123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664 |
- include "primitives.alh"
- include "modelling.alh"
- include "object_operations.alh"
- include "library.alh"
- include "conformance_scd.alh"
- include "io.alh"
- include "metamodels.alh"
- include "compilation_manager.alh"
- Element function retype_to_runtime(design_model : Element):
- Element runtime_model
- Element all_blocks
- Element all_links
- String mm_type_name
- String element_name
- String attr_name
- String attr_value
- String attribute
- String src
- String dst
- String time
- Element all_attributes
- runtime_model = instantiate_model(import_node("models/CausalBlockDiagrams_Runtime"))
- all_blocks = allInstances(design_model, "Block")
- while (list_len(all_blocks) > 0):
- element_name = set_pop(all_blocks)
- mm_type_name = reverseKeyLookup(design_model["metamodel"]["model"], dict_read_node(design_model["type_mapping"], design_model["model"][element_name]))
- element_name = instantiate_node(runtime_model, mm_type_name, element_name)
- if (is_nominal_instance(design_model, element_name, "ConstantBlock")):
- instantiate_attribute(runtime_model, element_name, "value", read_attribute(design_model, element_name, "value"))
- elif (is_nominal_instance(design_model, element_name, "ProbeBlock")):
- instantiate_attribute(runtime_model, element_name, "name", read_attribute(design_model, element_name, "name"))
- // Don't merge this together with the block conversion, as the destination block might not exist yet!
- all_links = allInstances(design_model, "Link")
- while (read_nr_out(all_links) > 0):
- element_name = set_pop(all_links)
- src = reverseKeyLookup(design_model["model"], read_edge_src(design_model["model"][element_name]))
- dst = reverseKeyLookup(design_model["model"], read_edge_dst(design_model["model"][element_name]))
- instantiate_link(runtime_model, "Link", element_name, src, dst)
- all_links = allInstances(design_model, "InitialCondition")
- while (read_nr_out(all_links) > 0):
- element_name = set_pop(all_links)
- src = reverseKeyLookup(design_model["model"], read_edge_src(design_model["model"][element_name]))
- dst = reverseKeyLookup(design_model["model"], read_edge_dst(design_model["model"][element_name]))
- instantiate_link(runtime_model, "InitialCondition", element_name, src, dst)
- return runtime_model!
- Element function sanitize(new_runtime_model : Element, old_runtime_model : Element):
- Element all_blocks
- Element all_links
- String element_name
- String attr_name
- String attr_value
- String attribute
- String time
- Element all_attributes
- Float current_time
- all_blocks = allInstances(new_runtime_model, "Block")
- while (list_len(all_blocks) > 0):
- element_name = set_pop(all_blocks)
- if (dict_in(old_runtime_model["model"], element_name)):
- if (is_nominal_instance(new_runtime_model, element_name, "ICBlock")):
- instantiate_attribute(new_runtime_model, element_name, "last_in", read_attribute(old_runtime_model, element_name, "last_in"))
- if (is_nominal_instance(new_runtime_model, element_name, "IntegratorBlock")):
- instantiate_attribute(new_runtime_model, element_name, "last_out", read_attribute(old_runtime_model, element_name, "last_out"))
- instantiate_attribute(new_runtime_model, element_name, "signal", read_attribute(old_runtime_model, element_name, "signal"))
- else:
- instantiate_attribute(new_runtime_model, element_name, "signal", 0.0)
- if (dict_in(old_runtime_model["model"], "time")):
- current_time = read_attribute(old_runtime_model, "time", "current_time")
- else:
- current_time = 0
- time = instantiate_node(new_runtime_model, "Time", "time")
- instantiate_attribute(new_runtime_model, time, "start_time", current_time)
- instantiate_attribute(new_runtime_model, time, "current_time", current_time)
- return new_runtime_model!
- Element function create_schedule(model : Element):
- // Create nice graph first
- Element nodes
- Element successors
- String element_name
- Element incoming_links
- Element all_blocks
- nodes = allInstances(model, "Block")
- successors = create_node()
- while (read_nr_out(nodes) > 0):
- element_name = set_pop(nodes)
- if (bool_not(dict_in(successors, element_name))):
- dict_add(successors, element_name, create_node())
- if (is_nominal_instance(model, element_name, "ICBlock")):
- if (element_eq(read_attribute(model, element_name, "last_in"), read_root())):
- incoming_links = allIncomingAssociationInstances(model, element_name, "InitialCondition")
- else:
- incoming_links = create_node()
- if (is_nominal_instance(model, element_name, "DerivatorBlock")):
- Element new_incoming_links
- new_incoming_links = allIncomingAssociationInstances(model, element_name, "Link")
- while (read_nr_out(new_incoming_links) > 0):
- list_append(incoming_links, set_pop(new_incoming_links))
- else:
- incoming_links = allIncomingAssociationInstances(model, element_name, "Link")
- while (read_nr_out(incoming_links) > 0):
- String source
- source = readAssociationSource(model, set_pop(incoming_links))
- if (bool_not(dict_in(successors, source))):
- dict_add(successors, source, create_node())
- set_add(successors[source], element_name)
-
- Element values
- values = create_node()
- dict_add(values, "S", create_node())
- dict_add(values, "index", 0)
- dict_add(values, "indices", create_node())
- dict_add(values, "lowlink", create_node())
- dict_add(values, "onStack", create_node())
- dict_add(values, "successors", successors)
- dict_add(values, "SCC", create_node())
- nodes = allInstances(model, "Block")
- while (read_nr_out(nodes) > 0):
- strongconnect(set_pop(nodes), values)
- return values["SCC"]!
- Void function dict_overwrite(d : Element, key : Element, value : Element):
- if (dict_in(d, key)):
- dict_delete(d, key)
- if (dict_in_node(d, key)):
- dict_delete_node(d, key)
- dict_add(d, key, value)
- return !
- Integer function min(a : Integer, b : Integer):
- if (a < b):
- return a!
- else:
- return b!
- Void function strongconnect(v : String, values : Element):
- if (dict_in(values["indices"], v)):
- return!
- dict_overwrite(values["indices"], v, values["index"])
- dict_overwrite(values["lowlink"], v, values["index"])
- dict_overwrite(values, "index", cast_s2i(cast_v2s(values["index"])) + 1)
- list_append(values["S"], v)
- dict_overwrite(values["onStack"], v, True)
-
- Element successors
- String w
- successors = values["successors"][v]
- while (read_nr_out(successors) > 0):
- w = set_pop(successors)
- if (bool_not(dict_in(values["indices"], w))):
- strongconnect(w, values)
- dict_overwrite(values["lowlink"], v, min(values["lowlink"][v], values["lowlink"][w]))
- elif (dict_in(values["onStack"], w)):
- if (values["onStack"][w]):
- dict_overwrite(values["lowlink"], v, min(values["lowlink"][v], values["indices"][w]))
-
- if (value_eq(values["lowlink"][v], values["indices"][v])):
- Element scc
- scc = create_node()
- // It will always differ now
- w = list_pop(values["S"])
- list_append(scc, w)
- dict_overwrite(values["onStack"], w, False)
- while (w != v):
- w = list_pop(values["S"])
- list_append(scc, w)
- dict_overwrite(values["onStack"], w, False)
- list_insert(values["SCC"], scc, 0)
- return!
- Element function list_pop(list : Element):
- Integer top
- Element t
- top = list_len(list) - 1
- t = list_read(list, top)
- list_delete(list, top)
- return t!
- String function readType(model : Element, name : String):
- return reverseKeyLookup(model["metamodel"]["model"], dict_read_node(model["type_mapping"], model["model"][name]))!
- Boolean function solve_scc(model : Element, scc : Element):
- Element m
- Integer i
- Integer j
- String block
- String blocktype
- Element incoming
- String selected
- Float constant
- Element t
- // Construct the matrix first, with as many rows as there are variables
- // Number of columns is 1 higher
- i = 0
- m = create_node()
- while (i < read_nr_out(scc)):
- j = 0
- t = create_node()
- while (j < (read_nr_out(scc) + 1)):
- list_append(t, 0.0)
- j = j + 1
- list_append(m, t)
- i = i + 1
- log("Matrix ready!")
- // Matrix initialized to 0.0
- i = 0
- while (i < read_nr_out(scc)):
- log("Creating matrix row")
- // First element of scc
- block = scc[i]
- blocktype = readType(model, block)
- // First write 1 in the current block
- dict_overwrite(m[i], i, 1.0)
- // Now check all blocks that are incoming
- if (blocktype == "AdditionBlock"):
- constant = 0.0
- elif (blocktype == "MultiplyBlock"):
- constant = 1.0
- log("Generating matrix for " + blocktype)
- log("Block: " + block)
- incoming = allIncomingAssociationInstances(model, block, "Link")
- Integer index_to_write_constant
- index_to_write_constant = -1
- log("Iterating over incoming")
- while (read_nr_out(incoming) > 0):
- log("Iteration")
- selected = readAssociationSource(model, set_pop(incoming))
- if (set_in(scc, selected)):
- // Part of the loop, so in the index of selected in scc
- // Five options:
- if (blocktype == "AdditionBlock"):
- // 1) AdditionBlock
- // Add the negative of this signal, which is as of yet unknown
- // x = y + z --> x - y - z = 0
- dict_overwrite(m[i], list_index_of(scc, selected), -1.0)
- elif (blocktype == "MultiplyBlock"):
- // 2) MultiplyBlock
- if (index_to_write_constant != -1):
- return False!
- index_to_write_constant = list_index_of(scc, selected)
- elif (blocktype == "NegatorBlock"):
- // 3) NegatorBlock
- // Add the positive of the signal, which is as of yet unknown
- dict_overwrite(m[i], list_index_of(scc, selected), 1.0)
- elif (blocktype == "DelayBlock"):
- // 5) DelayBlock
- // Just copies a single value
- dict_overwrite(m[i], list_index_of(scc, selected), -1.0)
- else:
- // Block that cannot be handled
- return False!
- else:
- // A constant, which we can assume is already computed and thus usable
- if (blocktype == "AdditionBlock"):
- constant = constant + v2f(read_attribute(model, selected, "signal"))
- dict_overwrite(m[i], read_nr_out(scc), constant)
- elif (blocktype == "MultiplyBlock"):
- constant = constant * v2f(read_attribute(model, selected, "signal"))
- // Not written to constant part, as multiplies a variable
- // Any other block is impossible:
- // * Constant would never be part of a SCC
- // * Delay would never get an incoming constant
- // * Negation and Inverse only get 1 input, which is a variable in a loop
- // * Integrator and Derivator never get an incoming constant
- if (index_to_write_constant != -1):
- dict_overwrite(m[i], index_to_write_constant, -constant)
- i = i + 1
- // Constructed a complete matrix, so we can start!
- log("Constructed matrix to solve:")
- log(matrix2string(m))
- // Solve matrix now
- eliminateGaussJordan(m)
- // Now go over m and set signals for each element
- // Assume that everything worked out...
- i = 0
- while (i < read_nr_out(m)):
- block = scc[i]
- unset_attribute(model, block, "signal")
- instantiate_attribute(model, block, "signal", m[i][read_nr_out(scc)])
- log((("Solved " + block) + " to ") + cast_v2s(m[i][read_nr_out(scc)]))
- i = i + 1
- return True!
- Integer function list_index_of(lst : Element, elem : Element):
- Integer i
- i = 0
- while (i < read_nr_out(lst)):
- if (value_eq(list_read(lst, i), elem)):
- return i!
- else:
- i = i + 1
- return -1!
- Void function step_simulation(model : Element, schedule : Element):
- String time
- Float signal
- Element incoming
- String selected
- String block
- String elem
- String blocktype
- Element memory_blocks
- Integer i
- Float delta_t
- Element scc
- time = "time"
- delta_t = 0.1
- memory_blocks = create_node()
- output("SIM_TIME " + cast_v2s(read_attribute(model, time, "current_time")))
- i = 0
- while (i < read_nr_out(schedule)):
- scc = list_read(schedule, i)
- i = i + 1
- if (list_len(scc) > 1):
- log("Solving algebraic loop!")
- if (bool_not(solve_scc(model, scc))):
- output("ALGEBRAIC_LOOP")
- return !
- else:
- block = set_pop(scc)
- // Execute "block"
- blocktype = readType(model, block)
- if (blocktype == "ConstantBlock"):
- signal = read_attribute(model, block, "value")
- elif (blocktype == "AdditionBlock"):
- signal = 0.0
- incoming = allIncomingAssociationInstances(model, block, "Link")
- while (read_nr_out(incoming) > 0):
- selected = readAssociationSource(model, set_pop(incoming))
- signal = signal + cast_s2f(cast_v2s(read_attribute(model, selected, "signal")))
- elif (blocktype == "MultiplyBlock"):
- signal = 1.0
- incoming = allIncomingAssociationInstances(model, block, "Link")
- while (read_nr_out(incoming) > 0):
- selected = readAssociationSource(model, set_pop(incoming))
- signal = signal * cast_s2f(cast_v2s(read_attribute(model, selected, "signal")))
- elif (blocktype == "NegatorBlock"):
- incoming = allIncomingAssociationInstances(model, block, "Link")
- signal = 0.0
- while (read_nr_out(incoming) > 0):
- selected = readAssociationSource(model, set_pop(incoming))
- signal = float_neg(cast_s2f(cast_v2s(read_attribute(model, selected, "signal"))))
- elif (blocktype == "InverseBlock"):
- signal = 0.0
- incoming = allIncomingAssociationInstances(model, block, "Link")
- while (read_nr_out(incoming) > 0):
- selected = readAssociationSource(model, set_pop(incoming))
- signal = float_division(1.0, cast_s2f(cast_v2s(read_attribute(model, selected, "signal"))))
- elif (blocktype == "DelayBlock"):
- signal = 0.0
- if (element_eq(read_attribute(model, block, "last_in"), read_root())):
- // No memory yet, so use initial condition
- incoming = allIncomingAssociationInstances(model, block, "InitialCondition")
- while (read_nr_out(incoming) > 0):
- selected = readAssociationSource(model, set_pop(incoming))
- signal = cast_s2f(cast_v2s(read_attribute(model, selected, "signal")))
- else:
- signal = read_attribute(model, block, "last_in")
- unset_attribute(model, block, "last_in")
- set_add(memory_blocks, block)
- elif (blocktype == "IntegratorBlock"):
- if (element_eq(read_attribute(model, block, "last_in"), read_root())):
- // No history yet, so use initial values
- incoming = allIncomingAssociationInstances(model, block, "InitialCondition")
- while (read_nr_out(incoming) > 0):
- selected = readAssociationSource(model, set_pop(incoming))
- signal = cast_s2f(cast_v2s(read_attribute(model, selected, "signal")))
- else:
- signal = cast_s2f(cast_v2s(read_attribute(model, block, "last_in"))) + (delta_t * cast_s2f(cast_v2s(read_attribute(model, block, "last_out"))))
- unset_attribute(model, block, "last_in")
- unset_attribute(model, block, "last_out")
- instantiate_attribute(model, block, "last_out", signal)
- set_add(memory_blocks, block)
- elif (blocktype == "DerivatorBlock"):
- if (element_eq(read_attribute(model, block, "last_in"), read_root())):
- // No history yet, so use initial values
- incoming = allIncomingAssociationInstances(model, block, "InitialCondition")
- while (read_nr_out(incoming) > 0):
- selected = readAssociationSource(model, set_pop(incoming))
- signal = cast_s2f(cast_v2s(read_attribute(model, selected, "signal")))
- else:
- incoming = allIncomingAssociationInstances(model, block, "Link")
- while (read_nr_out(incoming) > 0):
- selected = readAssociationSource(model, set_pop(incoming))
- signal = (cast_s2f(cast_v2s(read_attribute(model, selected, "signal"))) - cast_s2f(cast_v2s(read_attribute(model, block, "last_in")))) / delta_t
- unset_attribute(model, block, "last_in")
- set_add(memory_blocks, block)
- elif (blocktype == "ProbeBlock"):
- incoming = allIncomingAssociationInstances(model, block, "Link")
- while (read_nr_out(incoming) > 0):
- selected = readAssociationSource(model, set_pop(incoming))
- signal = cast_s2f(cast_v2s(read_attribute(model, selected, "signal")))
- output((("SIM_PROBE " + cast_v2s(read_attribute(model, block, "name"))) + " ") + cast_v2s(signal))
- unset_attribute(model, block, "signal")
- instantiate_attribute(model, block, "signal", signal)
- output("SIM_END")
-
- while (read_nr_out(memory_blocks) > 0):
- block = set_pop(memory_blocks)
- // Update memory
- incoming = allIncomingAssociationInstances(model, block, "Link")
- while (read_nr_out(incoming) > 0):
- selected = readAssociationSource(model, set_pop(incoming))
- instantiate_attribute(model, block, "last_in", cast_s2f(cast_v2s(read_attribute(model, selected, "signal"))))
- // Increase simulation time
- Float new_time
- new_time = cast_s2f(cast_v2s(read_attribute(model, time, "current_time"))) + delta_t
- unset_attribute(model, time, "current_time")
- instantiate_attribute(model, time, "current_time", new_time)
- return !
- Void function execute_cbd(design_model : Element):
- String verify_result
- Element runtime_model
- Element old_runtime_model
- String cmd
- Boolean running
- Element schedule_init
- Element schedule_run
- Element schedule
- String conforming
- old_runtime_model = instantiate_model(import_node("models/CausalBlockDiagrams_Runtime"))
- runtime_model = retype_to_runtime(design_model)
- runtime_model = sanitize(runtime_model, old_runtime_model)
- running = False
- conforming = conformance_scd(design_model)
- if (conforming == "OK"):
- output("CONFORMANCE_OK")
- else:
- output("CONFORMANCE_FAIL")
- schedule_init = create_schedule(runtime_model)
- schedule_run = read_root()
- while (True):
- // If we are running, we just don't block for input and automatically do a step if there is no input
- if (running):
- if (has_input()):
- cmd = input()
- else:
- cmd = "step"
- else:
- cmd = input()
- // Process input
- if (cmd == "simulate"):
- // Simulation should toggle running to True, but only if the model is conforming
- if (conforming == "OK"):
- running = True
- else:
- output("CONFORMANCE_FAIL " + conforming)
- elif (cmd == "step"):
- // Stepping should make a single step, but first need to pick the correct schedule to use
- if (conforming == "OK"):
- if (read_attribute(runtime_model, "time", "start_time") == read_attribute(runtime_model, "time", "current_time")):
- schedule = schedule_init
- else:
- if (element_eq(schedule_run, read_root())):
- schedule_run = create_schedule(runtime_model)
- schedule = schedule_run
- // TODO remove
- schedule = create_schedule(runtime_model)
- step_simulation(runtime_model, schedule)
- else:
- output("CONFORMANCE_FAIL " + conforming)
- elif (cmd == "pause"):
- // Pausing merely stops a running simulation
- running = False
- elif (cmd == "read_available_attributes"):
- // Returns a list of all available attributes
- Element attr_list
- Element attrs
- Element attr
- attr_list = getAttributeList(design_model, input())
- attrs = dict_keys(attr_list)
- while (0 < read_nr_out(attrs)):
- attr = set_pop(attrs)
- output("AVAILABLE_ATTR_VALUE " + cast_v2s(attr))
- output("AVAILABLE_ATTR_TYPE " + cast_v2s(dict_read(attr_list, attr)))
- output("AVAILABLE_ATTR_END")
- elif (cmd == "read_attribute"):
- // Returns the value of an attribute
- output("ATTR_VALUE " + cast_v2s(read_attribute(design_model, input(), input())))
- elif (bool_or(bool_or(cmd == "set_attribute", cmd == "instantiate_node"), bool_or(cmd == "delete_element", cmd == "instantiate_association"))):
- // Modify the structure
- if (cmd == "set_attribute"):
- // Setting an attribute
- String element_name
- String attribute_name
- element_name = input()
- attribute_name = input()
- // Delete it if it exists already
- if (bool_not(element_eq(read_attribute(design_model, element_name, attribute_name), read_root()))):
- unset_attribute(design_model, element_name, attribute_name)
- // And finally set it
- instantiate_attribute(design_model, element_name, attribute_name, input())
- elif (cmd == "instantiate_node"):
- // Instantiate a node
- instantiate_node(design_model, input(), input())
- elif (cmd == "instantiate_association"):
- // Instantiate an association
- instantiate_link(design_model, input(), input(), input(), input())
- elif (cmd == "delete_element"):
- // Delete the provided element
- model_delete_element(design_model, input())
- // After changes, we check whether or not the design model conforms
- conforming = conformance_scd(design_model)
- if (conforming == "OK"):
- // Conforming, so do the retyping and sanitization step
- runtime_model = retype_to_runtime(design_model)
- runtime_model = sanitize(runtime_model, old_runtime_model)
- schedule_init = create_schedule(runtime_model)
- schedule_run = read_root()
- old_runtime_model = runtime_model
- output("CONFORMANCE_OK")
- else:
- // Not conforming, so stop simulation and block for input (preferably a modify to make everything consistent again)
- running = False
- output("CONFORMANCE_FAIL " + conforming)
- else:
- log("Did not understand command: " + cmd)
- Float function v2f(i : Element):
- return cast_s2f(cast_v2s(i))!
- Void function eliminateGaussJordan(m : Element):
- Integer i
- Integer j
- Integer f
- Integer g
- Boolean searching
- Element t
- Float divisor
- i = 0
- j = 0
- while (i < read_nr_out(m)):
- // Make sure pivot m[i][j] != 0, swapping if necessary
- while (v2f(m[i][j]) == 0.0):
- // Is zero, so find row which is not zero
- f = i + 1
- searching = True
- while (searching):
- if (f >= read_nr_out(m)):
- // No longer any rows left, so just increase column counter
- searching = False
- j = j + 1
- else:
- if (v2f(m[f][j]) == 0.0):
- // Also zero, so continue
- f = f + 1
- else:
- // Found non-zero, so swap row
- t = v2f(m[f])
- dict_overwrite(m, f, v2f(m[i]))
- dict_overwrite(m, i, t)
- searching = False
- // If we have increased j, we will just start the loop again (possibly), as m[i][j] might be zero again
- // Pivot in m[i][j] guaranteed to not be 0
- // Now divide complete row by value of m[i][j] to make it equal 1
- f = j
- divisor = v2f(m[i][j])
- while (f < read_nr_out(m[i])):
- dict_overwrite(m[i], f, float_division(v2f(m[i][f]), divisor))
- f = f + 1
- // Eliminate all rows in the j-th column, except the i-th row
- f = 0
- while (f < read_nr_out(m)):
- if (bool_not(f == i)):
- g = j
- divisor = v2f(m[f][j])
- while (g < read_nr_out(m[f])):
- dict_overwrite(m[f], g, v2f(m[f][g]) - (divisor * v2f(m[i][g])))
- g = g + 1
- f = f + 1
- // Increase row and column
- i = i + 1
- j = j + 1
- return !
- String function matrix2string(m : Element):
- Integer i
- Integer j
- String result
- result = ""
- i = 0
- while (i < read_nr_out(m)):
- j = 0
- while (j < read_nr_out(m[i])):
- result = result + cast_v2s(m[i][j])
- result = result + ", "
- j = j + 1
- i = i + 1
- result = result + "\n"
- return result!
- Void function main():
- Element model
- String verify_result
- while (True):
- execute_cbd(instantiate_model(import_node("models/CausalBlockDiagrams_Design")))
- return!
|