Переглянути джерело

Updated first version of FSA semantics; still not fixed

Yentl Van Tendeloo 8 роки тому
батько
коміт
7bf1fbf8ef
1 змінених файлів з 553 додано та 0 видалено
  1. 553 0
      integration/code/fsa_semantics.alc

+ 553 - 0
integration/code/fsa_semantics.alc

@@ -0,0 +1,553 @@
+include "primitives.alh"
+include "modelling.alh"
+include "object_operations.alh"
+include "library.alh"
+include "conformance_scd.alh"
+include "io.alh"
+include "metamodels.alh"
+include "compilation_manager.alh"
+
+Element function retype_to_runtime(design_model : Element):
+	Element runtime_model
+	Element all_blocks
+	Element all_links
+	String mm_type_name
+	String element_name
+	String attr_name
+	String attr_value
+	String attribute
+	String src
+	String dst
+	String time
+	Element all_attributes
+
+	runtime_model = instantiate_model(import_node("models/CausalBlockDiagrams_Runtime"))
+
+	all_blocks = allInstances(design_model, "Block")
+	while (list_len(all_blocks) > 0):
+		element_name = set_pop(all_blocks)
+		mm_type_name = reverseKeyLookup(design_model["metamodel"]["model"], dict_read_node(design_model["type_mapping"], design_model["model"][element_name]))
+		element_name = instantiate_node(runtime_model, mm_type_name, element_name)
+		if (is_nominal_instance(design_model, element_name, "ConstantBlock")):
+			instantiate_attribute(runtime_model, element_name, "value", read_attribute(design_model, element_name, "value"))
+		elif (is_nominal_instance(design_model, element_name, "ProbeBlock")):
+			instantiate_attribute(runtime_model, element_name, "name", read_attribute(design_model, element_name, "name"))
+
+	// Don't merge this together with the block conversion, as the destination block might not exist yet!
+	all_links = allInstances(design_model, "Link")
+	while (read_nr_out(all_links) > 0):
+		element_name = set_pop(all_links)
+		src = reverseKeyLookup(design_model["model"], read_edge_src(design_model["model"][element_name]))
+		dst = reverseKeyLookup(design_model["model"], read_edge_dst(design_model["model"][element_name]))
+		instantiate_link(runtime_model, "Link", element_name, src, dst)
+
+	all_links = allInstances(design_model, "InitialCondition")
+	while (read_nr_out(all_links) > 0):
+		element_name = set_pop(all_links)
+		src = reverseKeyLookup(design_model["model"], read_edge_src(design_model["model"][element_name]))
+		dst = reverseKeyLookup(design_model["model"], read_edge_dst(design_model["model"][element_name]))
+		instantiate_link(runtime_model, "InitialCondition", element_name, src, dst)
+
+	return runtime_model!
+
+Element function sanitize(new_runtime_model : Element, old_runtime_model : Element):
+	Element all_blocks
+	Element all_links
+	String element_name
+	String attr_name
+	String attr_value
+	String attribute
+	String time
+	Element all_attributes
+	Float current_time
+
+	all_blocks = allInstances(new_runtime_model, "Block")
+	while (list_len(all_blocks) > 0):
+		element_name = set_pop(all_blocks)
+		if (dict_in(old_runtime_model["model"], element_name)):
+			if (is_nominal_instance(new_runtime_model, element_name, "ICBlock")):
+				instantiate_attribute(new_runtime_model, element_name, "last_in", read_attribute(old_runtime_model, element_name, "last_in"))
+			if (is_nominal_instance(new_runtime_model, element_name, "IntegratorBlock")):
+				instantiate_attribute(new_runtime_model, element_name, "last_out", read_attribute(old_runtime_model, element_name, "last_out"))
+			instantiate_attribute(new_runtime_model, element_name, "signal", read_attribute(old_runtime_model, element_name, "signal"))
+		else:
+			instantiate_attribute(new_runtime_model, element_name, "signal", 0.0)
+
+	if (dict_in(old_runtime_model["model"], "time")):
+		current_time = read_attribute(old_runtime_model, "time", "current_time")
+	else:
+		current_time = 0
+
+	time = instantiate_node(new_runtime_model, "Time", "time")
+	instantiate_attribute(new_runtime_model, time, "start_time", current_time)
+	instantiate_attribute(new_runtime_model, time, "current_time", current_time)
+
+	return new_runtime_model!
+
+Element function create_schedule(model : Element):
+	// Create nice graph first
+	Element nodes
+	Element successors
+	String element_name
+	Element incoming_links
+	Element all_blocks
+
+	nodes = allInstances(model, "Block")
+	successors = create_node()
+	while (read_nr_out(nodes) > 0):
+		element_name = set_pop(nodes)
+		if (bool_not(dict_in(successors, element_name))):
+			dict_add(successors, element_name, create_node())
+
+		if (is_nominal_instance(model, element_name, "ICBlock")):
+			if (element_eq(read_attribute(model, element_name, "last_in"), read_root())):
+				incoming_links = allIncomingAssociationInstances(model, element_name, "InitialCondition")
+			else:
+				incoming_links = create_node()
+			if (is_nominal_instance(model, element_name, "DerivatorBlock")):
+				Element new_incoming_links
+				new_incoming_links = allIncomingAssociationInstances(model, element_name, "Link")
+				while (read_nr_out(new_incoming_links) > 0):
+					list_append(incoming_links, set_pop(new_incoming_links))
+		else:
+			incoming_links = allIncomingAssociationInstances(model, element_name, "Link")
+
+		while (read_nr_out(incoming_links) > 0):
+			String source
+			source = readAssociationSource(model, set_pop(incoming_links))
+			if (bool_not(dict_in(successors, source))):
+				dict_add(successors, source, create_node())
+			set_add(successors[source], element_name)
+	
+	Element values
+	values = create_node()
+	dict_add(values, "S", create_node())
+	dict_add(values, "index", 0)
+	dict_add(values, "indices", create_node())
+	dict_add(values, "lowlink", create_node())
+	dict_add(values, "onStack", create_node())
+	dict_add(values, "successors", successors)
+	dict_add(values, "SCC", create_node())
+
+	nodes = allInstances(model, "Block")
+	while (read_nr_out(nodes) > 0):
+		strongconnect(set_pop(nodes), values)
+
+	return values["SCC"]!
+
+Void function dict_overwrite(d : Element, key : Element, value : Element):
+	if (dict_in(d, key)):
+		dict_delete(d, key)
+	if (dict_in_node(d, key)):
+		dict_delete_node(d, key)
+	dict_add(d, key, value)
+
+	return !
+
+Integer function min(a : Integer, b : Integer):
+	if (a < b):
+		return a!
+	else:
+		return b!
+
+Void function strongconnect(v : String, values : Element):
+	if (dict_in(values["indices"], v)):
+		return!
+
+	dict_overwrite(values["indices"], v, values["index"])
+	dict_overwrite(values["lowlink"], v, values["index"])
+	dict_overwrite(values, "index", cast_s2i(cast_v2s(values["index"])) + 1)
+
+	list_append(values["S"], v)
+	dict_overwrite(values["onStack"], v, True)
+	
+	Element successors
+	String w
+	successors = values["successors"][v]
+	while (read_nr_out(successors) > 0):
+		w = set_pop(successors)
+		if (bool_not(dict_in(values["indices"], w))):
+			strongconnect(w, values)
+			dict_overwrite(values["lowlink"], v, min(values["lowlink"][v], values["lowlink"][w]))
+		elif (dict_in(values["onStack"], w)):
+			if (values["onStack"][w]):
+				dict_overwrite(values["lowlink"], v, min(values["lowlink"][v], values["indices"][w]))
+	
+	if (value_eq(values["lowlink"][v], values["indices"][v])):
+		Element scc
+		scc = create_node()
+		// It will always differ now
+		w = list_pop(values["S"])
+		list_append(scc, w)
+		dict_overwrite(values["onStack"], w, False)
+		while (w != v):
+			w = list_pop(values["S"])
+			list_append(scc, w)
+			dict_overwrite(values["onStack"], w, False)
+		list_insert(values["SCC"], scc, 0)
+
+	return!
+
+Element function list_pop(list : Element):
+	Integer top
+	Element t
+	top = list_len(list) - 1
+	t = list_read(list, top)
+	list_delete(list, top)
+	return t!
+
+String function readType(model : Element, name : String):
+	return reverseKeyLookup(model["metamodel"]["model"], dict_read_node(model["type_mapping"], model["model"][name]))!
+
+Boolean function solve_scc(model : Element, scc : Element):
+	Element m
+	Integer i
+	Integer j
+	String block
+	String blocktype
+	Element incoming
+	String selected
+	Float constant
+	Element t
+
+	// Construct the matrix first, with as many rows as there are variables
+	// Number of columns is 1 higher
+	i = 0
+	m = create_node()
+	while (i < read_nr_out(scc)):
+		j = 0
+		t = create_node()
+		while (j < (read_nr_out(scc) + 1)):
+			list_append(t, 0.0)
+			j = j + 1
+		list_append(m, t)
+		i = i + 1
+
+	log("Matrix ready!")
+	// Matrix initialized to 0.0
+	i = 0
+	while (i < read_nr_out(scc)):
+		log("Creating matrix row")
+		// First element of scc
+		block = scc[i]
+		blocktype = readType(model, block)
+
+		// First write 1 in the current block
+		dict_overwrite(m[i], i, 1.0)
+
+		// Now check all blocks that are incoming
+		if (blocktype == "AdditionBlock"):
+			constant = 0.0
+		elif (blocktype == "MultiplyBlock"):
+			constant = 1.0
+
+		log("Generating matrix for " + blocktype)
+		log("Block: " + block)
+		incoming = allIncomingAssociationInstances(model, block, "Link")
+
+		Integer index_to_write_constant
+		index_to_write_constant = -1
+		log("Iterating over incoming")
+		while (read_nr_out(incoming) > 0):
+			log("Iteration")
+			selected = readAssociationSource(model, set_pop(incoming))
+
+			if (set_in(scc, selected)):
+				// Part of the loop, so in the index of selected in scc
+				// Five options:
+				if (blocktype == "AdditionBlock"):
+					// 1) AdditionBlock
+					// Add the negative of this signal, which is as of yet unknown
+					// x = y + z --> x - y - z = 0
+					dict_overwrite(m[i], list_index_of(scc, selected), -1.0)
+				elif (blocktype == "MultiplyBlock"):
+					// 2) MultiplyBlock
+					if (index_to_write_constant != -1):
+						return False!
+					index_to_write_constant = list_index_of(scc, selected)
+				elif (blocktype == "NegatorBlock"):
+					// 3) NegatorBlock
+					// Add the positive of the signal, which is as of yet unknown
+					dict_overwrite(m[i], list_index_of(scc, selected), 1.0)
+				elif (blocktype == "DelayBlock"):
+					// 5) DelayBlock
+					// Just copies a single value
+					dict_overwrite(m[i], list_index_of(scc, selected), -1.0)
+				else:
+					// Block that cannot be handled
+					return False!
+			else:
+				// A constant, which we can assume is already computed and thus usable
+				if (blocktype == "AdditionBlock"):
+					constant = constant + v2f(read_attribute(model, selected, "signal"))
+					dict_overwrite(m[i], read_nr_out(scc), constant)
+				elif (blocktype == "MultiplyBlock"):
+					constant = constant * v2f(read_attribute(model, selected, "signal"))
+					// Not written to constant part, as multiplies a variable
+
+				// Any other block is impossible:
+				// * Constant would never be part of a SCC
+				// * Delay would never get an incoming constant
+				// * Negation and Inverse only get 1 input, which is a variable in a loop
+				// * Integrator and Derivator never get an incoming constant
+
+		if (index_to_write_constant != -1):
+			dict_overwrite(m[i], index_to_write_constant, -constant)
+
+		i = i + 1
+
+	// Constructed a complete matrix, so we can start!
+	log("Constructed matrix to solve:")
+	log(matrix2string(m))
+
+	// Solve matrix now
+	eliminateGaussJordan(m)
+
+	// Now go over m and set signals for each element
+	// Assume that everything worked out...
+	i = 0
+	while (i < read_nr_out(m)):
+		block = scc[i]
+		unset_attribute(model, block, "signal")
+		instantiate_attribute(model, block, "signal", m[i][read_nr_out(scc)])
+		log((("Solved " + block) + " to ") + cast_v2s(m[i][read_nr_out(scc)]))
+		i = i + 1
+
+	return True!
+
+Integer function list_index_of(lst : Element, elem : Element):
+	Integer i
+	i = 0
+	while (i < read_nr_out(lst)):
+		if (value_eq(list_read(lst, i), elem)):
+			return i!
+		else:
+			i = i + 1
+	return -1!
+
+Void function step_simulation(model : Element, schedule : Element):
+	String time
+	Float signal
+	Element incoming
+	String selected
+	String block
+	String elem
+	String blocktype
+	Element memory_blocks
+	Integer i
+	Float delta_t
+	Element scc
+
+	time = "time"
+	delta_t = 0.1
+
+	memory_blocks = create_node()
+	output("SIM_TIME " + cast_v2s(read_attribute(model, time, "current_time")))
+	i = 0
+	while (i < read_nr_out(schedule)):
+		scc = list_read(schedule, i)
+		i = i + 1
+
+		if (list_len(scc) > 1):
+			log("Solving algebraic loop!")
+			if (bool_not(solve_scc(model, scc))):
+				output("ALGEBRAIC_LOOP")
+				return !
+		else:
+			block = set_pop(scc)
+
+			// Execute "block"
+			blocktype = readType(model, block)
+			if (blocktype == "ConstantBlock"):
+				signal = read_attribute(model, block, "value")
+			elif (blocktype == "AdditionBlock"):
+				signal = 0.0
+				incoming = allIncomingAssociationInstances(model, block, "Link")
+				while (read_nr_out(incoming) > 0):
+					selected = readAssociationSource(model, set_pop(incoming))
+					signal = signal + cast_s2f(cast_v2s(read_attribute(model, selected, "signal")))
+			elif (blocktype == "MultiplyBlock"):
+				signal = 1.0
+				incoming = allIncomingAssociationInstances(model, block, "Link")
+				while (read_nr_out(incoming) > 0):
+					selected = readAssociationSource(model, set_pop(incoming))
+					signal = signal * cast_s2f(cast_v2s(read_attribute(model, selected, "signal")))
+			elif (blocktype == "NegatorBlock"):
+				incoming = allIncomingAssociationInstances(model, block, "Link")
+				signal = 0.0
+				while (read_nr_out(incoming) > 0):
+					selected = readAssociationSource(model, set_pop(incoming))
+					signal = float_neg(cast_s2f(cast_v2s(read_attribute(model, selected, "signal"))))
+			elif (blocktype == "InverseBlock"):
+				signal = 0.0
+				incoming = allIncomingAssociationInstances(model, block, "Link")
+				while (read_nr_out(incoming) > 0):
+					selected = readAssociationSource(model, set_pop(incoming))
+					signal = float_division(1.0, cast_s2f(cast_v2s(read_attribute(model, selected, "signal"))))
+			elif (blocktype == "DelayBlock"):
+				signal = 0.0
+				if (element_eq(read_attribute(model, block, "last_in"), read_root())):
+					// No memory yet, so use initial condition
+					incoming = allIncomingAssociationInstances(model, block, "InitialCondition")
+					while (read_nr_out(incoming) > 0):
+						selected = readAssociationSource(model, set_pop(incoming))
+						signal = cast_s2f(cast_v2s(read_attribute(model, selected, "signal")))
+				else:
+					signal = read_attribute(model, block, "last_in")
+					unset_attribute(model, block, "last_in")
+				set_add(memory_blocks, block)
+			elif (blocktype == "IntegratorBlock"):
+				if (element_eq(read_attribute(model, block, "last_in"), read_root())):
+					// No history yet, so use initial values
+					incoming = allIncomingAssociationInstances(model, block, "InitialCondition")
+					while (read_nr_out(incoming) > 0):
+						selected = readAssociationSource(model, set_pop(incoming))
+						signal = cast_s2f(cast_v2s(read_attribute(model, selected, "signal")))
+				else:
+					signal = cast_s2f(cast_v2s(read_attribute(model, block, "last_in"))) + (delta_t * cast_s2f(cast_v2s(read_attribute(model, block, "last_out"))))
+					unset_attribute(model, block, "last_in")
+					unset_attribute(model, block, "last_out")
+				instantiate_attribute(model, block, "last_out", signal)
+				set_add(memory_blocks, block)
+			elif (blocktype == "DerivatorBlock"):
+				if (element_eq(read_attribute(model, block, "last_in"), read_root())):
+					// No history yet, so use initial values
+					incoming = allIncomingAssociationInstances(model, block, "InitialCondition")
+					while (read_nr_out(incoming) > 0):
+						selected = readAssociationSource(model, set_pop(incoming))
+						signal = cast_s2f(cast_v2s(read_attribute(model, selected, "signal")))
+				else:
+					incoming = allIncomingAssociationInstances(model, block, "Link")
+					while (read_nr_out(incoming) > 0):
+						selected = readAssociationSource(model, set_pop(incoming))
+						signal = (cast_s2f(cast_v2s(read_attribute(model, selected, "signal"))) - cast_s2f(cast_v2s(read_attribute(model, block, "last_in")))) / delta_t
+					unset_attribute(model, block, "last_in")
+				set_add(memory_blocks, block)
+			elif (blocktype == "ProbeBlock"):
+				incoming = allIncomingAssociationInstances(model, block, "Link")
+				while (read_nr_out(incoming) > 0):
+					selected = readAssociationSource(model, set_pop(incoming))
+					signal = cast_s2f(cast_v2s(read_attribute(model, selected, "signal")))
+					output((("SIM_PROBE " + cast_v2s(read_attribute(model, block, "name"))) + " ") + cast_v2s(signal))
+
+			unset_attribute(model, block, "signal")
+			instantiate_attribute(model, block, "signal", signal)
+	output("SIM_END")
+	
+	while (read_nr_out(memory_blocks) > 0):
+		block = set_pop(memory_blocks)
+		// Update memory
+		incoming = allIncomingAssociationInstances(model, block, "Link")
+		while (read_nr_out(incoming) > 0):
+			selected = readAssociationSource(model, set_pop(incoming))
+			instantiate_attribute(model, block, "last_in", cast_s2f(cast_v2s(read_attribute(model, selected, "signal"))))
+
+	// Increase simulation time
+	Float new_time
+	new_time = cast_s2f(cast_v2s(read_attribute(model, time, "current_time"))) + delta_t
+	unset_attribute(model, time, "current_time")
+	instantiate_attribute(model, time, "current_time", new_time)
+
+	return !
+
+Void function execute_fsa(design_model : Element):
+	String verify_result
+	Element runtime_model
+	Element old_runtime_model
+	String cmd
+	Boolean running
+	String conforming
+
+	old_runtime_model = instantiate_model(import_node("models/FiniteStateAutomata_Runtime"))
+	runtime_model = retype_to_runtime(design_model)
+	runtime_model = sanitize(runtime_model, old_runtime_model)
+	running = False
+	conforming = conformance_scd(design_model)
+	if (conforming == "OK"):
+		output("CONFORMANCE_OK")
+	else:
+		output("CONFORMANCE_FAIL")
+
+	schedule_init = create_schedule(runtime_model)
+	schedule_run = read_root()
+
+	while (True):
+		// If we are running, we just don't block for input and automatically do a step if there is no input
+		cmd = input()
+
+		// Process input
+		if (cmd == "simulate"):
+			// Simulation should toggle running to True, but only if the model is conforming
+			if (conforming == "OK"):
+				running = True
+			else:
+				output("CONFORMANCE_FAIL " + conforming)
+
+		elif (cmd == "pause"):
+			// Pausing merely stops a running simulation
+			running = False
+
+		elif (cmd == "read_available_attributes"):
+			// Returns a list of all available attributes
+			Element attr_list
+			Element attrs
+			Element attr
+			attr_list = getAttributeList(design_model, input())
+			attrs = dict_keys(attr_list)
+			while (0 < read_nr_out(attrs)):
+				attr = set_pop(attrs)
+				output("AVAILABLE_ATTR_VALUE " + cast_v2s(attr))
+				output("AVAILABLE_ATTR_TYPE " + cast_v2s(dict_read(attr_list, attr)))
+			output("AVAILABLE_ATTR_END")
+
+		elif (cmd == "read_attribute"):
+			// Returns the value of an attribute
+			output("ATTR_VALUE " + cast_v2s(read_attribute(design_model, input(), input())))
+
+		elif (bool_or(bool_or(cmd == "set_attribute", cmd == "instantiate_node"), bool_or(cmd == "delete_element", cmd == "instantiate_association"))):
+			// Modify the structure
+			if (cmd == "set_attribute"):
+				// Setting an attribute
+				String element_name
+				String attribute_name
+				element_name = input()
+				attribute_name = input()
+
+				// Delete it if it exists already
+				if (bool_not(element_eq(read_attribute(design_model, element_name, attribute_name), read_root()))):
+					unset_attribute(design_model, element_name, attribute_name)
+
+				// And finally set it
+				instantiate_attribute(design_model, element_name, attribute_name, input())
+
+			elif (cmd == "instantiate_node"):
+				// Instantiate a node
+				instantiate_node(design_model, input(), input())
+
+			elif (cmd == "instantiate_association"):
+				// Instantiate an association
+				instantiate_link(design_model, input(), input(), input(), input())
+
+			elif (cmd == "delete_element"):
+				// Delete the provided element
+				model_delete_element(design_model, input())
+
+			// After changes, we check whether or not the design model conforms
+			conforming = conformance_scd(design_model)
+			if (conforming == "OK"):
+				// Conforming, so do the retyping and sanitization step
+				runtime_model = retype_to_runtime(design_model)
+				runtime_model = sanitize(runtime_model, old_runtime_model)
+				schedule_init = create_schedule(runtime_model)
+				schedule_run = read_root()
+				old_runtime_model = runtime_model
+				output("CONFORMANCE_OK")
+			else:
+				// Not conforming, so stop simulation and block for input (preferably a modify to make everything consistent again)
+				running = False
+				output("CONFORMANCE_FAIL " + conforming)
+		else:
+			log("Did not understand command: " + cmd)
+
+Float function v2f(i : Element):
+	return cast_s2f(cast_v2s(i))!