perf2tex.py 6.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177
  1. """Converts performance data files (as produced by utils.py) to LaTeX charts."""
  2. import colorsys
  3. import operator
  4. import utils
  5. # Generated LaTeX is based on the accepted answer to
  6. # http://tex.stackexchange.com/questions/101320/grouped-bar-chart
  7. # pylint: disable=I0011,W0141
  8. COLOR_SCHEME_MIN_COLOR = (36, 255, 106)
  9. COLOR_SCHEME_MAX_COLOR = (216, 33, 0)
  10. LATEX_HEADER = r"""\documentclass[12pt,a4paper,onecolumn,openright]{report}
  11. \usepackage[landscape]{geometry}
  12. \usepackage{xcolor}
  13. \usepackage{pgfplots}
  14. \usepackage{tikz}
  15. \usepgfplotslibrary{units}
  16. % Define bar chart colors
  17. %"""
  18. LATEX_DOCUMENT_HEADER = r"""\begin{document}
  19. \begin{tikzpicture}"""
  20. LATEX_DOCUMENT_FOOTER = r"""\end{tikzpicture}
  21. \end{document}"""
  22. def encode_latex_string(value):
  23. """Encodes the given string as a LaTeX string."""
  24. # I guess this is good enough for now. This may need to be
  25. # revisited if we encounter more complicated names.
  26. return '{%s}' % value.replace('_', '\\_')
  27. def assemble_latex_chart(optimization_levels, color_defs, test_names, data):
  28. """Assembles a LaTeX chart from the given components."""
  29. lines = []
  30. lines.append(LATEX_HEADER)
  31. for color_name, (red, green, blue) in color_defs:
  32. lines.append(r'\definecolor{%s}{HTML}{%02X%02X%02X}' % (color_name, red, green, blue))
  33. lines.append(LATEX_DOCUMENT_HEADER)
  34. lines.append(r"""
  35. \begin{axis}[
  36. width = 0.85*\textwidth,
  37. height = 8cm,
  38. major x tick style = transparent,
  39. ybar=2*\pgflinewidth,
  40. bar width=14pt,
  41. ymajorgrids = true,
  42. ylabel = {Run time},
  43. symbolic x coords={%s},
  44. xtick = data,
  45. scaled y ticks = false,
  46. enlarge x limits=0.25,
  47. ymin=0,
  48. y unit=s,
  49. legend cell align=left,
  50. legend style={
  51. at={(1,1.05)},
  52. anchor=south east,
  53. column sep=1ex
  54. }
  55. ]""" % ','.join(map(encode_latex_string, test_names)))
  56. for color_name, points in data:
  57. lines.append(r"""
  58. \addplot[style={%s,fill=%s,mark=none}]
  59. coordinates {%s};""" % (
  60. color_name, color_name,
  61. ' '.join([('(%s,%s)' % (encode_latex_string(name), measurement))
  62. for name, measurement in points])))
  63. lines.append(r"""
  64. \legend{%s}""" % ','.join(map(encode_latex_string, optimization_levels)))
  65. lines.append(r"""
  66. \end{axis}""")
  67. lines.append(LATEX_DOCUMENT_FOOTER)
  68. return '\n'.join(lines)
  69. def create_latex_chart(perf_data):
  70. """Creates a LaTeX chart for the given performance data."""
  71. perf_data_dict = {opt_level: dict(tests) for opt_level, tests in perf_data}
  72. sorted_opt_levels = sort_by_runtime(perf_data_dict)
  73. color_scheme = generate_color_scheme(sorted_opt_levels)
  74. opt_levels = []
  75. color_defs = []
  76. test_names = []
  77. data = []
  78. for i, optimization_level in enumerate(sorted_opt_levels):
  79. measurements = perf_data_dict[optimization_level]
  80. color = color_scheme[optimization_level]
  81. color_name = 'chartColor%d' % i
  82. opt_levels.append(optimization_level)
  83. color_defs.append((color_name, color))
  84. data.append((color_name, measurements.items()))
  85. for name, _ in measurements.items():
  86. if name not in test_names:
  87. test_names.append(name)
  88. return assemble_latex_chart(opt_levels, color_defs, test_names, data)
  89. def get_mean_runtimes(perf_data):
  90. """Computes the mean run-time of every optimization level in the given
  91. performance data."""
  92. return {
  93. opt_level: utils.mean(perf_data[opt_level].values())
  94. for opt_level in perf_data.keys()
  95. }
  96. def get_baseline_optimization_level(perf_data):
  97. """Gets a baseline optimization level from the given performance data.
  98. This baseline optimization level is guaranteed to be for every test case.
  99. If no baseline optimization level can be found, then None is returned."""
  100. # First find the name of all test cases.
  101. all_test_names = set()
  102. for optimization_level, measurements in perf_data.items():
  103. all_test_names.update(measurements.keys())
  104. # Filter optimization levels which are used for every test case.
  105. candidate_opt_levels = []
  106. for optimization_level, measurements in perf_data.items():
  107. if len(all_test_names) == len(measurements):
  108. candidate_opt_levels.append(optimization_level)
  109. if len(candidate_opt_levels) == 0:
  110. # Looks like there is no baseline optimization level.
  111. return None
  112. # Pick the optimization level with the lowest total run-time as the baseline.
  113. return min(candidate_opt_levels, key=lambda opt_level: sum(perf_data[opt_level].values()))
  114. def get_relative_measurements(perf_data, baseline_optimization_level):
  115. """Computes a map of measurements that are relative to the given optimization level."""
  116. results = {}
  117. for optimization_level, measurements in perf_data.items():
  118. results[optimization_level] = {}
  119. for test_name, data_point in measurements.items():
  120. results[optimization_level][test_name] = (
  121. data_point / perf_data[baseline_optimization_level][test_name])
  122. return results
  123. def interpolate(value_range, index, length):
  124. """Uses an index and a length to interpolate in the given range."""
  125. min_val, max_val = value_range
  126. return min_val + float(index) * (max_val - min_val) / float(length - 1)
  127. def sort_by_runtime(perf_data):
  128. """Sorts the optimization levels by mean relative runtimes."""
  129. baseline_opt_level = get_baseline_optimization_level(perf_data)
  130. relative_perf = get_relative_measurements(perf_data, baseline_opt_level)
  131. # Sort the optimization levels by their mean runtimes.
  132. mean_runtimes = get_mean_runtimes(relative_perf)
  133. return list(sorted(mean_runtimes.keys(), key=lambda opt_level: mean_runtimes[opt_level]))
  134. def generate_color_scheme(sorted_opt_levels):
  135. """Assigns a color to every optimization level in the given performance data."""
  136. # Assign colors to the optimization levels.
  137. color_scheme = {}
  138. min_hue, min_sat, min_val = colorsys.rgb_to_hsv(
  139. *[c / float(255) for c in COLOR_SCHEME_MIN_COLOR])
  140. max_hue, max_sat, max_val = colorsys.rgb_to_hsv(
  141. *[c / float(255) for c in COLOR_SCHEME_MAX_COLOR])
  142. for i, opt_level in enumerate(sorted_opt_levels):
  143. hue = interpolate((min_hue, max_hue), i, len(sorted_opt_levels))
  144. sat = interpolate((min_sat, max_sat), i, len(sorted_opt_levels))
  145. val = interpolate((min_val, max_val), i, len(sorted_opt_levels))
  146. color = [component * 255 for component in colorsys.hsv_to_rgb(hue, sat, val)]
  147. color_scheme[opt_level] = color
  148. return color_scheme
  149. if __name__ == '__main__':
  150. print(
  151. create_latex_chart(
  152. utils.parse_perf_data(utils.DEFAULT_PERF_FILE_NAME)[utils.TOTAL_TIME_QUANTITY]))