import unittest import sys import os import sys import time import json import urllib import urllib2 import subprocess import signal import random import operator from collections import defaultdict sys.path.append("interface/HUTN") sys.path.append("scripts") from hutn_compiler.compiler import main as do_compile from check_objects import to_recompile USERNAME = "test_task" PARALLEL_PUSH = True BOOTSTRAP_FOLDER_NAME = "bootstrap" CURRENT_FOLDER_NAME = "performance" PORTS = set() OPTIMIZATION_LEVEL_LEGACY_INTERPRETER = "legacy-interpreter" OPTIMIZATION_LEVEL_INTERPRETER = "interpreter" OPTIMIZATION_LEVEL_BYTECODE_INTERPRETER = "bytecode-interpreter" OPTIMIZATION_LEVEL_BASELINE_JIT = "baseline-jit" OPTIMIZATION_LEVEL_BASELINE_JIT_NO_THUNKS = "baseline-jit,no-thunks" OPTIMIZATION_LEVEL_FAST_JIT = "fast-jit" OPTIMIZATION_LEVEL_FAST_JIT_NO_NOPS = "fast-jit,no-insert-nops" OPTIMIZATION_LEVEL_ADAPTIVE_JIT_FAVOR_LARGE_FUNCTIONS = "adaptive-jit-favor-large-functions" OPTIMIZATION_LEVEL_ADAPTIVE_JIT_FAVOR_SMALL_FUNCTIONS = "adaptive-jit-favor-small-functions" OPTIMIZATION_LEVEL_ADAPTIVE_JIT_FAVOR_LOOPS = "adaptive-jit-favor-loops" OPTIMIZATION_LEVEL_ADAPTIVE_JIT_FAVOR_SMALL_LOOPS = "adaptive-jit-favor-small-loops" ALL_OPTIMIZATION_LEVELS = [ OPTIMIZATION_LEVEL_LEGACY_INTERPRETER, OPTIMIZATION_LEVEL_INTERPRETER, OPTIMIZATION_LEVEL_BYTECODE_INTERPRETER, OPTIMIZATION_LEVEL_BASELINE_JIT, OPTIMIZATION_LEVEL_BASELINE_JIT_NO_THUNKS, OPTIMIZATION_LEVEL_FAST_JIT, OPTIMIZATION_LEVEL_FAST_JIT_NO_NOPS, OPTIMIZATION_LEVEL_ADAPTIVE_JIT_FAVOR_LARGE_FUNCTIONS, OPTIMIZATION_LEVEL_ADAPTIVE_JIT_FAVOR_SMALL_FUNCTIONS, OPTIMIZATION_LEVEL_ADAPTIVE_JIT_FAVOR_LOOPS, OPTIMIZATION_LEVEL_ADAPTIVE_JIT_FAVOR_SMALL_LOOPS ] class ModelverseTerminated(Exception): """An exception that tells the task that the Modelverse has terminated.""" pass def get_code_folder_name(): """Gets the name of the code folder.""" return '%s/code' % CURRENT_FOLDER_NAME def get_free_port(): """Gets a unique new port.""" while 1: port = random.randint(10000, 20000) # Check if this port is in the set of ports. if port not in PORTS: # We have found a unique port. Add it to the set and return. PORTS.add(port) return port def execute(scriptname, parameters=None, wait=False): """Runs a script.""" if os.name not in ["nt", "posix"]: # Stop now, as we would have no clue on how to kill its subtree raise Exception("Unknown OS version: " + str(os.name)) command = [sys.executable, "scripts/%s.py" % scriptname] + ( [] if parameters is None else parameters) if wait: return subprocess.call(command, shell=False) else: return subprocess.Popen(command, shell=False) def kill(process): """Kills the given process.""" if os.name == "nt": subprocess.call(["taskkill", "/F", "/T", "/PID", "%i" % process.pid]) elif os.name == "posix": subprocess.call(["pkill", "-P", "%i" % process.pid]) def set_input_data(address, data): """Sets the Modelverse program's input data.""" if data is not None: urllib2.urlopen( urllib2.Request( address, urllib.urlencode( {"op": "set_input", "data": json.dumps(data), "taskname": USERNAME})), timeout=10).read() else: return [] def compile_file(address, mod_filename, filename, mode, proc): """Compiles the given file.""" # Load in the file required try: timeout_val = 240 taskname = str(random.random()) while 1: proc2 = execute( "compile", [address, mod_filename, taskname, filename, mode], wait=False) if proc.returncode is not None: # Modelverse has already terminated, which isn't a good sign! raise Exception("Modelverse died!") while proc2.returncode is None: time.sleep(0.01) proc2.poll() timeout_val -= 0.01 if timeout_val < 0: kill(proc2) print("Compilation timeout expired!") return False if proc2.returncode != 2: break # Make sure everything stopped correctly assert proc2.returncode == 0 if proc2.returncode != 0: return False except: raise finally: try: kill(proc2) except UnboundLocalError: pass def compile_files(address, process, files, mode): """Compiles the given files in the given mode.""" threads = [] mod_files = [] for filename in files: if os.path.isfile(filename): mod_filename = filename elif os.path.isfile("%s/%s" % (get_code_folder_name(), filename)): mod_filename = "%s/%s" % (get_code_folder_name(), filename) elif os.path.isfile("%s/%s" % (BOOTSTRAP_FOLDER_NAME, filename)): mod_filename = "%s/%s" % (BOOTSTRAP_FOLDER_NAME, filename) else: raise Exception("File not found: %s" % filename) mod_files.append(mod_filename) to_compile = to_recompile(address, mod_files) for mod_filename in to_compile: if mod_filename.endswith(".mvc"): model_mode = "MO" mod_files.remove(mod_filename) else: model_mode = mode if PARALLEL_PUSH: import threading threads.append( threading.Thread( target=compile_file, args=[address, mod_filename, mod_filename, model_mode, process])) threads[-1].start() else: compile_file(address, mod_filename, mod_filename, model_mode, process) if PARALLEL_PUSH: for t in threads: t.join() if mode[-1] == "O": # Fire up the linker val = execute("link_and_load", [address, USERNAME] + mod_files, wait=True) if val != 0: raise Exception("Linking error") def run_file(files, parameters, mode, handle_output, optimization_level=None): """Compiles the given sequence of files, feeds them the given input in the given mode, and handles their output.""" # Resolve file import os.path time.sleep(0.01) port = get_free_port() address = "http://127.0.0.1:%i" % port try: # Run Modelverse server modelverse_args = [str(port)] if optimization_level is not None: modelverse_args.append('--kernel=%s' % optimization_level) proc = execute("run_local_modelverse", modelverse_args, wait=False) # Compile, push and link the source code files. compile_files(address, proc, files, mode) # Send the request ... set_input_data(address, parameters) # ... and wait for replies while 1: val = urllib2.urlopen( urllib2.Request( address, urllib.urlencode({"op": "get_output", "taskname": USERNAME})), timeout=240).read() val = json.loads(val) if proc.returncode is not None: # Modelverse has terminated. This may or may not be what we want. raise ModelverseTerminated() if not handle_output(val): return # All passed! return except: raise finally: try: kill(proc) except UnboundLocalError: pass def run_file_to_completion(files, parameters, mode): """Compiles the given sequence of files, feeds them the given input in the given mode, and then collects and returns output.""" results = [] def handle_output(output): """Appends the given output to the list of results.""" results.append(output) return True try: run_file(files, parameters, mode, handle_output) except ModelverseTerminated: return results def run_file_fixed_output_count(files, parameters, mode, output_count, optimization_level=None): """Compiles the given sequence of files, feeds them the given input in the given mode, and then collects and returns a fixed number of outputs.""" results = [] def handle_output(output): """Appends the given output to the list of results.""" results.append(output) if len(results) < output_count: return True else: return False run_file(files, parameters, mode, handle_output, optimization_level) return results def run_file_single_output(files, parameters, mode, optimization_level=None): """Compiles the given sequence of files, feeds them the given input in the given mode, and then collects and returns a single output.""" return run_file_fixed_output_count(files, parameters, mode, 1, optimization_level)[0] def mean(values): """Computes the arithmetic mean of the given values.""" return float(sum(values)) / max(len(values), 1) def run_perf_test(files, parameters, optimization_level, n_iterations=1): """Compiles the given sequence of files, feeds them the given input in the given mode, and then collects their output. This process is repeated n_iterations times. The return value is the average of all outputs, along with the mean total run-time.""" test_runtimes = [] total_runtimes = [] for _ in xrange(n_iterations): start_time = time.time() test_time = run_file_single_output( files, parameters, 'CO', optimization_level) end_time = time.time() total_time = end_time - start_time test_runtimes.append(test_time) total_runtimes.append(total_time) return mean(test_runtimes), mean(total_runtimes) def get_expectation_checks(expected_values): """Converts the given sequence of expected values to a sequence of functions which tell if an input is allowed. Every function is accompanied by an expected value.""" def get_single_expectation_checks(expectation): """Gets an expectation checker for a single expected value.""" if isinstance(expectation, set): # We expect to receive a number of outputs equal to the size of the set, but their # order does not matter. for _ in xrange(len(expectation)): yield lambda val: val in expectation elif expectation is None: # Skip output value yield lambda _: True else: yield lambda val: val == expectation for expectation in expected_values: for checker in get_single_expectation_checks(expectation): yield checker, expectation def run_correctness_test(files, parameters, expected, optimization_level): """Compiles the given sequence of files, feeds them the given input in the given mode, and then compares the output with the expected output. The return value is the total run-time of the test.""" checks = iter(list(get_expectation_checks(expected))) next_check = [next(checks)] def handle_output(output): """Checks the given output against the expected output.""" check, expectation = next_check[0] print("Got %s, expect %s" % (output, expectation)) assert check(output) try: next_check[0] = next(checks) return True except StopIteration: return False start_time = time.time() try: run_file(files, parameters, 'CO', handle_output, optimization_level) except ModelverseTerminated: return end_time = time.time() return end_time - start_time def format_output(output): """Formats the output of `run_file_to_completion` as a string.""" return '\n'.join(output) def define_perf_test(target_class, test_function, optimization_level): """Defines a performance test in the given class. The performance test calls the given function at the given optimization level.""" setattr( target_class, 'test_%s' % optimization_level.replace('-', '_').lower(), lambda self: test_function(self, optimization_level)) def define_perf_tests(target_class, test_function): """Defines performance tests in the given class. Each test calls the given function.""" for optimization_level in ALL_OPTIMIZATION_LEVELS: define_perf_test(target_class, test_function, optimization_level) def get_model_constructor(code): # First change multiple spaces to a tab code_fragments = code.split("\n") code_fragments = [i for i in code_fragments if i.strip() != ""] code_fragments = [i.replace(" ", "\t") for i in code_fragments] initial_tabs = min([len(i) - len(i.lstrip("\t")) for i in code_fragments]) code_fragments = [i[initial_tabs:] for i in code_fragments] code = "\n".join(code_fragments) with open("__model.mvc", "w") as f: f.write(code) f.flush() constructors = do_compile("__model.mvc", "interface/HUTN/grammars/modelling.g", "M") + ["exit"] return constructors DEFAULT_PERF_FILE_NAME = 'perf_data.txt' TOTAL_TIME_QUANTITY = 'total-runtime' TEST_TIME_QUANTITY = 'test-runtime' def write_perf_entry_to_stream( test_name, optimization_level, quantity, result, output_stream): """Writes a performance measurement entry to the given stream.""" output_stream.write('%s:%s:%s:%f\n' % (test_name, optimization_level, quantity, result)) def write_perf_to_file( test_name, optimization_level, runtimes, file_name=DEFAULT_PERF_FILE_NAME): """Writes performance data to a file.""" test_runtime, total_runtime = runtimes with open(file_name, "a") as perf_file: write_perf_entry_to_stream( test_name, optimization_level, TEST_TIME_QUANTITY, test_runtime, perf_file) write_perf_entry_to_stream( test_name, optimization_level, TOTAL_TIME_QUANTITY, total_runtime, perf_file) def write_total_runtime_to_file( test_name, optimization_level, total_runtime, file_name=DEFAULT_PERF_FILE_NAME): """Writes a total runtime entry to a file.""" with open(file_name, "a") as perf_file: write_perf_entry_to_stream( test_name, optimization_level, TOTAL_TIME_QUANTITY, total_runtime, perf_file) def parse_perf_data(file_name): """Parses the performance data in the given file.""" results = defaultdict(lambda: defaultdict(list)) with open(file_name, 'r') as perf_file: for line in perf_file.readlines(): test_name, optimization_level, quantity, result = line.strip().split(':') results[quantity][optimization_level].append((test_name, float(result))) return { quantity: sorted(result_dict.items(), key=operator.itemgetter(0)) for quantity, result_dict in results.items() }