, a unique configuration file can be provided as parameter (using the parameter-c), containing all
the required parameters and files for running a simulation. Following, we show an example of a configuration
file:

<configuration>

<input>

<net-file value="test.net.xml"/>

<route-files value="test.rou.xml"/>

<additional-files value="test.add.xml"/>

</input>

</configuration>

SUMO can be launched using the following command (assuming that the previous configuration file is named
test.sumocfg):

> sumo -c test.sumocfg

Optionally, SUMO provides a graphical interface, available using the sumo-gui command (instead of
sumo). The interface provides a graphical way to monitoring traffic during the simulation. Figure 13 shows
the SUMO graphical user interface.

15

Figure 13: SUMO graphical user interface.

3 Output Configuration (step ❻)

SUMO allows generating output files containing several measures about traffic. These output files can be
used to analyze traffic patterns or congestion phenomena.

A complete list of the output files that can be produced by the simulator is available at the SUMO
website13.

3.1 Virtual Traffic Monitoring Sensors

SUMO allows adding virtual monitoring devices that produce traffic counts. This is to simulate the behavior
of traffic monitoring devices such as camera or induction loops. One type of virtual sensor, known in SUMO
as laneAreaDetector, monitor traffic along one specific lane. Their functioning is similar to traffic cameras.

A laneAreaDetector can be defined using the netedit14 tool, or using a specific XML definition. Figure 14
shows a map of Brussels city where multiple laneAreaDetector sensors (in teal color) have been placed
arbitrarily.

After the definition of virtual sensors in netedit, the set of sensors can be exported as an XML file,
which has the following format:

<?xml version="1.0" encoding="UTF-8"?>

<additional xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="http://sumo.dlr.de/xsd/additional_file.xsd">

<laneAreaDetector id="e2_0" lane="-159327011#2_0" pos="0.0"

length="138.630000" period="100" file="detectors.out.xml"/>

<laneAreaDetector id="e2_1" lane="15497309#1_0" pos="0.0"

length="1.940000" period="100" file="detectors.out.xml"/>

...

</additional>

where the parameter file is the path to the file that contains the traffic counts produced by virtual sensors.
To use virtual sensors in SUMO, the XML file containing their definition must be provided as input to the

13https://sumo.dlr.de/docs/Simulation/Output/index.html
14https://sumo.dlr.de/docs/Netedit/index.html

16

https://sumo.dlr.de/docs/Simulation/Output/index.html
https://sumo.dlr.de/docs/Netedit/index.html

Figure 14: Position of lane area detectors (virtual sensors), colored in green, in a model of the city of Brussels.

simulator. At the end of a simulation, the file indicated in field file (in the previous example, “detec-
tors.out.xml”) contains the traffic counts observed by each sensor during the indicated time period. Table 1
reports the list of information generated by a virtual sensor.

Table 1: Subset of data types returned by each laneAreaDetector at the end of a simulation.

Name Unit Description

begin
(simulation)
seconds

The first time step the values were collected in

end
(simulation)
seconds

The last time step + DELTA T the values were
collected in (may be equal to begin)

id id
The id of the detector (needed if several detectors
share an output file)

meanSpeed m/s The mean velocity over all collected data samples.

meanTimeLoss s
The average time loss per vehicle in the corresponding
interval. The total time loss can be obtained by
multiplying this value with nVehSeen.

meanOccupancy %
The percentage (0-100%) of the detector’s place that was
occupied by vehicles, summed up for each time step and
averaged by the interval duration.

maxOccupancy %
The maximum percentage (0-100%) of the detector’s place
that was occupied by vehicles during the interval.

maxVehicleNumber #
The maximum number of vehicles that were on the detector
area during the interval.

To use the virtual sensors in a simulation, the path to the XML file containing the definition of lan-
eAreaDetectors must be specified inside the <additional> tag of a SUMO configuration file (*.sumocfg), or
passed as parameter (-a).

17

We developed a tool in python language that enables generating random laneAreaDetectors in a given
road network15. The tool performs the following steps, in order:

1. extract the TAZs for the modeled road network (see Section 2.2);

2. extract all the edges and assign them to TAZs;

3. For each TAZ:

(a) choose one random location where to put a laneAreaDetector with probability p;

(b) Place the laneAreaDetectors into the network.

The probability p is calculated according to two strategies:

• by number of lanes: an edge has a probability of getting a virtual sensor proportional to the number
of lanes.

• by weight: the probability of an edge of getting a virtual sensor depends on a parameter specified
manually, and which values are in the ‘edgedata’ output file produced by SUMO16.

4 Tools for the Automatic Definition of Scenarios

4.1 SUMO OSM Web Wizard

The OSM Web Wizard17 is a web-based tool that offers an easy solutions to start modeling traffic scenarios
with SUMO. The user can specify the area to model graphically through an openstreetmap map excerpt,
and configure a randomized traffic demand and run and visualize the scenario in the sumo-gui. To run this
tool, the following command must be run:

> python $SUMO_HOME/tools/osmWebWizard.py

Figure 15 shows the OSM Web Wizard interface.

4.2 SAGA

SUMO Activity GenerAtion (SAGA) is a user-defined activity-based multimodal mobility scenario generator
for SUMO [2]. SAGA is capable of handling activity-based mobility from detailed information on the envi-
ronment (e.g., buildings, PoIs), as well as the transportation infrastructure. SAGA is capable of extracting
environmental information available automatically (from OSM) such as building and public transportation
lines, generating all the configuration files required by SUMO, and fills the missing information with sensible
default values. The output scenario is multi-modal, that is, including different types of transportation mean
for population, and includes also parking areas, buildings, Points of Interest (PoIs).

References

[1] J. Argota Sánchez-Vaquerizo. Getting Real: The Challenge of Building and Validating a Large-Scale Dig-
ital Twin of Barcelona’s Traffic with Empirical Data. ISPRS International Journal of Geo-Information,
11(1):24, December 2021.

[2] L. Codeca, J. Erdmann, V. Cahill, and J. Haerri. SAGA: An Activity-based Multi-modal Mobility
ScenarioGenerator for SUMO. SUMO Conference Proceedings, 1:39–58, June 2022.

[3] S. Dorokhin, A. Artemov, D. Likhachev, A. Novikov, and E. Starkov. Traffic simulation: an analytical
review. IOP Conference Series: Materials Science and Engineering, 918(1):012058, September 2020.

15https://gitlab.com/traffic-sim/random-lane-detector-placer
16https://sumo.dlr.de/docs/Simulation/Output/Lane- or Edge-based Traffic Measures.html
17https://sumo.dlr.de/docs/Tutorials/OSMWebWizard.html

18

https://gitlab.com/traffic-sim/random-lane-detector-placer
https://sumo.dlr.de/docs/Simulation/Output/Lane-_or_Edge-based_Traffic_Measures.html
https://sumo.dlr.de/docs/Tutorials/OSMWebWizard.html

Figure 15: SUMO OSM Web Wizard user interface.

[4] C. Gawron. An Iterative Algorithm to Determine the Dynamic User Equilibrium in a Traffic Simulation
Model. International Journal of Modern Physics C, 09(03):393–407, May 1998.

[5] K. Kušić, R. Schumann, and E. Ivanjko. A digital twin in transportation: Real-time synergy of traffic
data streams and simulation for virtualizing motorway dynamics. Advanced Engineering Informatics,
55:101858, 2023.

[6] V. Tran Ngoc Nha, D. Soufiene, and J. Murphy. A comparative study of vehicles’ routing algorithms for
route planning in smart cities. In 2012 First International Workshop on Vehicular Traffic Management
for Smart Cities (VTM), pages 1–6, 2012.

A Full Step-by-Step Examples

A.1 Example 1

Step 1 – Network generation

netgenerate --rand -o MySUMOFile.net.xml --rand.iterations=200

-j traffic_light --random

Step 2 – Random trips generation

python $SUMO_HOME/tools/randomTrips.py -n MySUMOFile.net.xml -e 3600

-o trips.rou.xml --random

Step 3 – Routing

duarouter --net-file MySUMOFile.net.xml --route-files trips.rou.xml

--output-file duarouter.rou.xml --ignore-errors

19

Step 4 – Configuration file generation

echo "<configuration>

<input>

<net-file value=\"MySUMOFile.net.xml\"/>

<route-files value=\"duarouter.rou.xml\"/>

</input>

</configuration>" | tee -a sumo.sumocfg

Step 5 – Simulation

sumo-gui -c sumo.sumocfg

A.2 Example 2

Step 1 – Network generation

netgenerate --rand -o MySUMOFile.net.xml --rand.iterations=300

-j traffic_light --random --rand.grid

Step 2 – Random trips generation

python $SUMO_HOME/tools/randomTrips.py -n MySUMOFile.net.xml -e 3600

-o trips.rou.xml --random --random-depart --binomial 20

Step 3 – Routing

duarouter --net-file MySUMOFile.net.xml --route-files trips.rou.xml

--output-file duarouter.rou.xml --ignore-errors --route-choice-method logit

Step 4 – Configuration file generation

echo "<configuration>

<input>

<net-file value=\"MySUMOFile.net.xml\"/>

<route-files value=\"duarouter.rou.xml\"/>

</input>

</configuration>" tee -a sumo2.sumocfg

Step 5 – Simulation

sumo-gui -c sumo2.sumocfg

A.3 Example 3

Step 1 – Get the map from OSM

python $SUMO_HOME/tools/osmGet.py --bbox="4.3583, 50.8362, 4.3696, 50.8455"

Step 2 – OSM map to SUMO network

python $SUMO_HOME/tools/osmBuild.py --osm-file osm_bbox.osm.xml

Step 3 – Extract the polygons from the OSM file

polyconvert --net-file osm.net.xml --osm-files osm_bbox.osm.xml

--type-file $SUMO_HOME/share/sumo/data/typemap/osmPolyconvert.typ.xml
-o polygons.poly.xml

20

Step 4 – Generate random trips

python $SUMO_HOME/tools/randomTrips.py -n osm.net.xml -e 3600 -o trips.rou.xml

--random --random-depart --binomial 10 --validate

Step 5 – Routing

duarouter --net-file osm.net.xml --route-files trips.rou.xml

--output-file duarouter.rou.xml --ignore-errors true

Step 6 – Configuration file generation

echo "<configuration>

<input>

<net-file value=\"osm.net.xml\"/>

<route-files value=\"duarouter.rou.xml\"/>

<additional-files value=\"polygons.poly.xml\"/>

</input>

</configuration>" tee -a sumo.sumocfg

Step 7 – Simulation

sumo-gui -c sumo2.sumocfg

A.4 Example 4

Step 1 – Scenario Definition

python $SUMO_HOME/tools/osmGet.py --bbox="4.3583, 50.8362, 4.3696, 50.8455"

python $SUMO_HOME/tools/osmBuild.py --osm-file osm_bbox.osm.xml

Step 2 – TAZs Extraction

polyconvert --net-file osm.net.xml --osm-files osm_bbox.osm.xml

--type-file $SUMO_HOME/share/sumo/data/typemap/osmPolyconvert.typ.xml
-o polygons.taz.xml --type taz

python $SUMO_HOME/tools/edgesInDistricts.py
-n osm.net.xml -t polygons.taz.xml -o TAZ.xml

-l passenger --complete

Step 3 – Random Traffic Generation

python $SUMO_HOME/tools/randomTrips.py -n osm.net.xml

-b 0 -e 3600 -o trips.rou.xml --random --random-depart

--binomial 10 --validate

Step 4 – Random traffic to OD-matrix

python $SUMO_HOME/tools/route/route2OD.py
-r trips.rou.xml -a TAZ.xml -o routes.xml -i 5

Step 5 – Importing OD-matrix

od2trips -z routes.xml -n TAZ.xml -b 0 -e 3600

-o od2trips.out.xml

21

Step 6 – Routing and Simulation

duarouter --net-file osm.net.xml --route-files od2trips.out.xml

--output-file duarouter.rou.xml --ignore-errors true

sumo-gui +a TAZ.xml -n osm.net.xml -r od2trips.out.xml -b 0

-e 3600 --edgedata-output edgedata.outsampler.xml --ignore-route-errors

A.5 Example 5

This example shows how to generate an inter-modal traffic scenario. We assume that the file “map.osm” is
the map downloaded from OSM.

Step 1 – OSM to SUMO, Public Transportation Data Extraction

netconvert --osm-files map.osm -o bxl.net.xml --osm.stop-output.length 20

--ptstop-output additional.xml --ptline-output ptlines.xml

Step 2 – Find Travel Times and Create Public Transportation Schedules

python $SUMO_HOME/tools/ptlines2flows.py -n bxl.net.xml -s additional.xml

-l ptlines.xml -o flows.rou.xml -p 600 --use-osm-routes --ignore-errors

Step 3 – Generate Random Traffic for Vehicles

python $SUMO_HOME/tools/randomTrips.py -n bxl.net.xml -b 0 -e 3600

-o passenger_trips.rou.xml --random --random-depart --validate

--vehicle-class passenger

Step 4 – Vehicles Routing

duarouter --net-file bxl.net.xml --route-files passenger_trips.rou.xml

--output-file duarouter_passenger.rou.xml --ignore-errors

Step 5 – Simulation

sumo-gui -n bxl.net.xml -r duarouter_passenger.rou.xml,flows.rou.xml -b 0

-e 3600 --edgedata-output edgedata.outsampler.xml

-a additional.xml --ignore-route-errors

B Reverting Road Direction in OSM

The following python method can be used to invert the direction of the edges whose ID is given in in-
put. This method works only if the SUMO road network has been converted from the OSM using the
--output.original-names.

def reverse_roads(edge_ids:list[String], osm_path:String) -> None:

tree = ET.parse(osm_path)

root = tree.getroot()

for child in root:

if "id" not in child.attrib:

continue

22

for edge_id in edge_ids:

if re.search(child.attrib["id"], edge_id):

found_oneway_tag = False

for tag_d in list(child.iter(’tag’)):

if tag_d.attrib["k"] == ’oneway’:

found_oneway_tag = True

if tag_d.attrib[’v’] == ’-1’:

tag_d.attrib[’v’] = ’yes’

else:

tag_d.attrib[’v’] = ’-1’

if not found_oneway_tag:

maybe it’s a 2direction street

removed = False

for tag_d in list(child.iter(’tag’)):

if tag_d.attrib["k"] == ’lanes’ or tag_d.attrib["k"] == ’oneway’:

child.remove(tag_d)

removed = True

if not removed:

item = ET.SubElement(child, "tag")

item.attrib["k"] = "lanes"

item.attrib["v"] = str(len(re.findall(child.attrib["id"], edge_id)))

item = ET.SubElement(child, "tag")

item.attrib["k"] = "oneway"

item.attrib["v"] = "-1"

with open("{}.rev.osm".format(osm_path), ’wb’) as f:

tree.write(f, encoding=’utf-8’)

The method takes in input a list of SUMO edges ID, and the full path to the OSM map. A for loop
iterates over all the OSM nodes having an ID. Then, we check if the ID of the current node is present in the
input list edge ids. If so, The node corresponds to an edge whose direction must be inverted. If the road is
one way, we change the value from -1 to ’yes’ (or the opposite) to invert the direction. If the road has more
than 2 lanes, then we search for the XML tag ’oneway’, and if it’s found, it is removed from the XML tree.
Otherwise, we change the value of ’oneway’ attribute as before.

C SUMO Installation

Detailed installation instructions are available in the SUMOwebsite: https://sumo.dlr.de/docs/Installing/
index.html

For OSX, we suggest using Homebrew (https://brew.sh/) to install SUMO. We recommend to use the
following commands, in order:

> brew install --cask xquartz

> brew tap dlr-ts/sumo

> brew install --with-examples --with-ffmpeg

--with-gdal --with-gl2ps --with-swig sumo

After the installation, the system variable SUMO_HOME must be set (system-wide) to the path containing
SUMO. Typically the path is as the following: /opt/homebrew/Cellar/sumo/1.XX.XX/.

23

https://sumo.dlr.de/docs/Installing/index.html
https://sumo.dlr.de/docs/Installing/index.html
https://brew.sh/
/opt/homebrew/Cellar/sumo/1.XX.XX/

D Common Issues

D.1 Broken Folder Links When Using SUMO on OSX

When using SUMO installed through homebrew into the path /opt/homebrew/Cellar/sumo/1.XX.XX/, the
following commands must be run to fix broken links in SUMO folders:

sudo ln -s $SUMO_HOME/share/sumo/tools/ $SUMO_HOME/
sudo ln -s $SUMO_HOME/share/sumo/data $SUMO_HOME/

5 Useful Resources

• https://www.eltis.org/sites/default/files/tool/conduits_key_performance_indicators_its.

pdf

• https://www.arcgis.com/home/item.html?id=f40c3fdb26c74e64af4f2cb8311c5559

• https://monitoringdesquartiers.brussels/maps/statistiques-population-bruxelles/evolution-population/

densite-de-population/1/2019/#

• https://www.acea.auto/files/ACEA-report-vehicles-in-use-europe-2022.pdf

• Number of households with cars (Belgium): https://statbel.fgov.be/en/themes/datalab/vehicles-household

24

/opt/homebrew/Cellar/sumo/1.XX.XX/
https://www.eltis.org/sites/default/files/tool/conduits_key_performance_indicators_its.pdf
https://www.eltis.org/sites/default/files/tool/conduits_key_performance_indicators_its.pdf
https://www.arcgis.com/home/item.html?id=f40c3fdb26c74e64af4f2cb8311c5559
https://monitoringdesquartiers.brussels/maps/statistiques-population-bruxelles/evolution-population/densite-de-population/1/2019/#
https://monitoringdesquartiers.brussels/maps/statistiques-population-bruxelles/evolution-population/densite-de-population/1/2019/#
https://www.acea.auto/files/ACEA-report-vehicles-in-use-europe-2022.pdf
https://statbel.fgov.be/en/themes/datalab/vehicles-household

	Introduction
	Creating a Synthetic Traffic Scenario
	Road Network Generation (step ❶)
	Random Road Networks
	Extracting a Road Network Topology from OpenStreetMap

	Traffic Assignment Zones (TAZs, step ❷)
	Trips Generation (step ❸)
	Using OD-Based Traffic Demand
	Generating Random Trips

	Traffic Assignment (step ❹)
	Running the simulation (step ❺)

	Output Configuration (step ❻)
	Virtual Traffic Monitoring Sensors

	Tools for the Automatic Definition of Scenarios
	SUMO OSM Web Wizard
	SAGA

	Appendices
	Full Step-by-Step Examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	Reverting Road Direction in OSM
	SUMO Installation
	Common Issues
	Broken Folder Links When Using SUMO on OSX

	Useful Resources

