include "primitives.alh" include "modelling.alh" include "object_operations.alh" include "library.alh" include "conformance_scd.alh" include "io.alh" include "metamodels.alh" include "compilation_manager.alh" Void function main(): Element model String verify_result while (True): execute_cbd(instantiate_model(import_node("models/CausalBlockDiagrams_Design"))) Element function retype_to_runtime(design_model : Element): Element runtime_model Element all_blocks Element all_links String mm_type_name String element_name String attr_name String attr_value String attribute String src String dst String time Element all_attributes runtime_model = instantiate_model(import_node("models/CausalBlockDiagrams_Runtime")) all_blocks = allInstances(design_model, "Block") while (list_len(all_blocks) > 0): element_name = set_pop(all_blocks) mm_type_name = reverseKeyLookup(design_model["metamodel"]["model"], dict_read_node(design_model["type_mapping"], design_model["model"][element_name])) element_name = instantiate_node(runtime_model, mm_type_name, element_name) if (is_nominal_instance(design_model, element_name, "ConstantBlock")): instantiate_attribute(runtime_model, element_name, "value", read_attribute(design_model, element_name, "value")) // Don't merge this together with the block conversion, as the destination block might not exist yet! all_links = allInstances(design_model, "Link") while (read_nr_out(all_links) > 0): element_name = set_pop(all_links) src = reverseKeyLookup(design_model["model"], read_edge_src(design_model["model"][element_name])) dst = reverseKeyLookup(design_model["model"], read_edge_dst(design_model["model"][element_name])) instantiate_link(runtime_model, "Link", element_name, src, dst) all_links = allInstances(design_model, "InitialCondition") while (read_nr_out(all_links) > 0): element_name = set_pop(all_links) src = reverseKeyLookup(design_model["model"], read_edge_src(design_model["model"][element_name])) dst = reverseKeyLookup(design_model["model"], read_edge_dst(design_model["model"][element_name])) instantiate_link(runtime_model, "InitialCondition", element_name, src, dst) return runtime_model! Element function sanitize(new_runtime_model : Element, old_runtime_model : Element): Element all_blocks Element all_links String element_name String attr_name String attr_value String attribute String time Element all_attributes Float current_time all_blocks = allInstances(new_runtime_model, "Block") while (list_len(all_blocks) > 0): element_name = set_pop(all_blocks) if (dict_in(old_runtime_model["model"], element_name)): if (is_nominal_instance(new_runtime_model, element_name, "ICBlock")): instantiate_attribute(new_runtime_model, element_name, "last_in", read_attribute(old_runtime_model, element_name, "last_in")) if (is_nominal_instance(new_runtime_model, element_name, "IntegratorBlock")): instantiate_attribute(new_runtime_model, element_name, "last_out", read_attribute(old_runtime_model, element_name, "last_out")) instantiate_attribute(new_runtime_model, element_name, "signal", read_attribute(old_runtime_model, element_name, "signal")) else: instantiate_attribute(new_runtime_model, element_name, "signal", 0.0) if (dict_in(old_runtime_model["model"], "time")): current_time = read_attribute(old_runtime_model, "time", "current_time") else: current_time = 0 time = instantiate_node(new_runtime_model, "Time", "time") instantiate_attribute(new_runtime_model, time, "start_time", current_time) instantiate_attribute(new_runtime_model, time, "current_time", current_time) return new_runtime_model! Element function create_schedule(model : Element): // Create nice graph first Element nodes Element successors String element_name Element incoming_links Element all_blocks nodes = allInstances(model, "Block") successors = create_node() while (read_nr_out(nodes) > 0): element_name = set_pop(nodes) if (bool_not(dict_in(successors, element_name))): dict_add(successors, element_name, create_node()) if (is_nominal_instance(model, element_name, "ICBlock")): if (element_eq(read_attribute(model, element_name, "last_in"), read_root())): incoming_links = allIncomingAssociationInstances(model, element_name, "InitialCondition") else: incoming_links = create_node() if (is_nominal_instance(model, element_name, "DerivatorBlock")): Element new_incoming_links new_incoming_links = allIncomingAssociationInstances(model, element_name, "Link") while (read_nr_out(new_incoming_links) > 0): list_append(incoming_links, set_pop(new_incoming_links)) else: incoming_links = allIncomingAssociationInstances(model, element_name, "Link") while (read_nr_out(incoming_links) > 0): String source source = readAssociationSource(model, set_pop(incoming_links)) if (bool_not(dict_in(successors, source))): dict_add(successors, source, create_node()) set_add(successors[source], element_name) Element values values = create_node() dict_add(values, "S", create_node()) dict_add(values, "index", 0) dict_add(values, "indices", create_node()) dict_add(values, "lowlink", create_node()) dict_add(values, "onStack", create_node()) dict_add(values, "successors", successors) dict_add(values, "SCC", create_node()) nodes = allInstances(model, "Block") while (read_nr_out(nodes) > 0): strongconnect(set_pop(nodes), values) log("Computed SCC!") log("Print list:") Integer i Integer j Element lst i = 0 while (i < read_nr_out(values["SCC"])): log("[") lst = list_read(values["SCC"], i) j = 0 while (j < read_nr_out(lst)): log(" " + cast_v2s(list_read(lst, j))) j = j + 1 log("]") i = i + 1 log("=== END") return values["SCC"]! Void function dict_overwrite(d : Element, key : Element, value : Element): if (dict_in(d, key)): dict_delete(d, key) if (dict_in_node(d, key)): dict_delete_node(d, key) dict_add(d, key, value) return ! Integer function min(a : Integer, b : Integer): if (a < b): return a! else: return b! Void function strongconnect(v : String, values : Element): if (dict_in(values["indices"], v)): return! log("Compute strong connected components") log("Source: " + v) dict_overwrite(values["indices"], v, values["index"]) dict_overwrite(values["lowlink"], v, values["index"]) dict_overwrite(values, "index", cast_s2i(cast_v2s(values["index"])) + 1) list_append(values["S"], v) dict_overwrite(values["onStack"], v, True) Element successors String w successors = values["successors"][v] while (read_nr_out(successors) > 0): w = set_pop(successors) log("Found successor " + w) if (bool_not(dict_in(values["indices"], w))): strongconnect(w, values) log("Old lowlink: " + cast_v2s(values["lowlink"][v])) dict_overwrite(values["lowlink"], v, min(values["lowlink"][v], values["lowlink"][w])) log("Set lowlink of " + v) log(" to " + cast_v2s(values["lowlink"][v])) elif (dict_in(values["onStack"], w)): if (values["onStack"][w]): dict_overwrite(values["lowlink"], v, min(values["lowlink"][v], values["indices"][w])) if (value_eq(values["lowlink"][v], values["indices"][v])): Element scc scc = create_node() // It will always differ now w = list_pop(values["S"]) list_append(scc, w) while (w != v): w = list_pop(values["S"]) list_append(scc, w) dict_overwrite(values["onStack"], w, False) list_insert(values["SCC"], scc, 0) return! Element function list_pop(list : Element): Integer top Element t top = list_len(list) - 1 t = list_read(list, top) list_delete(list, top) return t! String function readType(model : Element, name : String): return reverseKeyLookup(model["metamodel"]["model"], dict_read_node(model["type_mapping"], model["model"][name]))! Void function step_simulation(model : Element, schedule : Element): String time Float signal Element incoming String selected String block String elem String blocktype Element memory_blocks Integer i Float delta_t time = "time" delta_t = 0.1 memory_blocks = create_node() output("SIM_TIME " + cast_v2s(read_attribute(model, time, "current_time"))) i = 0 while (i < read_nr_out(schedule)): block = list_read(schedule, i) i = i + 1 // Execute "block" blocktype = readType(model, block) if (blocktype == "ConstantBlock"): signal = read_attribute(model, block, "value") elif (blocktype == "AdditionBlock"): signal = 0.0 incoming = allIncomingAssociationInstances(model, block, "Link") while (read_nr_out(incoming) > 0): selected = readAssociationSource(model, set_pop(incoming)) signal = signal + cast_s2f(cast_v2s(read_attribute(model, selected, "signal"))) elif (blocktype == "MultiplyBlock"): signal = 1.0 incoming = allIncomingAssociationInstances(model, block, "Link") while (read_nr_out(incoming) > 0): selected = readAssociationSource(model, set_pop(incoming)) signal = signal * cast_s2f(cast_v2s(read_attribute(model, selected, "signal"))) elif (blocktype == "NegatorBlock"): incoming = allIncomingAssociationInstances(model, block, "Link") signal = 0.0 while (read_nr_out(incoming) > 0): selected = readAssociationSource(model, set_pop(incoming)) signal = float_neg(cast_s2f(cast_v2s(read_attribute(model, selected, "signal")))) elif (blocktype == "InverseBlock"): signal = 0.0 incoming = allIncomingAssociationInstances(model, block, "Link") while (read_nr_out(incoming) > 0): selected = readAssociationSource(model, set_pop(incoming)) signal = float_division(1.0, cast_s2f(cast_v2s(read_attribute(model, selected, "signal")))) elif (blocktype == "DelayBlock"): signal = 0.0 if (element_eq(read_attribute(model, block, "last_in"), read_root())): // No memory yet, so use initial condition incoming = allIncomingAssociationInstances(model, block, "InitialCondition") while (read_nr_out(incoming) > 0): selected = readAssociationSource(model, set_pop(incoming)) signal = cast_s2f(cast_v2s(read_attribute(model, selected, "signal"))) else: signal = read_attribute(model, block, "last_in") unset_attribute(model, block, "last_in") set_add(memory_blocks, block) elif (blocktype == "IntegratorBlock"): if (element_eq(read_attribute(model, block, "last_in"), read_root())): // No history yet, so use initial values incoming = allIncomingAssociationInstances(model, block, "InitialCondition") while (read_nr_out(incoming) > 0): selected = readAssociationSource(model, set_pop(incoming)) signal = cast_s2f(cast_v2s(read_attribute(model, selected, "signal"))) else: signal = cast_s2f(cast_v2s(read_attribute(model, block, "last_in"))) + (delta_t * cast_s2f(cast_v2s(read_attribute(model, block, "last_out")))) unset_attribute(model, block, "last_in") unset_attribute(model, block, "last_out") instantiate_attribute(model, block, "last_out", signal) set_add(memory_blocks, block) elif (blocktype == "DerivatorBlock"): if (element_eq(read_attribute(model, block, "last_in"), read_root())): // No history yet, so use initial values incoming = allIncomingAssociationInstances(model, block, "InitialCondition") while (read_nr_out(incoming) > 0): selected = readAssociationSource(model, set_pop(incoming)) signal = cast_s2f(cast_v2s(read_attribute(model, selected, "signal"))) else: incoming = allIncomingAssociationInstances(model, block, "Link") while (read_nr_out(incoming) > 0): selected = readAssociationSource(model, set_pop(incoming)) signal = (cast_s2f(cast_v2s(read_attribute(model, selected, "signal"))) - cast_s2f(cast_v2s(read_attribute(model, block, "last_in")))) / delta_t unset_attribute(model, block, "last_in") set_add(memory_blocks, block) unset_attribute(model, block, "signal") instantiate_attribute(model, block, "signal", signal) output((("SIM_PROBE " + cast_v2s(block)) + " ") + cast_v2s(signal)) output("SIM_END") while (read_nr_out(memory_blocks) > 0): block = set_pop(memory_blocks) // Update memory incoming = allIncomingAssociationInstances(model, block, "Link") while (read_nr_out(incoming) > 0): selected = readAssociationSource(model, set_pop(incoming)) instantiate_attribute(model, block, "last_in", cast_s2f(cast_v2s(read_attribute(model, selected, "signal")))) // Increase simulation time Float new_time new_time = cast_s2f(cast_v2s(read_attribute(model, time, "current_time"))) + delta_t unset_attribute(model, time, "current_time") instantiate_attribute(model, time, "current_time", new_time) return ! Void function execute_cbd(design_model : Element): String verify_result Element runtime_model Element old_runtime_model String cmd Boolean running Element schedule_init Element schedule_run Element schedule String conforming old_runtime_model = instantiate_model(import_node("models/CausalBlockDiagrams_Runtime")) runtime_model = retype_to_runtime(design_model) runtime_model = sanitize(runtime_model, old_runtime_model) running = False conforming = conformance_scd(design_model) if (conforming == "OK"): output("CONFORMANCE_OK") else: output("CONFORMANCE_FAIL") schedule_init = create_schedule(runtime_model) schedule_run = read_root() while (True): // If we are running, we just don't block for input and automatically do a step if there is no input if (running): if (has_input()): cmd = input() else: cmd = "step" else: cmd = input() // Process input if (cmd == "simulate"): // Simulation should toggle running to True, but only if the model is conforming if (conforming == "OK"): running = True else: output("CONFORMANCE_FAIL " + conforming) elif (cmd == "step"): // Stepping should make a single step, but first need to pick the correct schedule to use if (conforming == "OK"): if (read_attribute(runtime_model, "time", "start_time") == read_attribute(runtime_model, "time", "current_time")): schedule = schedule_init else: if (element_eq(schedule_run, read_root())): schedule_run = create_schedule(runtime_model) schedule = schedule_run step_simulation(runtime_model, schedule) else: output("CONFORMANCE_FAIL " + conforming) elif (cmd == "pause"): // Pausing merely stops a running simulation running = False elif (cmd == "read_available_attributes"): // Returns a list of all available attributes Element attr_list Element attrs Element attr attr_list = getAttributeList(design_model, input()) attrs = dict_keys(attr_list) while (0 < read_nr_out(attrs)): attr = set_pop(attrs) output("AVAILABLE_ATTR_VALUE " + cast_v2s(attr)) output("AVAILABLE_ATTR_TYPE " + cast_v2s(dict_read(attr_list, attr))) output("AVAILABLE_ATTR_END") elif (cmd == "read_attribute"): // Returns the value of an attribute output("ATTR_VALUE " + cast_v2s(read_attribute(design_model, input(), input()))) elif (bool_or(bool_or(cmd == "set_attribute", cmd == "instantiate_node"), bool_or(cmd == "delete_element", cmd == "instantiate_association"))): // Modify the structure if (cmd == "set_attribute"): // Setting an attribute String element_name String attribute_name element_name = input() attribute_name = input() // Delete it if it exists already if (bool_not(element_eq(read_attribute(design_model, element_name, attribute_name), read_root()))): unset_attribute(design_model, element_name, attribute_name) // And finally set it instantiate_attribute(design_model, element_name, attribute_name, input()) elif (cmd == "instantiate_node"): // Instantiate a node instantiate_node(design_model, input(), input()) elif (cmd == "instantiate_association"): // Instantiate an association instantiate_link(design_model, input(), input(), input(), input()) elif (cmd == "delete_element"): // Delete the provided element model_delete_element(design_model, input()) // After changes, we check whether or not the design model conforms conforming = conformance_scd(design_model) if (conforming == "OK"): // Conforming, so do the retyping and sanitization step runtime_model = retype_to_runtime(design_model) runtime_model = sanitize(runtime_model, old_runtime_model) log("Create schedule") schedule_init = create_schedule(runtime_model) log("Remove schedule") schedule_run = read_root() old_runtime_model = runtime_model output("CONFORMANCE_OK") else: // Not conforming, so stop simulation and block for input (preferably a modify to make everything consistent again) running = False output("CONFORMANCE_FAIL " + conforming) else: log("Did not understand command: " + cmd)